

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

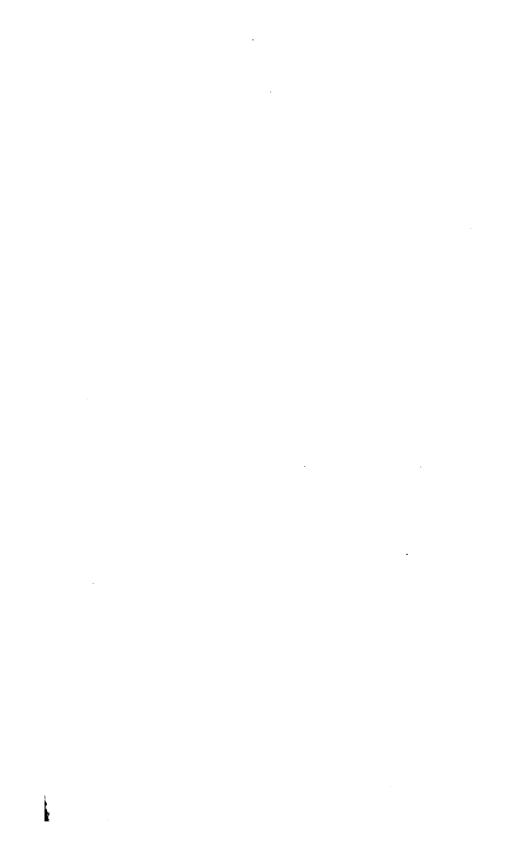
Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + *Refrain from automated querying* Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + Keep it legal Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search


Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

. . .

Jenaische Zeitschrift

fúr

MEDIZIN

und

ATURWISSENSCHAFT

herausgegeben

von der

nedizinisch-naturwissenschaftlichen Gesellschaft zu Jena.

Siebenter Band.

Mit achtundzwanzig Tafeln und 24 Figuren in Holsschnitt.

Leipzig,

Verlag von Wilhelm Engelmann.

1873.

. • • . . . · · ·

Inhalt.

•••

•

.

	Seite
Gegenbaur, Carl, Ueber die Nasenmuscheln der Vögel. (Mit Taf. I. II. III	
Muller, Fritz, Bestaubungsversuche an Abutilon-Arten. 'Mit 6 Holzschn.)	
Hertwig, Oskar, Untersuchungen über den Bau und die Entwickelung	
des Cellulose-Mantels der Tunicaten. Eine akademische Preisschrift.	
Mit Taf. IV. V. VI).	
Hertwig, Richard, Beiträge zur Kenntniss des Baues der Ascidien. Eine	
akademische Preisschrift. (Mit Taf. VII. VIII. IX)	
Geuther, A., und Michaelis, A., Zur Kenntniss der Phosphorver-	
bindungen	
Michaelis, A., Ueber die Einwirkung von Phosphorchlorür auf Anhy-	
dride und Chloride. (Zweite Mittheilung.)	110
Geuther, A., Chemische Mittheilungen	118
Gegenbaur, Carl, Ueber das Archipterygium. (Mit Taf. X)	
Bruch, C., Ueber Dreifachbildungen. (Mit Taf. XI)	
Huss, Dr. med. Max, Beiträge sur Entwickelungsgeschichte der Milch-	
drüsen beim Menschen und bei Wiederkäuern. (Mit Taf. XII. XIII) .	
Gegenbaur, Carl, Bemerkungen über die Milchdrüsen-Papillen der	
Geuther, A., Ueber die Producte der Einwirkung von Natrium auf ein	
Gemisch von Phosgenaether und lodaethyl. 1. Mittheilung	
Strasburger, Ed., Ueber Sciadopitys und Phyllocladus.	
	22J
Fürbringer, Max, Zur vergleichenden Anatomie der Schultermuskeln.	007
I. Theil. (Mit Taf. XIV—XVIII)	231
Müller, Wilhelm, Ueber die Persistenz der Urniere bei Myxine glutinosa	321
Müller, Wilhelm, Ueber die Hypobranchialrinne der Tunikaten und	
deren Vorhandensein bei Amphioxus und den Cyklostomen	327
Müller, Frits, Beiträge zur Kenntniss der Termiten. I. Die Geschlechts-	
theile der Soldaten von Calotermes. (Mit Taf. XIX. XX) - II. Die	
Wohnungen unserer Termiten. (Mit 11 Figuren in Holzschnitt.)	333
Geuther, A., und F. Brockhoff, Ueber die Einwirkung einiger Chloride	
auf Natriumalkoholat	359
Geuther, A., Ueber die Einwirkung von Salpetrig-Salpetersäure-	
Anhydrid auf Arsenchlorür und Borchlorid	375

• • • Inhalt.

	oite
Geuther, A., Ueber die Einwirkungen der Phosphorchloride auf die	
Phosphorsäuren	50
Frenkel, F., Beiträge zur anatomischen Kenntniss des Kreuzbeines der	
Säugethiere. Hierzu Tafel XXI und XXII	91
Gegenbaur, C., Zur Bildungsgeschichte lumbosacraler Uebergangswirbel 4	35
Müller, Fritz, Bestaubungsversuche an Abutilon II	41
Müller, Fritz, Beiträge zur Kenntniss der Termiten. III. »Die Nymphen mit kurzen Flügelscheiden« (Hagen) »nymphes de la deuxième forme«	
(Lespès). Ein Sultan in seinem Harem. Mit 3 Figuren in Holzschnitt. 4	51
Koch, G. von, Vorläufige Mittheilungen über Coelenteraten. (Mit Taf.	
XXIII)	64
Fol, Herm., Die erste Entwickelung des Geryonideneies. Mit Taf. XXIV.	
XXV und Figuren in Holzschn.)	71
Geuther, A., Untersuchung von sauerstoffreichen Kohlenstoffsäuren 4	93
Koch, G. v., Vorläufige Mittheilungen über Coelenteraten [Fortsetzung].	
(Mit Taf. XXVI	12
Haeckel, Ernst, Zur Morphologie der Infusorien. Mit Tafel XXVII	1.
und XXVIII)	
Haeckel, Ueber einige neue pelagische Infusorien 5	01

۱

ŧ

.

IV

,

.

Ueber die Nasenmuscheln der Vögel.

Von

Carl Gegenbaur.

Mit Tafel I. II. III.

Dass der Nasenhöhle der Vögel drei als Muscheln bezeichnete Fortsatzbildungen zukommen, ist eine Thatsache, deren Kenntniss seit Scarpa's berühmtem Werke¹) in allen einschlägigen Büchern allgemein verbreitet ist. Im Anschluss daran sind die Angaben von HARWOOD²). Wenn auch schon in Scarpa's Beschreibung jener Theile manches Eigenthümliche hervorgetreten ist, so kann man doch die Annahme einer Uebereinstimmung der Nasenmuscheln der Säugethiere mit jenem Verhalten im Wesentlichen darauf stützen, aber es ergiebt sich daraus ein Verhältniss, welches mit den sonstigen Beziehungen der beiden Abtheilungen zu einander im Widerspruche steht. Die Untersuchung der Nasenhöhle der Vögel lehrte mich nun, dass zwei der als Muscheln bezeichneten Gebilde nichts mit irgend welchen Muscheln der Organe der Säugethiere gemein haben, und von dieser Untersuchung sollen hier die wesentlichsten Ergebnisse mitgetheilt werden.

Zur Gewinnung eines sicheren Ausgangspunktes war es nöthig, die Nasenhöhle der Reptilien in Betracht zu nehmen. Da ich aber auch für diese Abtheilung die meisten Beschreibungen mit den von mir gefundenen Thatsachen wenig in Einklang fand, scheint es mir nothwendig über jene gleichfalls zu berichten. Ich theile also meine Arbeit in Mittheilungen über die Nasenmuscheln der Reptilien und in solche über die Muscheln der Vögel, und füge eine vergleichende Beschreibung daran, in der die Resultate zusammengefasst werden sollen.

B4. VII. 4.

¹⁾ De auditu et olfactu. Ticini 4789.

²⁾ System der vergleichenden Anatomie aus d. Engl. v. Wiedemann. Berlin 4799. S. 28.

I. Unter den Reptilien finde ich die einfachsten Verhältnisse der Nasenmuscheln bei den Eidechsen. Die Nasenhöhle ist keineswegs von der bedeutenden Kürze, wie es in der Angabe bei Cuvier¹) scheinen möchte, wo Saurier und Ophidier mit den Batrachieren zusammengestellt sind. Auch bei STANNIUS²) ist keine auf Muscheln beziehbare Angabe, während in dem grossen Werke von Owan³) nur der Muschel von Iguana Erwähnung geschieht, die hinten mit zwei Vorsprüngen endet. Bei anderen Sauriern sollen mannichfache Modificationen vor-Von diesen kann ich zwei Formzustände näher anführen, kommen. indem ich Uromastix und Lacerta darauf untersuchte. An der lateralen Wand der Nasenhöhle springt eine einzige Muschel vor, dieselbe ist ziemlich verschieden gestaltet. Ich finde sie bei Uromastix als wulstförmigen in einem nach oben offenen Halbkreise gekrümmten Vorsprung (Taf. I. Fig. 4. c), der eine Vertiefung umschliesst. Sie liegt in der hinteren Hälfte der Nasenhöhle, deren vordere Hälfte mehr als ein engerer Canal erscheint. Eine andere Modification repräsentirt Lacerta (L. ocellata). Die Muschel hebt sich hier viel freier und viel mehr lamellenartig von der Nasenhöhlenwand ab, und ragt mit ihrem freien Rande abwärts, mit demselben Rande auf einen nach hinten und abwärts gekrümmten frei vorragenden Abschnitt übergehend (Fig. 3. c). Dieses gekrummte Ende legt sich seitlich in eine Erweiterung der Nasenhöhlenwand.

Compliciter gestaltet sich das Verhalten der Nasenmuschel bei Schlangen. Für Boa (B. constrictor) kann ich Folgendes darüber angeben. Die Nasenhöhle, welche ein reichliches Dritttheil der Länge des Graniums beträgt, bildet dicht am Eingange von der äusseren Nasenöffnung her eine Erweiterung (Fig. 5. a), wird dann lateral verengert, um an ihrem letzten Theile wieder einen ansehnlichen aufwärts und nach aussen ausgedehnten Hohlraum zu bilden. Derselbe setzt sich gerade abwärts zur Ghoanenöffnung fort. Vom vorderen Theile an, dicht hinter der der unteren Nasenöffnung entsprechenden Erweiterung erhebt sich die einzige Muschel (c). Anfangs wulstartig, gestaltet sie sich nach und nach zu einer horizontalen Leiste, die in eine schräg abwärts vorragende Lamelle übergeht. Die Muschel verbreitert sich so nach hinten zu, und zwar in einem der Erweiterung der Nasenhöhle entsprechenden Maasse. Das Ende der Muschel setzt sich in einem griffelförmigen Ausläufer (b) fort, der in die Ghoane (ch) abwärts ge-

⁴⁾ Leçons. Sec. Édit. III. S. 694.

²⁾ Zootomie der Amphibien. S. 474.

³⁾ On the Anatomy of Vertebrates. London 4866. S. 330.

richtet einragt. Durch diese Muschel wird der Raum der Nasenhöhle lateral in zwei Gänge zerlegt, die beide am vorderen Abschnitte beginnen; der obere führt in den oberen blinden Grund der Höhle, an welchem Abschnitte die Ausbreitung des Olfactorius stattfindet; der untere Gang dagegen leitet zunächst unterhalb der Muschel zu der Choane, und communicirt nur über die Muschel hinweg mit dem oberen Raume. Von einer zweiten Muschel, welche SCARPA von Vipera angiebt, findet sich keine Andeutung vor. Der von SCARPA als » Turbinatum supremum angeführte Theil ist bei Boa der einzige als Muschel zu deutende Vorsprung.

Für die Schildkröten findet man bei CUVIER genauere Angaben als für Saurier und Ophidier. Er unterscheidet im Verhalten der Binnenräume erstlich einen vorn weiteren Ganal und dann drei damit verbundene Höblungen (poches ou cellules), davon eine untere und zwei obere. Ueber den Werth dieser Höhlungen zu einander ist nichts angegeben.

Nach Untersuchungen an Chelonia (Ch. cauana) scheidet sich der complexe Binnenraum in folgende Abschnitte. Die äussere Nasenöffnung führt durch einen kurzen, aber weiten und horizontal verlaufenden Canal (sein Verlauf ist in Fig. 1 und 2 von o aus punktirt angegeben) in einen nach verschiedenen Richtungen ausgedehnten grösseren Raum. In Fig. 1 erblickt man die Ausdehnung dieses Raumes nach der Entfernung der Nasenscheidewand. Er setzt sich aufwärts in eine blinde Ausbuchtung (rs) fort, welche die vordere obere Tasche Cuvier's vorstellt. Sie ist durch eine lateral entspringende quere Falte, in welche auch der Ethmoidalknorpel eingeht, von dem mittleren zum unteren Nasenloche führenden Theile abgegrenzt. **Dieser Vorsprung** (Fig. 2 m) setzt sich in eine medial davon abwärts gerichtete Leiste (Fig. 1 n) fort, welche gegen den Boden der zweiten Tasche sich herabsenkt. Die letztere (Fig. 2 r i) erstreckt sich vorwärts und ist durch eine fast horizontale Leiste von dem unteren Nasencanale getrennt. Es ist diess die bei Cuvier als untere Tasche erwähnte Räumlichkeit und wohl dieselbe, deren STANNIUS¹) als eines »auf das Dach der Mundhöhle absteigenden Recessus « gedenkt. Dass sie buchtiger wäre als die der oberen habe ich nicht gefunden. Von dem diese beiden Ausbuchtungen vereinigenden Raume erstreckt sich noch ein dritter vorvorzüglich senkrecht ausgedehnter Raum nach hinten und gegen die Nasenscheidewand. Derselbe ist in Fig. 1 in seiner ganzen Ausdebnung

⁴⁾ Zootomie der Amphibien S. 174. In dieser, gleichfalls von Chelonia entnommenen Auffassung stellt sich das thatsächliche Verhalten etwas anderes dar, wie aus meiner Beschreibung, wie ich hoffe, deutlich hervorgeht.

nach Wegnahme der Nasenscheidewand sichtbar gemacht. Alle diese Räume haben mit der Regio olfactoria der Nasenhöhle nichts zu thun. Man könnte sie zusammen als Vorhof der Nasenhöhle auffassen, denn erst dahinter liegt der zur Ausbreitung des Olfactorius dienende Abschnitt.

Nach aussen von der in Fig. 4 n dargestellten Vorsprungsbildung des Binnenraums beginnt ein fernerer Abschnitt der Nasenhöhle. Von da erstreckt sich nach hinten und zwar abwärts gerichtet ein wenig hoher aber ziemlich breiter Canal (Fig. 2 dn). Er führt zur Choanenöffnung (Ch). Ueber dem Anfange dieses Canales mündet eine weite Höhle (Fig. 2 N) aus, deren Eingang durch eine an der lateralen Wand deutliche Falte (C) abgegrenzt ist. Der Eingang ist enger als der Binnenraum der erwähnten Höhle. Die letztere zeigt in ihren Wänden, davon die mediale vom Septum nasi gebildet wird, die Verbreitung des Olfactorius. Es besteht somit in dem Complexe der Nasenhöhle der Schildkröten eine besondere Cavität als Riechhöhle, eine innere Riechgrube, die wohl nichts anderes ist als die mit der Differenzirung des Kopfes nach innen getretene primitive äussere Riechgrube. Die mediale Leiste (C) grenzt diesen Abschnitt (poche supérieure postérieure) von den übrigen Räumlichkeiten ab. Sie wird als »Muschel« aufgefasst werden dürfen, da unter ihr die respiratorische Bahn der Von allen übrigen Leisten und Vorsprüngen Nasenhöhle hinzieht. findet sich keiner in solchen Beziehungen, dass sie als Muschel gedeutet werden könnte.

Ueber die Nasenhöhle der Crocodile ist unsere Kenntniss nicht minder unvollständig. Bei Cuvier geschieht der Muscheln gar keine Erwähnung, sondern es werden Hohlräume (cellules) beschrieben, die sinuös und vor der Orbita aneinander gelagert seien. Die Wandungen derselben sprängen in das Innere des Nasenganges vor, und im Inneren dieser Räume soll die Geruchswahrnehmung zu Stande kommen. Bessere Orientirung ist aus der in den »Erläuterungs-Tafeln zur vergleichenden Anatomie« gegebenen Darstellung¹) zu gewinnen, die nach Alligator sclerops gearbeitet ist. Es wird darin eine »obere« Muschel angegeben, ohne dass aber von anderen Muscheln die Rede wäre, obgleich die ganze laterale Wand der Nasenhöhle in der Abbildung dargestellt ist.

Eine neue Prüfung war also gewiss auch für die Crocodile nothwendig. Ich habe die Untersuchung an A. lucius vorgenommen und

⁴⁾ Erläuterungstafeln zur Vergleichenden Anstomie von D'Alron und C. G. CARUS. Heft IX. 1855. Tsf. IV. Fig. VIII.

Ueber die Nasenmuschein der Vögel.

folgendes Verhalten aufgefunden. Der Binnenraum der Nasenhöhle zerfällt in zwei sehr verschiedene Abschnitte. Ein vorderer Abschnitt beginnt an der äusseren Nasenöffnung mit einer nicht schr grossen Erweiterung (Fig. 6. a) und geht dann in eine sehr breite aber wenig hohe Räumlichkeit über, welche über die Hälfte der Länge der gesammten Nasenhöhle ausmacht. Den Boden dieser Strecke bildet das Maxillare, welches hier einen bedeutenden Sinus (Fig. 6. mx) um-Eine dünne Knorpellamelle, die dem übrigen Theile der schliesst. Nasenhöhle zu Grunde liegt, bedeckt jedoch auch hier den Knochen. Am Dache dieser Strecke bildet dieselbe Knorpellamelle einen allmählich stärker werdenden Vorsprung (c), indem sie sich von dem über ihr liegenden, sie deckenden Nasale abhebt. Dazwischen lagern Blutgefässe. Am Ende des genannten Abschnittes senkt sich der Boden der Nasenhöhle, und hier ist nun die Stelle, wo der bisher einfache Raum nach hinten zu in zwei übereinander liegende Räume sich fortseut, beide durch eine knöcherne bis zum Septum nasi reichende Lamelle geschieden. Der untere Raum stellt den hinteren (inneren) zu der Choane führenden Nasengang (dn) vor. Dessen knöcherne Wände und Mündung sind längst bekannt, es bedarf daher keiner näheren Beschreibung. Anders verhält es sich mit dem obern Raume, der nach hinten geschlossen ist. Er birgt laterale Vorsprünge der knorpeligen Wandfläche, die man als Muscheln bezeichnen könnte.

Am Anfange des oberen Raumes, genau an der Stelle, wo der äussere Nasengang in den inneren zur Choane führenden sich fortsetzt, und das horizontale Dach der letzteren mit einem concaven Ausschnitte beginnt, erhebt sich im oberen Raume eine Muschel (Fig. 6. C).

Dieselbe beginnt vom unteren Rande einer nach vorne zu gerichleten Einbuchtung (Fig. 6. e) des knorpeligen Daches der Nasenhöhle, und stellt eine abwärts gekrümmte Lamelle vor, die eine Strecke weit in zwei sich sondert, wie am besten auf einem Querschnitte (F. 7. C'C') u sehen ist. Diese Muschel verdeckt bei medialer Ansicht den grössten Theil eines noch bedeutenderen Vorsprunges, der erst hinter Ohne genauere Untersuchung der Muschel frei zu liegen kommt. könnte man diesen Vorsprung für eine zweite Muschel halten, wie er denn auch in den »Erläuterungstafeln « als solche aufgeführt ist. Entfernt man die zuerst beschriebene rein knorpelige Muschel, so bemerkt man den genannten Vorsprung (Fig. 6. D) weit unter ihr nach vorn zu fortgesetzt, und sieht ihn eine langgestreckte Blase bilden, die einen gossen Theil des lateral von der Muschel befindlichen Nasenhöhlenraumes Dieser blasenförmige Vorsprung wird von einem knorpelige ausfullt. Wandungen besitzenden Sinus gebildet. Sein Verhalten zur Nasen-

Carl Gegenbaur,

höhle ist auf dem in Fig. 7 dargestellten Querschnitte leicht zu ersehen. Er ist also von der als Muschel bezeichneten Bildung bedeutend ver-Während jene eine von der Nasenwand entspringende schieden. einfache Knorpellamelle ist, besteht der Blasenvorsprung aus einem sehr bedeutend in die Nasenhöhle einragenden Sinus, der allseitig von Knorpelwand (mit dünner Schleimhautbekleidung) umschlossen ist. Nur an einer Stelle findet sich eine Communication. Nahe am hinteren Grunde des Sinus liegt eine trichterförmige, nach vorn sich verengende Oeffnung, die in einen lateral an der Blase vorbeiführenden, gleichfalls in den Ethmoidalknorpel eingesenkten Canal (Fig. 7. E) Derselbe mündet in einen kleineren Sinus, der unterhalb der führt. Muschel mit dem Raum der Nasenhöhle in offener Communication steht. In wieferne diese Sinusse sich auf die bei Cuvier angeführten »poches ou cellules « beziehen, ist bei der Allgemeinheit jener Angaben nicht Doch ist das eine sicher, dass die Binnenräume dieser festzustellen. Sinusse mit der Geruchsvermittelung nichts zu thun haben, da sie ausnehmend weit nach vorn zu schon mit der Nasenhöhle communiciren, und nirgends Durchbrechungen der Knorpelwand zeigen, durch welche Olfactoriusbundel hindurch treten könnten. Der Olfactorius hat vielmehr auch bei den Grocodilen - soweit ich das bei Alligator ermitteln konnte - seine Ausbreitung im blind geschlossenen Nasengrunde, an der medialen Wand des blasenförmigen Sinus, wie an einer entsprechenden Strecke des Septum nasi.

II. Durch die Untersuchungen SCARPA's ist die Nasenhöhle der Vögel am genauesten bekannt geworden und die bereits oben citirte Arbeit blieb bis heute die Grundlage für die bezügliche Darstellung. Cuvien führt sogar das, was SCARPA von der Gans beschrieb, als allgemein den Vögeln zukommend auf, und fügt von andern nur wenige Verschiedenheiten bei. Sie beziehen sich fast nur auf den Strauss und den Casuar.

Die Abweichungen, die ich im Verhalten der sogenannten Muscheln schon innerhalb einer verhältnissmässig sehr geringen Zahl von Gattungen fand, lassen einzelne Theile als nicht sehr beständig erkennen.

Die Ergebnisse meiner Untersuchung will ich nach den drei sogenannten Muscheln geordnet vorführen.

Vordere Muschel. Nicht blos in den Volumsverhältnissen und der Gestaltung, sondern auch in der Anordnung sind die Eigenthümlichkeiten dieses Theiles der Nasenhöhle bedeutend zu nennen.

Bei Columba führt die äussere, längs der knorpeligen Deckschuppe (Fig. 10. d) sich hinziehende Oeffnung (e), in einen der Ausdehnung jener Deckschuppe (ala) entsprechenden Raum, in welchen die untere Muschel (a) einragt. Diese ist sowohl am Boden als auch an den Wänden dieses Raumes befestigt, und zwar vorne am Septum der Nasenhöhle (s), hinten dagegen an der lateralen Wand, in einiger Entfernung vom Rande der Deckschuppe, der sie an Länge entspricht. Sie ist wulstförmig gestaltet, leicht abwärts zum Boden des Naseneinganges gesenkt, ohne eine Einrollung zu bilden. Ueber dieses Gebilde hinweg passirt man zum hinteren Nasenraume.

Um vieles compliciter ist das Verhalten dieser unteren Muschel bei den Hühnern, von denen ich das Haushuhn, den Truthahn und das Rebhuhn untersucht habe. Bei allen müssen bezüglich der unteren Muschel zweierlei Gebilde unterschieden werden, die in verschiedenen Beziehungen zu der lateralen Wand der Nasenhöhle oder vielmehr zum Rande der unteren Nasenöffnungen stchen. Es ist das erstlich eine wulstartige Vorragung (Fig. 11. n. 15. t), die am unteren t ande der Nares als eine Fortsetzung der Lamelle beginnt, welche am Boden der Oeffnung nach innen und aufwärts steigt. Am hinteren, theilweise von aussen nicht mehr sichtbaren Abschnitte ist diese Lamelle muschelförmig auswärts gekrümmt, und umschliesst eine hintere blind geendigte Bucht, in welche man vom hinteren Winkel des Nasenloches eintrit. Bei der in Fig. 14 gegebenen Abbildung vom Huhn ist sowohl der genannte Wulst als die Krümmung desselben von oben dargestellt. In Fig. 15. von Meleagris auf dem senkrechten Durchschnitte.

Der zweite hierhergehörige Theil ist eine um den vorerwähnten herungelegte, denselben von innen vollständig deckende Lamelle (Figg. 14. u. 16. a), die man als vordere oder untere Muschel zu bezeichnen pflegt. Sie setzt sich vom oberen Rande der Nares, etwas hinter der Mitte der Länge derselben, bis weiter nach hinten zu fort, krümmt sich muschelförmig um den unteren Wulst (Fig. 15) und verläuft hinten mit schwach vorragendem Theile (Fig. 12. 14. a') zur Nasenscheidewand (s), der sie sich verbindet. An dieser Verbindungsstelle bildet die Nasenscheidewand einen quer durch die Nasenhöhle verlaufenden Vorsprung (Fig. 14. 15), der etwas hinter der Mitte der Länge der gesammten Nasenhöhle liegt. Er theilt die Nasenhöhle in zwei Abschnitte, davon der vordere zum grössten Theile von den soeben aufgeführten Gebilden, der hintere von den beiden anderen Muscheln eingenommen wird.

Die bei Columba durch einen einzigen Wulst repräsentirte Muschel (Fig. 10. a) wird also bei den Hühnern durch zwei verschiedene Gebilde repräsentirt. Man kann dabei fragen, welchem der letzteren etwa die Muschel der Tauben entspricht. Der untere Wulst bei den Hühnern hat einige Aehnlichkeit mit dem Gebilde bei Columba, aber diese Theile können nicht homolog sein, da der bei den Tauben vorhandene vorn vom Septum nasi ausgeht, und hinterwärts zum lateralen Nasenrande hinter dem Nasloche zieht. Auch gegen die muschelförnige Lamelle der Hühner zeigt das Organ der Tauben Differenzen, und zwar die bedeutendsten in den Vorbindungsstellen mit der lateralen und medialen Nasenhöhlenwand. Bei den Tauben liegt die septale Verbindung vorn, und hinten findet sich die alare, während die Hühner gerade das umgekehrte Verhältniss darbieten, endlich geht bei den Tauben der Boden des Nasenhöhleneinganges auf die Muschel über, bei den Hühnern dagegen auf jenen Wulst, den ich oben von der muschelförmigen Lamelle unterschied.

Es wird aber doch der Versuch zu machen sein, diese beiden anscheinend so verschiedenartigen Bildungen der vorderen Muschel mit einander in Einklang zu bringen. Durch die Thatsache, dass jeder der beiden Theile bei den Hühnern neben aller Verschiedenheit doch Eigenschaften besitzt, die er mit der einfachen Muschel der Taube gemein hat, wird man zur Annahme inducirt, dass beide Gebilde der Hühner zusammen der Muschel der Tauben entsprechen. Davon ausgehend vermag man nun beiderlei Einrichtungen auf einander zurück-Nimmt man die Muschel bei Columba aus ihrer schrägen zuführen. Richtung in eine quere übergehend an, und lässt von da aus die ursprünglich vorne liegende septale Verbindung nach hinten rücken, die alare dagegen nach vorn, so entsteht ein mit den Hühnern übereinkommender Befund. Dieser wird so weniger davon verschieden sein, wenn der obere Rand der Muschel - den einfachen Zustand der Taube noch vorausgesetzt --- sich erst in die Höhe, dann medial, und von da an nach dem Boden der Nasenhöhle zu entwickelt, und wenn die so gebildete vollkommnere Muschel auch nach vorne zu auswächst, und damit sich wenigstens vor einen Theil des Einganges der Nasen-Geht endlich mit dieser Veränderung die Bildung einer böhle legt. vom Boden des Naseneinganges sich erhebenden Lamelle aus, die wulstartig gegen die lateral gerichtete Concavität der Muschel vorspringt. so wird ein den Hühnern völlig entsprechender Befund die Folge sein. Die Verschiedenheit in der vorderen Muschel der Tauben und der Hühner ist also keine fundamentale, beiderlei Gebilde sind von einander Die vordere Muschel der Taube repräsentirt dabei den einableitbar. facheren Zustand, die Hühner besitzen das um vieles differenzirtere Verbalten.

Bei Numenius ist die vordere Muschel bedeutend in die Länge gedehnt (Fig. 16. a) und bildet eine vom Dache des vorderen Abschnittes der Nasenhöhle bis in diesen herabragende longitudinale Lamelle, auf

Ueber die Nasenmuscheln der Vögel.

deren medialer und lateraler Fläche eine Längsleiste vorspringt. Das hintere Ende (a') setzt sich in horizontaler Lage zum Septum fort, und geht als querer Vorsprung in es über. Die alare Bezichung der Muschel ist dabei noch erkennbar. Mehr mit Numenius als mit den Hühnern stimmt die Gans in der Bildung der unteren Muschel überein. Sie bildet einen ganz horizontalen, vorne mit dem Knorpel des Daches der Nasenöffnung zusammenhängenden Vorsprung (Fig. 17. a), der mit einem vorderen freien Ende gegen die genannte Oeffnung ragt. In Fig. 18 ist er auf senkrechtem Querdurchschnitte vorgestellt. Von den beiden Kanten tritt die mediale wieder zum Septum nasi über, welches verdickt ziemlich weit gegen die Nasenhöhle einragt. Einen Zusammenhang mit der mittleren Muschel, in der Weise wie ihn Scaps abgebildet hat, vermag ich nicht zu erkennen.

Als ein schräg von vorne und von der alaren Wand zum Septum ziehender Wulst erscheint die vordere Muschel bei Raubvögeln, bei denen sie nur einen kleinen Theil der Nasenhöhle einnimmt. Bei den Eulen, wo sie ossificirt, ist die schräge Stellung noch steiler, wie auch die Wölbung beträchtlicher (Fig. 20. 21. a), so dass sie den grössten Theil des nicht sehr anschnlichen vorderen Raumes der Nasenhöhle einnimmt. Die septale Verbindung geschicht wiederum an einer Querverbreiterung der Scheidewand.

Bei Gypogeranus fehlt die vordere Muschel. Rudimente davon können wohl in mehreren parallelen Schrägfalten erkannt werden, die an der Innenfläche der oberen resp. hinteren Wand der Nares liegen. Sie können nach abwärts bis zum Boden des Naseneinganges verfolgt werden, der an einer etwas höheren Strecke der Stelle entspricht, welcher bei andern Vögeln die septale Verbindung der vorderen Muschel zukommt.

Einige Aehnlichkeit mit jener der Eulen kommt der vorderen Nuschel von Psittacus zu. Bei P. erythacus bildet sie ein ansehnliches, vom hintern inneren Rande der Nares vorspringendes Gebilde (Fig. 24. 25. a), welches fast den ganzen Eingang verdeckt. In Mitte der Aussenfläche findet sich eine beträchtliche Vertiefung. Der frei vorspringende fast kreisförmige Rand ist gewulstet, besonders stark am unteren inneren Abschnitte. Von demselben setzt sich ein schmaler Saum zu einem Vorsprunge der knöchernen Nasenscheidewand fort.

Picus (P. viridis) zeichnet sich durch eine sehr anschnliche Ausbildung der vorderen Muschel aus, der eine Knochenlamelle zu Grunde liegt. Vergl. Fig. 26. a. Die Muschel beginnt lateral über der Nasenöfinung, und zieht sich an Höhe abnehmend bis zu dem am Beginne des letzten Dritttheils der Nasenhöhle liegenden septalen Fortsatz, in

9

den sie übergeht. Vorn geht sie von ihrer Befestigungsstelle an etwas in die Höhe, alsdann biegt sie sich nach abwärts um, und erreicht den Boden der Nasenhöhle, um mit nach aussen aufgeschlagenem freien Rande aufzuhören. Das hintere Ende dieses freien Randes ist zugleich mit der septalen Verbindungsstelle in Fig. 27 auf dem senkrechten Querschnitte abgebildet.

Lang und schmal ist die vordere Muschel bei Caprimulgus (C. curopaeus). Sie bildet eine weiche, lateral etwas eingerollte Lamelle, deren freies vorderes Ende gegen das röhrenförmig verlängerte Nasloch sieht, und durchzieht die Hälfte der Länge der gesammten Nasenhöhle.

Bei Podargus (P. Guvieri) fehlt die vordere Muschel gänzlich. Die äussere Nasenöffnung bildet eine Längsspalte, die von einer breiten vorn und hinten nach abwärts umgebogenen Knorpelschuppe überdeckt wird, in der man eine Verwandtschaft mit der bei Caprimulgus bestehenden Verlängerung zu erkennen vermag. Die Innenfläche dieser Knorpelschuppe ragt convex in den vorderen Nasenraum ein, so dass man darin eine Muschel erblicken könnte, wenn die nähere Untersuchung nicht einen anderen Thatbestand herausstellte, und eben den Mangel einer Muschel ergäbe.

In der lluxley'schen Gruppe der Goracomorphen finde ich bei Sturnus die vordere Muschel zwar ziemlich einfach, aber doch deutlich vorhanden. Sie bildet eine lateral entspringende abwärts gerichtete Lamelle (Fig. 30. a), welche wieder mit dem hintern Ende ins Septum übergeht. Das Vorderende zieht sich frei nach vorn zu aus und deckt den Naseneingang von innen her.

Bei Corvus (C. corone) entspringt sie wieder vom hinteren Rande der Naslochbegrenzung, und erstreckt sich von da an mit dem Ursprunge weiter nach hinten, unter bedeutender Verschmälerung und Uebergang in eine mehr horizontale Lamelle, die mit einom bogenförmigen Ausschnitte zum Septum tritt. Der bedeutendste vorderste Theil ist an einer innen scharf vorspringenden Kante im Winkel abwärts gekrümmt, und formt eine gegen die Nasenöffnung gerichtete, von unten leicht sichtbare löffelförmige Vorragung (Fig. 33. a'), deren unterer freier Rand auswärts und aufwärts gekrümmt ist.

Mittlere Muschel. Unter allen von mir untersuchten Vögeln am einfachsten verhält sich die mittlere Muschel bei der Taube, wo sie einen von der etwas gegen die Nasenhöhle zu einspringenden lateralen Wand der Cavität abwärts ragenden Vorsprung bildet. In Fig. 8. c ist derselbe von der Innenfläche her, in Fig. 9. c auf senkrechtem Durchschnitte abgebildet. Unter der Muschel, und etwas nach vorne zu bemerkt man eine Falte der Schleimhaut, unter welcher der Thränennasengang ausmündet (Fig. 8. *l*).

Für die Hühner ist die mittlere Muschel durch SCARPA's Darstellungen bekannt. Sie bildet eine schrägstehende von vorne und oben nach hinten und unten gerichtete Lamelle, welche anderthalbmal, an einigen Stellen auch zweimal eingerollt ist. In Fig. 43 gibt ein senkrechter Durchschnitt dieses Verhalten vom Hubne in doppelter Vergrösserung. Das hintere Ende der Muschel tritt zum Grunde der Nasenhöhle, und ist von da an, besonders bei Meleagris deutlich als ein medial verlaufender Wulst (Figg. 12. 14. c') zu verfolgen, der zum hintern Ende des Septum tritt. Hinter dieser septalen Verbindung findet sich eine trichterförmige Spalte, welche in den orbitalen Luftraum führt (Figg. 12. 14. o). Unterhalb der gewundenen Muschel, dicht über der Choane, öffnet sich der weite Thränennasengang.

Der vordere Abschnitt der Muschel lagert sich über den transversalen Fortsatz des Septums, an welchem die oben erwähnte Verbindung mit der vorderen Muschel stattfindet. Bei Perdrix und Meleagris ist jener vordere Abschnitt der mittleren Muschel weiter als bei Gallus entwickelt, und bildet einen besondern durch eine Vertiefung vom übrigen gesonderten Theil (s. Fig. 14).

Für die Abhängigkeit der Stellung der Muschel vom transversalen Septumfortsatz spricht das Verhalten von Numenius, bei dem die mittlere Muschel bei geringer Erhebung jenes Fortsatzes eine fast horizontale Lage besitzt. Die Muschel ist $4^{1}/_{2}$ mal eingerollt, und bietet an ihrer medialen Fläche zwei verschiedene Regionen dar. Die hintere ist glatt, mit sanft abgerundeter Fläche, sie setzt sich in eine zur Hinterwand der Nasenhöhle verlaufende dünne Leiste fort. Zum Septum war diese nicht zu verfolgen. Die vordere Region dagegen bietet einen starken kantenartigen Vorsprung dar, der auf den vordersten ungewundenen Theil der Muschel sich fortsetzt.

١

Auch bei der Gans sind durch SCARPA die Verhältnisse der mittleren Muschel genau beschrieben worden. Ihre Windungen sind bedeutender als bei den Hühnern, denn sie bilden $2^{1}/_{2}$ Umgänge. In Fig. 19 habe ich einen senkrechten Durchschnitt dieses Verhaltens dargestellt, und zwar an der in Fig. 17 durch den hinteren Pfeil bezeichneten Stelle. Das hintere Ende der Muschel setzt sich wieder in einen zum Septum verlaufenden Wulst fort (Fig. 17 c'), unter dem eine tiefe Bucht empor tritt. Die mediale Fläche der ersten Muschelwindung (vgl. Fig. 17) bietet eigenthümliche Buchtungen und Vertiefungen dar, die sich theilweise auch an dem folgenden Windungsvorgang wiederholen. Diese Verhältnisse der Reliefs sind aus Anpassungen an den Befund des Septums hervorgegangen nachweisbar. Vor allem ist eine schräge Vertiefung wahrzunehmen, welche einen vorderen oberen Abschnitt der Muschel von einem hinteren und unteren scheidet. Diese Vertiefung ist bedingt durch einen Vorsprung des Septums, in welchem ein starker Trigeminusast - dem Naso-palatinus Scarpae homolog -seine Bahn hat. Da wo der Nerv den Boden der Nasenhöhle erreicht, bildet das Septum den gueren zur lateralen Wand tretenden Vorsprung, der das hintere Ende der vorderen Muschel aufnimmt. Dieser bei der Gans sehr hohe Vorsprung - cr ist in Fig. 17 weggenommen - tritt zu dem schon vorhin unterschiedenen vorderen Abschnitte der mittleren Muschel empor, und theilt dieselbe wieder in zwei Theile, einen vorderen und hinteren, die durch eine schmalere Strecke zusammenhängen. Der vordere Theil überragt den Querfortsatz des Septums nach vorne, und entspricht damit dem oben für Meleagris und Perdrix angegebenen Abschnitt.

Die mittlere Muschel der Raubvögel ist von ansehnlicher Länge, schräg von vorne nach hinten und abwärts gerichtet. Sie ist $1\frac{1}{2}$ mal oder noch etwas darüber eingerollt. HARWOOD hat die Windung bei Buteo auf einem Durchschnitte abgebildet. Von Gypogeranus ist ein solcher senkrechter Durchschnitt in Fig. 23 dargestellt. Wie ich bei Buteo, bei Strix und Gypogeranus finde, liegt der vordere Theil der Muschel über und vor dem queren Septalfortsatze, und trägt am Ende eine leichte Auftreibung, die bei Buteo am stärksten ist (Figg. 20. 21. 22. c''). Bei Buteo zeigt sich an der Innenfläche der Muschel auf der Mitte der Länge eine Vertiefung, der wieder ein Vorsprung des Septums entspricht. Das hintere Ende der Muschel ist verschmälert und setzt sich mit einer leichten Falte zum Septum fort.

Von anderen Vögeln abweichend ist das Verhalten bei Psittacus. Die Muschel (Fig. 24. c) bildet eine sehr dicke von der parietalen Befestigungsstelle abwärts gekrümmte, aber nicht eingerollte Lamelle, deren vorderer gewulsteter Rand abgerundet ist. Diese Lamelle ist nun in der Mitte ihrer Länge tief eingebogen, so dass das vordere und hintere Stück bedeutend medianwärts vorspringt. In die Einbuchtung lagert sich wieder vom Septum her ein querer Fortsatz, der in Fig. 24 und noch vollständiger in Fig. 25 entfernt wurde. Also kommt vor den septalen Querfortsatz ein sehr bedeutender Theil der Muschel zu liegen (c''), der dem bei Raubvögeln angedeuteten, bei Hühnern, wie bei der Gans umfänglicheren Abschnitte entspricht. Das hintere Ende der Muschel läuft in eine stark vor und abwärts gebogene Schleimhaut-

ţ

falte (Fig. 25. c'') aus, die zum Septum hinüberzieht. Hinter dieser Falte liegt eine weite zum Orbitalsinus führende Oeffnung (Fig. 25. o).

Bei Picus ist die horizontal gelagerte Muschel, wie bekannt, knöchern. Sie ist von geringer Grösse und einmal eingerollt. Der quere Septalfortsatz bedingt hinter der Mitte ihrer Länge eine leichte Einbuchtung von unten her (vgl. Figg. 26 u. 27. c). Das hintere Ende läuft schräg gegen die Choane aus, ohne einen zum Septum gelangenden Vorsprung zu bilden.

Bei Caprimulgus erscheint die Muschel (Fig. 28. cc) von bedeutender Länge, und zerfällt in einen vorderen und hinteren Abschnitt, beide durch eine Einbuchtung von oben her getrennt. Dicht hinter dieser Bucht setzt sich die obere Muschel mit dem hinteren Abschnitte der mittleren in Verbindung. Sie ist einmal eingerollt.

Kurzer, aber in der Windung mit Caprimulgus gleich, ist die mittlere Muschel von Podargus (Fig. 29. c). Am vorderen Ende ist eine höckerförmige Auftreibung bemerkbar (Fig. 29. c') und ähnlich setzt sich auch am hinteren Ende ein Vorsprung ab. Eine Umschlagestelle zum Septum ist ebensowenig wie bei Caprimulgus bemerkbar.

Bedeutender gewunden ist die mittlere Muschel bei Corvus (Figg. 31. 32. c). Der hintere Abschnitt derselben ist etwas gegen die Choane herabgesenkt in einen stumpfen Vorsprung auslaufend, und setzt sich in eine zur hinteren Nasenhöhlenwand tretende Hautfalte fort, also wieder nicht direct ans Septum. Ziemlich hoch über dieser abwärts vorstehenden Schleimhautfalte findet sich eine oben von einem vorspringenden Rande begrenzte Querspalte, die zu dem mehrerwähnten Luftbehälter führt.

Hintere oder obere Muschel. Der durch die Endverbreilang des Riechnerven wichtige hintere und obere Theil der Nasenhöhle ist bei Columba durch keine Vorsprungsbildung ausgezeichnet, wird vielmehr nur durch eine von der mittleren Muschel aus nach oben und seitlich sich erstreckende Vertiefung der Nasenhöhlenwand vorgestellt. Man wird daher sagen dürfen, dass der Taube eine obere Muschel fehlt, da man unter der Bezeichnung »Nasenmuschel« doch einmal einen Vorsprung sich denkt. Mit dieser Angabe stehe ich im Widerspruch mit M. SCHULTZE¹, der die obere Muschel bei »Hühnern, Tauben, Enten, Gänsen«, als sehr gross angiebt. Ich glaube, dass dabei M. SCHULTZE das, was ich nur als mittlere Muschel auffassen durfte, als obere gedeutet hat. Vielleicht ist hiermit auch das von Schultze gefundene Factum in Zusammenhang zu bringen, dass der

¹⁾ Untersuchungen über den Bau der Nasenschleimhaut, Halle 1862. S. 42.

Geruchsnerv sich nicht über die ganze Muschel verbreite, und dass der »untere Rand« davon frei bleibe, was sehr leicht bei Tauben zu constatiren sei. Jener » untere Rand« ist nun das, was ich als mittlere Muschel bezeichnen muss, da unterhalb derselben, oder vielmehr vor ihm, nur noch eine einzige Muschelbildung besteht.

Bei fast allen den übrigen untersuchten Vögeln ist dagegen eine vor der knorpeligen Wand der Nasenhöhle gebildete Einragung vorhanden, die seit SCARPA als obere Muschel bezeichnet wurde. Sie ist bei den Hühnern ein rundlicher oder auch unregelmässig gestellter Vorsprung mit stark gewölbter Oberfläche (Figg. 11. 12. 14. b).

Bei Numenius ist sie mehr dreieckig gestaltet, und bei der Gans findet sich an der nach vorne gerichteten Basis des Dreieckes eine Einbuchtung, woraus die Form resultirt, die von SCARPA als glockenförmig bezeichnet und von vielen Autoren bei der Beschreibung dieses Theiles zu Grunde gelegt wurde. In dreieckiger Form einen nach unten von der mittleren Muschel abgegrenzten Raum des Grundes der Nasenhöhle einnehmend, erscheint sie bei den Raubvögeln; der bedeutendste Vorsprung der Muschel liegt hier am vorderen Rande, besonders bei Strix, wo sie eine von hinten nach vorne ragende schräge Wölbung bildet (Figg. 20. 24. 22. b). Unanschnlich ist die Muschel bei Picus (Fig. 26. b), nur als schwacher, etwas gebogener Vorsprung erscheinend; und bei Psittacus finde ich gar nichts auf eine hintere Muschel beziehbares differenzirt.

Dagegen ist sie von bedeutendem Umfange bei Caprimulgus und Podargus, in beiden fast horizontal über der mittleren Muschel gelegen, mit der sie bei ersterer Gattung an einer Stelle zusammenhängt. Diese Lage rechtfertigt hier die Bezeichnung: obere Muschel. Bei Podargus verläuft über sie eine horizontale Querfurche.

Als einen ganz unanschnlichen abgerundeten Vorsprung finde ich die hintere Muschel bei Corvus (Fig. 31. b). Er liegt direct an der oberen, hinteren und seitlichen Wand der Nasenhöhle, und wird am besten bei Oeffnen der letzteren von oben her sichtbar gemacht. In Fig. 32 ist ein solches Präparat abgebildet. Bei Sturnus finde ich die bei Corvus rudimentäre hintere Muschel viel bedeutender ausgebildet, sie wird aber, da sie vom Nasenhöhlengrunde etwas entfernt liegt, von der mittleren Muschel theilweise bedeckt. Dass sie den verwandton Singvögeln fehlt, hat M. SCHULTZE angegeben, der sie bei Sylvia, Troglodites, Fringilla und Pyrgita vermisste. Dagegen finde ich sie bei Turdus und Cinclus, bei ersterer sogar als recht deutlichen Höcker und im Verhältniss zur Krähe viel stärker. Auch

Ueber die Nasenmuschein der Vögel.

bei Muscicapa (M. glareola) ist sie unterscheidbar, und auch bei Alauda. Dagegen vermisse ich sie ebenfalls bei Pyrgita.

Die obere Muschel ist somit kein ganz constantes Gebilde, sie ist nicht blos in verschiedenem Grade entwickelt, sondern sie fehlt auch in einigen Abtheilungen der Vögel gänzlich. Der bei der Gans vorbandene Formzustand des Gebildes, von dem die durch SCARPA gegebene Beschreibung eine allgemeine Aufnahme fand, ist keineswegs so verbreitet, dass man ihn als für die Classe charakteristisch ansehen Allgemein ist dagegen die Beziehung der Muschel zu einem könnte. luluubrenden Sinus, dessen oben bereits mehrfach Erwähnung ge-Dieser im vorderen Orbitalraume gelegene Sinus communicirt schah. nämlich mit dem Binnenraum der hinteren Muschel. Vom Huhn habe ich diese Verbindung in Fig. 13 abgebildet. Bei der Gans hat schon Scapa diese Beziehung beschrieben, so dass ich darauf hinweisen darf. Bei andern Vögeln, schon beim Huhn, ist die Communication einfacher. Im einzelnen bestehen zahlreiche Verschiedenheiten, die für unsere Zwecke untergeordnet sind. Jener Orbitalsinus steht einerseits im Zusammenhang mit den mannichfach gestalteten Räumen des Oberkiefers, sowie er sich andererseits mit der Nasenhöhle in Verbindung zeigt. Die Communication mit der Nasenhöhle liegt stets am Grunde der letteren, bald höher, bald tiefer. Ich habe sie mehrfach oben hervorgeboben.

Durch die Communication mit dem Orbitalsinus wird die hintere Muschel zu einer Einbuchtung der Nasenhöhlenwand. Dadurch entlernt sie sich sehr weit von dem Verhalten der mittleren Muschel, erscheint als ein ganz anderes Gebilde, welches mit derselben nur ganz allgemein die Vorsprungsbildung in die Nasenhöhle theilt. Wenn wir aber als »Nasenmuschel « nicht eine blosse Einbuchtung der Wand der Nasenhöhle bezeichnen, sondern jenen Begriff nur auf eine von der Wand her entspringende, selbständige, von einer einfachen Fortsetzung des Skeletes der Wand gestützte Einragung in Anwendung bringen, so kann er auf das als hintere oder obere Muschel bezeichnete Gebilde keine Anwendung finden, und jenes Gebilde erscheint damit als etwas Neues. Will man aber die Bezeichnung »Muschel« auf eine Vorsprungsbildung der Nasenhöhle im Allgemeinen übertragen, gleichviel wie die Wand der Nasenböhle sich dazu verhält, so können auch noch andere Theile darauf Anspruch machen und der Begriff büsst an seiner Bestimmtheit ein und geht verloren. Sohin entsteht die Nöthigung, jenen oberen hinteren Vorsprung von den Muschelbildungen der Nasenböhle zu sondern, wovon die Bezeichnung »Riechhügel«, die sich

zugleich auf sein Verhalten zum Olfactorius bezieht, Ausdruck geben kann.

Für die Vergleichung der vorgeführten Thatsachen ist es III. nothwendig das Gemeinsame erst innerhalb der einzelnen Abtheilungen aufzudecken. Bei den Reptilien wird in dieser Beziehung das Verhalten der Eidechsen und der Schlangen das am meisten übereinstimmende sein. Sie besitzen ein unzweifelhaft als »Muschel« aufzufassendes Gebilde, an dem die oben aufgestellten Kriterien nachgewiesen sind. Anders verhalten sich die Schildkröten. Obschon der Binnenraum der Nasenhöhle viel complicirter ist, erscheint die Bildung einer Muschel weniger deutlich. Sie nimmt im Verhältniss zu Eidechsen und Schlangen eine niedere Stufe ein, und befindet sich somit dem Stadium der Indifferenz näher. Wir gewahren jedoch dabei noch ein anderes den Eidechsen und Schlangen verschiedenes Verhalten. Während bei letzteren die Muschel hinten abgegrenzt war, und sich nicht median am Nasenhöhlengrund zum Septum hinüberzog, geht der bei Chelonia als Muschel aufzufassende Vorsprung von der lateralen Wand zum Septum (Fig. 2. C) herüber. Durch diese Eigenthümlichkeit wird, bei aller sonstigen Indifferenz dieses Gebildes, doch eine nähere Verbindung mit der Muschel der Eidechsen und Schlangen nicht wohl herzustellen sein, vielmehr ergiebt sich daraus eine, wenn auch entferntere Beziehung zu den Vögeln, deren mittlere Muschel bei mehreren Abtheilungen jene Verbindung mit dem Septum besitzt.

Wie einerseits die Schildkröten, so weichen andrerseits die Crocodile im Verhalten ihrer Muscheln von Schlangen und Eidechsen ab. Die Verschiedenheit löst sich jedoch sobald wir jene Muscheln, wie es oben geschah, näher prüsen. Aus dieser Untersuchung ging hervor, dass die sogenannte hintere Muschel (Fig. 6. D) eine andere Bildung ist als die vordere (C), und dass erstere gar nicht als Muschel bezeichnet werden kann, sobald wir an den Begriff Muschel die Vorstellung einer einfachen frei in die Nasenhöhle ragenden Lamelle knüpfen, die terminal sich verschieden verhalten kann. Die hintere Muschel der Crocodile ist keine solche frei einragende Lamelle, sie ist eine Ausbuchtung der knorpeligen Wand der Nasenhöhle und wie auch immer diese Ausbuchtung bei blosser Betrachtung von der medialen Fläche einer Nasenmuschel ähnlich sein mag, so erweist sie sich doch sofort als etwas anderes. Somit bleibt für die Crocodile nur ein einziges Gebilde übrig, das den Namen einer Muschel verdient, und diescs ist es, welches wir der Muschel der anderen Reptilien als homolog betrachten dürfen.

Daher kann der Satz aufgestellt werden, dass der Nasenhöhle der Reptilien nur eine einzige Muschel zukomme, die bei Schildkröten den indifferentesten Zustand aufweist, bei Eidechsen und Schlangen selbständiger wird, und bei Grocodilen noch weiter sich complicirt. Bei den letzteren ist die bedeutende Längenausdehnung der Nasenhöhle von anderen Einragungen begleitet, die den Muschelbildungen fremd sind. Im den vorderen Raum wölbt sich von oben her die Knorpelwand der Nasenhöhle ein (Fig. 6. c); in den binteren buchtet sich ein von der Knorpelwand der Nasenhöhle umschlossener Sinus vor (D), der zugleich nach aussen vor der eigentlichen Muschel (C), immer in der Wand der Nasenhöhle weit nach vorne zieht.

Es handelt sich nun um die Vergleichung dieser Befunde mit den Muscheln der Vögel. Dass die sogenannte obere oder hintere Muschel der Vögel keine wahre Muschel ist, habe ich oben dargethan. Sie wurde als Riechhügel bezeichnet. Indem sie als eine Ausbuchtung eines ausserhalb der Nasenhöhle gelegenen, aber mit dieser communicirenden Sinus erklärt wurde, könnte man auf den Gedanken kommen sie mit der Pseudoconcha der Crocodile zu vergleichen und sie dieser für bomolog zu halten. Zu letzterem kann die Vergleichung dieser Theile von der medialen Fläche her verleiten. Dagegen erheben sich jedoch wichtige Bedenken. Erstlich ist der Sinus in der Pseudoconcha der Crocodile überall von Knorpel umwandet, er liegt in der Knorpelwand der Nasenhöhle selbst, ist somit keine blosse Einbuchtung jener Knorpelwand von aussen her, wie der Riechhügel der Vögel es ist. Zweitens communicirt der Sinus der Pseudoconcha direct mit der Nasenböhle und nicht, wie der Binnenraum des Riechhügels der Vögel, mit cinem ausserhalb der Nasenhöhle gelegenen Sinus. Daraus geht die Unzulässigkeit einer Homologie hervor, die man zwischen jenen Gebilden aufstellen möchte. Man wird also beide auf sehr verschiedene Weise zu Stande gekommenen Gebilde von einander sofort zu sondern baben.

Es bestehen bei den Vögeln nach Elimination des Riechhügels boch zwei Muscheln. Von diesen wird sich fragen, welche der Muschel der Reptilien entspricht. Auch hierauf ist die Antwort nicht schwer Iu finden. Prüfen wir zunächst die vordere oder untere Muschel. Wir finden sie keineswegs allgemein vorhanden. Sie fehlte bei Podargus, und war bei Gypogeranus kaum angedeutet. Sonst gab sie sich als eine von der lateralen Wand der Naschböhle schräg zum Septum herübertiehende Bildung kund, die durch dieses Verhalten mit dem Boden der Naschöhle in Verbindung stand. Dieses Verhältniss darf nicht über-Bt. VII. 4.

1: |:

31

÷

訃

ff-

'n

Carl Gegenbaur,

sehen werden, wenn auch fast immer der anschnlichste Theil dieser Muschel von der lateralen Wand vorspringt, und mit diesem Abschnitte am meisten muschelartig gestaltet ins Auge fällt. Bei Columba ist diese Beziehung zum Boden der Nasenhöhle durch die geringe Ausbildung eines muschelartigen Zustandes recht deutlich. Der Boden des von dieser Muschel eingenommenen Raumes der Nasenhöhle liegt stets in einem anderen Niveau als der dahinter befindliche, welcher höher gelagert ist. Die untere oder vordere Muschel grenzt also einen Theil des Binnenraumes der Nasenhöhle ab. Dieser vordere Raum ist ferner durch seine Epitheldecke vom hinteren verschieden. Er trägt wie die in ihn einragende vordere Muschel Pflasterepithel.

Auf solche Eigenthümlichkeiten, welche den vorderen Nasenhöhlenraum vom hinteren sondern, gründet sich die Anforderung ihn auch als einen besonderen Theil der gesammten Cavität aufzufassen. Ich bezeichne ihn demgemäss als Vorhof der Nasenhöhle, die darin befindliche Vorsprungsbildung als Vorhofsmuschel¹). Bei den Reptilien fehlt ein solcher Abschnitt der Nasenhöhle. Dem entspricht der Mangel einer Vorhofsmuschel. Wenn der Vorhof sammt seiner Muschel den Reptilien fehlt, und in dieser Hinsicht eine bei den Vögeln auftretende Neubildung ist, so bleibt nur noch eine einzige Muschel übrig, die mit jener der Reptilien verglichen werden kann.

Somit wird die bisher als mittlere Muschel bezeichnete Bildung die einzige, wirkliche Muschel der eigentlichen Nasenhöhle der Vögel sein. Diese Muschel stimmt in allen wesentlichen Punkten mit jener der Reptilien, bleibt selten (Tauben) so einfach wie dort, vergrössert sich meist bedeutend, und rollt sich dann spiralig ein, bis zu mehr als $2^{1/2}$ Umgängen. Diese Muschel ist also das mit den Reptilien gemeinsame, somit das ältere Gebilde. Vor ihr tritt in einem gesonderten Raume der Nasenhöhle, dem Vorhofe, noch eine andere muschelartige Bildung auf, die Vorhofsmuschel, und hinter ihr erscheint eine Einragung der hintern und oberen Nasenhöhlenwand, auf der, wie in dem entsprechenden Abschnitte des Septums, der Olfactorius sich ausbreitet.

Wie verhält sich die Nasenmuschel der Vögel zu den drei Muscheln der Säugethiere, oder: welche jener drei Muscheln entspricht jener der Vögel? Diese Frage ist etwas schwieriger zu beantworten, da aus den Beziehungen zu einer bestimmten Localität der Nasenhöhle kein Anhaltepunkt zu gewinnen ist. Die Erwägung, dass die differenzirteste der drei Muscheln die älteste und damit ererbte Bildung sein wird, führt uns zur unteren Muschel. Sie bildet nicht blos sehr häufig

⁴⁾ Auch W. K. PARKER unterscheidet diese Muschel als eine besondere Bildung.

den durch Ramification complicittesten Theil jener Gebilde, sondern übertrifft auch da, wo sie im Vergleiche zu der mittleren Muschel einfacher sich verhält, diese an Ausdehnung. Es besteht also Grund in der unteren Muschel das Homologon der Muschel der Vögel und der Reptilien zu sehen, und unter den letzteren bieten die Crocodile in der Theilung der Lamelle der Muschel etwas nähere Beziehungen zu den Säugethieren.

Ein fernerer Stützpunkt dieser Vergleichung ist in der Ausmündung des Thränennasenganges zu finden, die bei den Vögeln unterhalb der sogenannten mittleren Muschel, bei den Säugethieren unterhalb der unteren Muschel sich trifft. Daraus ergiebt sich zugleich ein gewichüger Grund gegen die Zusammenstellung der Vorhofsmuschel der Vögel mit der unteren Muschel der Säugethiere.

Aus der Homologie der unteren Muschel der Säugethiere mit der Nasenmuschel der Amphibien und Vögel ergiebt sich für die beiden oberen Muscheln der Säugethiere die Annahme einer Neubildung im Vergleiche zu den niederen Abtheilungen. Das Auftreten dieses Theils ist von einer Vergrösserung des Binnenraums der Nasenhöhle nach hinten und oben begleitet, wenn man an der Ursprungsstelle der unteren Muschel den Indifferenzpunkt annimmt. Bei den Vögeln dagegen ist unter derselben Voraussetzung ausser einer geringen Ausdehnung des Cavum nasi nach hinten und oben noch eine Ausdehnung gegen die äussere Oeffnung zu vorhanden, wodurch ein besonderer den Säugetbieren fehlender Abschnitt als Vorhofsraum der Nasenhöhle entsteht.

Jena, Mai 4874.

Erklärung der Abbildungen.

Tafel L

Fig. 4. Senkrechter Medianschnitt durch den Vordertheil des Kopfes von Chelonia cauana.

> Das Septum nasale ist eine Strecke weit entfernt, so dass der Binnenraum eines Theiles der Nasenhöhle frei gelegt ist.

Fig. 2. Dasselbe Präparat, an welchem der Binnenraum vollständiger blosgelegt, und der zur Choane führende hintere Nasengang geöffnet ward.

Für beide Figuren gilt

- O äussere Nasenöffnung mit dem durch punctirte Linien abgegrenzten Bingang in die Nasenhöhle.
- ol Olfactorius.

Ch Choane.

- da hinterer Nasengang.
- K Knorpel der Nasenhöhlenwand.
- mn schräge Leiste, welche einen vorderen Raum der Nasenhöhle von oben her abgrenzt (in Fig. 2 theilweise abgetragen).
- rs Obere Ausbuchtung rs Untere Ausbuchtung des vorderen Raumes.
- N Innere Riechgrube.
- C Nasenmuschel.
- Fig. 8. Dasselbe Präparat von Lacerta ocellata.
 - c Muschel.
- Fig. 4. Senkrechter Medianschnitt durch den Vordertheil des Kopfes von Uromastix spinipes. Das Septum nasi ist theilweise entfernt. c Muschel.
- Desselbe Präparat von Boa constrictor. Das Septum nasi ist ganz Fig. 5. entfernt.
 - a Vordere seitliche Ausbuchtung der Nasenhöhle, zur äusseren Oeffnung führend.
 - e Muschel.
 - b Hinteres freies Ende derselben.
 - ch Choane.
- Dasselbe Präparat von Alligator lucius mit vollständig entfernter Fig. 6. Nasenscheidewand.
 - O Acussere Nasenöffnung. Der Schliessmuskel sowie reiches Schwellgewebe ist durchschnitten.
 - a Vordere Erweiterung des Naseneinganges.
 - b Vorderer Nasengang.
 - c Von oben her einragendes Knorpeldach.
 - C Muschel.
 - D Pseudoconcha.
 - e Bucht.
 - da Hinterer Nasengang.
 - mæ Sinus maxillaris.
- Fig. 7. Senkrechter Querschnitt durch dasselbe Präparat in der Richtung der in Fig. 6 von Causgehenden Führungslinie.
 - C Einfache Lamelle der Muschel, die sich in C' und C" spaltet.
 - D Pseudoconcha.
 - **B** aus dem Binnenraum derselben führender Canal.
 - F Sinus der Pseudoconcha.
 - de Hinterer Nasengang.

Tafel IL

Die Figg. 8, 12, 14, 16, 17 sind Medianschnitte durch die Nasenregion des Kopfes.

- Fig. 8. Columba livia domestica.
- Fig. 9. Senkrechter Querschnitt in die Führungslinie von c in Fig. 8.
- Fig. 10. Nasenhöhle von Columba livia domestica von oben her geöffnet.
- Fig. 14. Dasselbe von Gallus domesticus.
- Fig. 42. Gallus domesticus.

Ueber die Nasenmuscheln der Vögel.

- Fig. 13. Senkrechter Querschnitt durch die Nasenhöhe von Gallus domesticus. Sfach vergrössert.
- Fig. 14. Meleagris gallopavo.
- Fig. 15. Senkrechter Querschnitt durch den Nasenvorhof von Meleagris.
- Fig. 46. Numenius phaeopus.
- Fig. 17. Anser domesticus.
- Fig. 18. Senkrechter Querschnitt durch den Nasenvorhof von Anser domesticus.
- Fig. 19. Senkrechter Querschnitt durch die Nesenhöble von Anser domesticus.

Bezeichnung aller Figuren.

- a Vorhofsmuschel (vordere Muschel).
- a' Septaler Theil derselben.
- **b** Riechhügel (hintere oder obere Muschel).
- C Nasenmuschel (mittlere Muschel).
- c' Hinteres, septales Ende | derselben.
- c'' vorderes Ende
- d Decklamelle des Naseneinganges.
- Naseneingang.
- o Communication der Nasenhöhle mit Luftbehältern des Kopfes.
- s Nasenscheidewand.
- f Vorspringende Lamelle des Unterrandes des Naseneinganges.
- I Mündung des Thränennasenganges.

Tafel III.

Figg. 20, 22, 34, 36, 28, 34 sind Medianschnitte durch die Nasenregion des Kopfes.

- Fig. 20. Buteo vulgaris.
- Fig. 21. Strix passerina.
- Fig. 22. Gypogeranus secretarius.
- Fig. 23. Senkrechter Querschnitt durch die Nasenhöhle desselben.
- Fig. 24. Psittacus erythacus.
- Fig. 25. Dasselbe Präparat nach Entfernung des Daches der Nasenhöhle.
- Fig. 26. Picus viridis.
- Fig. 27. Senkrechter Querschnitt durch die Nasenhöhle desselben in der Richtung der in Fig. 26 von Causgehenden Führungslinie.
- Fig. 28. Caprimulgns europaeus.
- Fig. 29. Podargus Cuvieri.
- Fig. 30. Sturnus vulgaris.
- Fig. 34. Corvus corone.
- Fig. 32. Senkrechter Querschnitt durch die Nasenhöhle desselben.
- Fig. 38. Nasenhöhle und linkerseits auch Nasenvorhof von Corvus corone von oben her geöffnet.

Die Bezeichnungen der Figurentheile entsprechen jenen für die vorhergehende Tafel.

g (in Fig. 24) Gelenk.

Bestaubungsversuche an Abutilon-Arten.

Von

Fritz Müller.

Pflanzen, deren eigener Blüthenstaub keine Befruchtung bewirkt, sind besonders bequem zu Bastardirungsversuchen. Das oft so mühsame und häufig nicht ohne schwere Verletzung der Blumen auszuführende Entfernen der Staubbeutel ist bei ihnen nicht nöthig; es genügt die Zufuhr fremden Blüthenstaubes abzuhalten. Ich wählte daher für eine Reihe von Versuchen, durch die ich aus eigener Erfahrung die Gesetze der Bastarderzeugung im Pflanzenreiche kennen zu lernen beabsichtigte, zunächst mehrere selbst unfruchtbare (»self-sterile « Darwin) Arten der Gattung Abutilon.

Die Ergebnisse, welche die Versuche des vorigen Jahres in Bezug auf Samenertrag lieferten, will ich im Folgenden kurz besprechen, nicht weil ich denselben einen besonderen Werth beilege, sondern weil ich hoffe, dadurch auch Andere anzuregen zu Versuchen über die mannichfachen Fragen, die sich dabei aufdrängen.

Meine Bestaubungsversuche wurden angestellt :

- 1) an einem Abutilon vom oberen Capivary, das mir in Kew als verwandt mit Ab. virens bestimmt wurde;
- 2) an einem hier in Gärten öfter zu findenden Abutilon, das mir ein deutscher Gärtner als Ab. striatum bezeichnete;
- 3) an einem Bastarde dieser beiden Arten, dessen Mutter das Capivary-Abutilon, dessen Vater das Ab. striatum ist, welchem letzteren es in Wuchs, Blatt und Blüthe weit ähnlicher ist, als der Mutter;
- 4) an einem am Ufer des Itajahy häufigen Abutilon mit schmalem lanzetförmigem Blatte und rother Blüthe, das von den Brasilianern Embira branca (»weisser Bast«) genannt wird.

Ausser dem Blüthenstaube dieser Arten kam zur Verwendung :

- 5) Blüthenstaub einer weissblühenden Pflanze der Embira branca, die auch durch kleinere Blüthen und 11- bis 12 fächrige Früchte (bei der rothblühenden Form meist 14-16 fächrig) sich auszeichnete. Meine Kinder fanden eine einzige Pflanze zwischen der gewöhnlichen rothblühenden Form am Rio do Testo, einem Nebenflusse des Itajaby.
- 6) Blüthenstaub eines schönen baumartigen Abutilon mit über mannshohem Stamme und tiefgelappten Blättern, von dem ich eine einzige Pflanze etwa 5 Stunden von hier (am Pocinho) nicht weit vom Ufer des Itajahy fand.
- 7) Blüthenstaub des Abutilon vexillarium, von dem ich eine Blüthe aus dem Garten des Dr. Blumenau erhielt.

Die Zahl der Fächer ist bei den Früchten dieser verschiedenen Arten sehr unbeständig, daher giebt die Zahl der Samen in der ganzen Frucht kein passendes Maass der Fruchtbarkeit. Bei voller Fruchtbarkeit d. h. wenn alle Eichen sich zu guten Samen entwickelten, würde eine 8 fächrige Frucht des Capivary-Abutilon 64 bis 72, eine 11 fächrige 88 bis 99 Samen enthalten; eine 8 fächrige Frucht mit 60 Samen nähert sich also der vollen Fruchtbarkeit weit mehr, als eine 11 fächrige mit gleicher Samenzahl; erstere hätte durchschnittlich 7,5, letztere nur 5,5 Samen in einem Fache. Diese Durchschnittszahl, die man erhält, indem man die Zahl der Samen durch die Zahl der Fächer theilt, ist für diese Pflanzen das passendste Maass der Fruchtbarkeit.

Die Früchte des Abutilon werden hier oft von kleinen, in ihrem Innern lebenden Raupen heimgesucht; fressen dieselben eine grössere Zahl von Fächern aus, so fällt die Frucht gewöhnlich kurz vor der Reife ab; wo nur wenige, 1, 2 oder höchstens 3 Fächer ausgefressen waren, habe ich die Gesammtzahl der Samen nach der Zahl derer berechnet, die in den unversehrten Fächern sich fanden, also z. B. für eine 10 fächrige Frucht, die in 8 unverschrten Fächern 44 Samen enthielt, $\frac{10.44}{2} = 55 \text{ Samen angenommen.}$

I. Abutilon vom Capivary.

Zu Versuchen dienten 6 Pflanzen. Vier derselben (I, II, III, IV) sind Geschwister, d. h. stammen von Samen ein und derselben Frucht, die ich im Mai 1868 am Capivary pflückte. Die Pflanze V hat die Pflanze Il zur Mutter; der Vater, sowie die Eltern der Pflanze IV, die ebenfalls aus Samen jener einen Frucht gezogen waren, sind durch eine Ueberschwemmung zerstört worden. Der Vater von V war Mutter von VI. Die Eigenschaft, mit eigenem Blüthenstaube völlig unfruchtbar zu sein, hatte ich schon früher en all diesen Pflanzen durch Versuche festgestellt; deshalb fehlen solche Versuche fast ganz unter den nachstehend aufgeführten. Wie unbestaubte Blüthen fallen solche, die mit Blüthenstaub desselben Stockes bestaubt wurden, je nach Wetter und Jahreszeit 4 bis 7 Tage nach dem Aufblühen sammt dem oberen Theile des Blüthenstieles ab.

In Betreff der Bestaubung sei erwähnt, dass deren einzige natürliche Vermittler während der Dauer der Versuche (4. Juli bis 4. October) die Kolibris waren, denen überhaupt für unsere Winterflora fast ausschliesslich dieses Geschäft obliegt. Indem diese von unten her ihren Schnabel in die hängenden Blumenglocken stecken, wird ihr Kopf mit dem leicht ausfallenden Blüthenstaube überstreut, den sie dann an die abwärts gerichteten, über die Staubgefässe mehr oder weniger weit vorstehenden Narben der zunächst besuchten Blumen wischen. - Zu anderen Zeiten habe ich auch, doch nur selten, einen grossen gelben Schmetterling aus der Familie der Pieriden, an den Blumen dieses Abutilon gesehen. Bei der künstlichen Bestaubung wurden (wie auch bei den übrigen Arten) gewöhnlich die ganzen Blumen benutzt, um unmittelbar mit ihren Staubbeuteln die Narben zu betupfen; des Pinsels bediente ich mich nur, wenn die den Blüthenstaub liefernde Blüthe selbst bestaubt werden sollte, also nicht abgeschnitten werden durfte. Zum Schutze der bestaubten Blüthen gegen die Kolibris dienten Gazebeutel¹).

Abatilon vom Capivary I. Bestandt:	Zahl der bestaub- ten Blumen	Zahl der reifen Früchte	Zahl de	r Samen Frucht	in einer	Durchschnittliche Zahl der Samen in einem Fache		
			Kleinste	Grösste	Mittel	Kleinste	Grösste	Mittel
durch Kolibris	91	48	3	76	22,6	0,3	6,9	2,2
mit Ab. Capivary II	10	8 '	40	68	57,6	5,0	7,0	5,9
mit Ab. striatum	M 4	0				1		
mit Ab. Capivary-stria-	1							
tum I	3	1			64	1		7,1
mit Ab. Capivary-stria-								
tum III	4.	0						
mit Ab. v. Rio do Testo	5	8	15	27	21,0	1,5	2,5	2,0
mit Ab. vom Pocinho	7	8	41	59	50,0	4,6	5,9	5,2
gleichzeitig mit Ab.								
Embira und Ab. v.	R					"	i	
Pocinho	8	8	44	48	46,0	11 4,8	4,9	4,8

4) Einige der Gazebeutel waren etwas zu enge, so dass sich die Blumenkronen nicht frei genug entfalten konnten; wurden diese Gazebeutel entfernt, so breiteten sich die Blumenkronen weit über das gewöhnliche Maass, fast in eine Ebene aus, während sie ohne vorherige Einengung eine Glocke bilden, deren Höhe grösser ist, als der Halbmesser der Oeffnung.

vom Capivary II estaubt :	Zahl der bestaub- ten	Zahl der reifen Früchte	0.22.00	Samen i Frucht	n einer	Durchschnittliche Zahl der Samen in einem Fache			
	Blumen		Kleinste	Grősste	Mittel	Kleinste	Grösste	Mittel	
ch Kolibris henstaub des-	9	21	7	54	26,8	0,8	5,7	2,2	
Stockes ndem Blüthen-	1	0							
der eignen Art	47	14	20	54	\$5,7	2,2	5,4	3,8	
striatum tilon Capivary-	3	2	27	42	34,5	3,0	4,2	3,6	
110	2	1	1. 1. 1.	1.5	26	1	Same	3,2	
Embira vom Pocinho	67	8	29	49	33,3	2,9	4,2	3,4	
	1	2	88	37	35,0	3,7	4,1	8,9	
vom Capivary III		177			1.1.1		1.01		
ch Kolibris nem Blüthen-	9	3	11	22	45,7	1,1	2,2	1,6	
	2	0							
mdem Blüthen-		1.12	1	1.44		1			
der eigenen Art		7	10	30	23,4	1,1	3,0	2,4	
tilon striatum Capivary-stria-		0				1			
Embira	4	:			29 24			2,9 2,7	
vom Capivary IV						1			
enem Blüthen-	ú.				1				
mdem Blüthen-	1	0			1.1				
der eigenen Art		2	56	66	61,0	6,0	6,2	6,4	
tilon striatum	1	1		00	17	0,0	0,0	1,9	
Capivary-stria-	3	2						5,7	
Embira	1	1	55	59	57,0	5,5	5,9	6,4	
vom Pocinho	2	2	12	12	61 12,0	1,1	1,3	4,2	
itig mitAb. stri-		1 1	1.0	1.0	12,0		1,0	1.698	
und Ab. Embira	1	1	ð.		47	1	_	1,7	
m vom Capivary V	1					*			
rch Kolibris mdem Blüthen-	9	10	.9	53	25,4	1,0	5,9	2,7	
der eigenen Art	9	8	44	57	49,5	4,4	6,5	5,9	
striatum Capivary-stria-		5	32	61	43,2	4,0	6,1	5,0	
20100	5	3	56	63	59,0	6,2	6,4	6,3	
Embira	5	5	46	58	54,0	5,1	6,4	6,0	
vom Pocinho vexillarium	7	2	60	62	61,0	6,0	6,9	6,4	
taub der eige-		1			11			1,7	
rt u. mit Ab.						11		1.1.1	
ra	2	8	54	54	54,0	6,7	6,7	6,7	
itig mit Ab.		1.0		100	1.44	1		100	
ra undAb. stria-									
and a second	1.40	4			62	1		6,9	

lenn gleichzeitig Blüthenstaub zweier fremden Arten zur Bestaubung ver-

Fritz Müller,

Abutilon vom Capivary VI Bestaubt :	Zahl der bestaub- ten Blumen	Zahl der reifen Früchte	Zahl de Kleinste	r Samen i Frucht Grösste	1		hnittliche in einem Grösste	
Durch Kolibris	9	48	9	48	22,8	1,0	5,3	8,5
mit Ab. striatum	6	6	47	70	58,9	5,8	5,3 7.7	6,7
mit Ab. Capivary-stria-							.,.	
tum III	4	4 1)			47			4,7
mit Ab. Capivary-stria- tum IV.	8	8	· 60	66	64,0	6,6	6,7	6,6
mit Ab. Embira	8	8	15	50	80.0	1,5	5,6	3,4
mit Ab. vom Pocinho	2	9	24	88	28,5	8,7	3,6	8,9
gleichzeitig mit Blü- thenstaub der eige-					-			
nen Art und Ab. striatum	•				62			7,7
gleichzeitig mit Ab.					02	1		
Embira und Ab. stri-								
atum	2	8	55	62	58,5	6,9	6,9	6,9 .
Abutilon vom Capivary I, 11, 111, 1V, V, VI								
Durch Kolibris mit eignem Blüthen-	3	65	8	76	24,1	0,8	6,9	2,6
staub mit fremdem Blüthen-	4	0	11					
staub der eignen Art	47	36	10	68	42,7	4,4	7,0	4,6
mit Ab. striatum mit Ab. Capivary-stria-	49	44	47	70	46,8	1,9	7,7	5,8
tum mit Ab. Embira (ein-	19	18	26	6 6	51,9	1,7	7,4	5,5.
schliesslich des Ab.						1		
vom Rio de Testo)	22	14	15	64	87,9	4,5	6,4	3,9
mit Ab. vom Pocinho	25	40	12	62	87,8	1,1	6,9	4,0:

Wenn bei diesen Versuchen nur etwa 2/3 der bestaubten Blütber reife Früchte lieferten, so ist der Ausfall fast einzig den Verwüstunge verschiedener Raupen zuzuschreiben; an dem geringen Fruchtertr nach Bestaubung mit dem Abutilon vom Pocinho trägt der Umstan Schuld, dass dieselbe während tagelang anhaltenden Regenwetters von genommen wurde.

Bemerkenswerth ist nun zunächst der Unterschied in dem Samer ertrag der durch künstliche und der durch natürliche Bestaubung erzeu

wandt wurde, wurde die eine Hälfte der Narben mit der einen, die zweite Hälf mit der zweiten Art bestaubt. Wo gleichzeitig mit Blüthenstaub der eigenen w einer fremden Art bestaubt wurde, wurde eine einzige Narbe mit dem der eigen Art, alle übrigen mit dem der fremden Art vorsehen.

Diese Frucht hätte eigentlich aus der Tabelle wegbleiben sollen, da in Samenarmuth davon herrührt, dass eine ungenügende Menge Blüthenstaubes Befruchtung verwandt wurde.

a Früchte: erstere hatten durchschnittlich 4, 6, letztere 2, 5 Samen Fach. In der That war aber das Ergebniss der natürlichen Bestauing durch die Kolibris ein noch weit ungünstigeres, als es hiernach n sein scheint. Die Pflanzen waren (mit Ausnahme von IV) während anzen Dauer der Versuche mit zahlreichen Blüthen bedeckt; (von L babe ich am 27. August auf einmal 400 Blüthen abgeschnitten, um deren Griffelzahl zu untersuchen); ich entsinne mich nicht eine ältere ihme geschen zu haben, deren Narben nicht reichlich mit Blüthensomb bedeckt gewesen wären, und doch fiel die grosse Mehrzahl, wohl wenigstens %/10 ab, ohne überhaupt Frucht anzusetzen. Die Mehrzahl in Früchte war sehr arm an Samen, während einige wenige allerdings in Samenzahl mit den reichsten der durch künstliche Bestaubung erhaltmen Früchte wetteiferten. Nach künstlicher Bestaubung mit fremdem Müthenstaube dagegen setzten alle Blüthen (mit Ausnahme einiger an der Pflanze III) Frucht an, und fast alle Früchte (wieder die Pflanze III ausgenommen) enthielten reichliche Samen. - Schon bei anderen Pflanzen hatte ich Gäntnen's Meinung nicht bestätigt gefunden, dass »künstliche Befruchtung der reinen Arten gewöhnlich eine geringere Samenahl erzeugt, als die natürliche«. Meine Erfahrungen an Abutilon steben zu dieser Meinung GÄRTNER's, der sich auf eine ungeheure Zahl Jahrzehnte hindurch mit bewundernswerthester Ausdauer und Sorgfalt fortgeführter Versuche stützte, in schneidendstem, jedoch leicht zu erklärendem Widerspruch. Gärnner zog seine Versuchspflanzen in Töpfen, brachte sie während der Blüthezeit in ein geschlossenes Zimmer, castrirte sie und — was wohl die Hauptsache ist — verwandte wahrscheinlich häufig Blüthenstaub desselben Stocks zur Bestaubung; darin und nicht in der kunstlichen Bestaubung d. h. in dem Umstande, dass statt des Rückens einer Hummel oder eines Schmetterlingsrüssels ein Pinsel zur lebertragung des Blüthenstaubes diente, dürfte die Ursache des geringeren Ertrags seiner künstlich bestaubten Pflanzen zu suchen sein. -Ebenso leicht erklärt sich der geringe Erfolg der natürlichen Befruchtung bei Abutilon; ist ein Kolibri zu einem blüthenreichen Busche herangefogen, so pflegt er ihn, wenn nicht gestört, emsig von Blüthe zu Blüthe schwirrend vollständig abzusuchen; ehe er dann einen anderen Busch besucht, pflegt er gewöhnlich einige Zeit auf einem benachbarten Zweig zu rasten, auch wohl inzwischen die Blumen einer anderen Pflanze abzusuchen, (in meinem Garten z. B. die Blüthen einer Manettia, die nahebei an einer Bauhinia rankt oder die leuchtenden Blüthenstände einer Musa coccinea). So werden nur die Blumen, die er von einem anderen Stocke kommend zuerst besucht, eine volle Ladung fremden Staubes erhalten; alle übrigen bekommen Blüthenstaub des eigenen

Stockes, entweder rein oder mit einer mehr oder weniger erheblichen Beimengung fremden Staubes, - letzteren aber, wie der Erfolg zeigt, selten in einer zu vollständiger Befruchtung ausreichenden Menge. Daher nur wenige Früchte und von diesen wieder nur ein kleiner Theil mit reichlichem Samen. Es wäre dabei auch an die Möglichkeit zu denken, dass reichliche Bestaubung mit eigenem die spätere Befruchtung durch fremden Blüthenstaub beeinträchtigt, indem entweder einfach der Zugang zur Narbenoberfläche erschwert, oder auch diese durch längere Einwirkung des eigenen Blüthenstaubes für fremden unemplänglich gemacht wird; wenigstens Letzteres scheint indess kaum der Fall zu sein, soweit ich aus meinen hierauf gerichteten, leider durch die unvermeidlichen Raupen grossentheils vereitelten Versuchen schliessen darf. Für Ersteres scheint das Ergebniss einiger Versuche zu sprechen; so wurden von 2 jungfräulichen frisch aufgeblühten Blumen der Pflense V. die eine sofort mit fremdem, die andere erst stark mit eigenem und unmittelbar darauf mit fremdem Blüthenstaub bestaubt; erstere gab eine Frucht mit 6,3, letztere mit nur 4,4 Samen im Fach. An der Pflanze II wurden 2 frische Blumen mit Gazo bedeckt, nachdem die eine stark mit Blüthenstaub ihres Stockes bestaubt worden war; fünf Tage später wurden beide mit fremdem Blüthenstaub versehen; die eine, die diesen in jungfräulichem Zustande erhalten hatte, lieferte 4,4, die andere, auf deren Narben zuvor 5 Tage lang eigener Blüthenstaub gelegen hatte, nur 2.2 Samen im Fach.

Weiter ist hervorzuheben die auffallende Verschiedenheit im Samenertrage der Pflanzen I bis IV, die wie gesagt aus Samen einer einzigen wildwachsenden Frucht gezogen sind. Der durchschnittliche Ertrag mit fremdem Blüthenstaub der eigenen Art war bei IV: 6, 4 — bei I: 5,9 — bei II: 3,8 — endlich bei III: 2,4 Samen im Fach; die reichsten Früchte von III enthielten durchschnittlich nicht über 3, die ärmsten von I und IV nicht unter 5 und 6 Samen im Fach. — 1869 habe ich von der Pflanze III gar keine Früchte erhalten. 1 — Also nicht blos bei Bastarden und bei illegitimen Sprösslingen dimorpher und trimorpher Pflanzen, sondern auch bei anderen wildwachsenden reinen Arten kommt es vor, dass aus Samen derselben Frucht gozogene Pflanzen sich sehr erheblich in ihrer Fruchtbarkeit unterscheiden.

⁴⁾ Diese unfruchtbare Pflanze III ist auch sonst vor ihren Geschwistern ausgezeichnet durch etwas kleinere blassere Blumen, durch längere Griffel, die meist schon aus der Knospe hervortreten, und durch kleinere blassere Narben. Sie ist von kräftigem Wuchs, sehr reichblühend und, wie es scheint, besonders lebenszäh, da sie allein zwei grosse Ueberschwemmungen überdauert hat, deren erster mehrere andere an gleichem Orte wachsende Geschwister erlegen sind.

In Bezug auf die Verbindung mit fremden Arten ergab sich, dass i drei Pflanzen (II, III, V) die eine oder andere fremde Art grösseren, i einer Pflanze (IV) ebenso hohen Samenertrag lieferte, als die eigene rt; bei einer Pflanze (VI) war keine künstliche Bestaubung mit der gnen Art vorgenommen worden und nur bei einer Pflanze (I) überstieg is Samenzahl in den durch die eigne Art erzeugten Früchten (5,9 Sasen im Fach) um etwas die der fruchtbarsten Bastardverbindungen mit Abutilon vom Pocinho 5,2 Samen).

Der Satz, dass Kreuzung mit fremden Arten immer weniger Samen isiert, als Befruchtung mit der eigenen Art, bestätigte sich also nicht bi ebigen Versuchen.

Die drei zur Bestaubung verwandten Arten zeigten in Bezug auf is durch sie erzeugte Samenzahl nicht dieselbe Reihenfolge bei den vermiedenen als weibliche Unterlage dienenden Pflanzen des Capivary-Ibution. Mit III lieferte Striatum doppelt so viel, mit V noch nicht $\frac{1}{3}$ n viel Samen, wie die beiden anderen Arten. Bei IV war das Verhältis von Embira und Striatum dasselbe wie bei V, wogegen das Abutiin vom Pocinho, das mit V die reichsten Früchte lieferte, bei IV nur $\frac{1}{3}$ soviel Samen gab als Embira. Bei II war der Ertrag für alle drei Ires ziemlich derselbe. Man vergleiche nachstehende (aus den obigen Isbellen entnommene) Zusammenstellung:

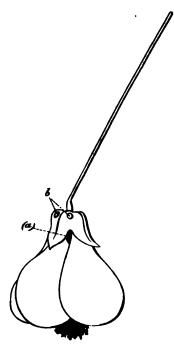
II. P:
$$3,9. - S: 3,6. - E: 3,4$$

IV. E: $6,1. - S: 1,9. - P: 1,2$
V. P: $6,4. - E: 6,1. - S: 1,9$
VI. S: $6,7. - P: 3,2. - E: 3,4$

Es scheint also jede einzelne Pflanze ihre eigenthümliche Empfängimflibigkeit (»Wahlverwandtschafte Gännun) für verschiedene fremde Aren zu besitzen. Doch sind die Versuche bei weitem nicht zahlreich Immg, um schon jetzt dieses Ergebniss als gesichert betrachten zu dürfen.

Wirksamer, d. h. samenreichere Früchte erzeugend als der Blüfunstaub der eigenen reinen Art erwies sich ebenfalls bei den Pflanzen 1 II und V der Blüthenstaub einer Bastardpflanze: Abutilon Capivarytristum 1.

Es würde voreilig sein, aus diesen Ergebnissen den Schluss ziehen wollen, dass im Allgemeinen das Abutilon vom Capivary reicheren tier ebenso reichen Samenertrag liefert mit einer Reihe fremder Arten ind einem seiner Bastarde, wie mit Pflanzen der eigenen Art. Ich verwithe dass in letzterem Falle die Fruchtbarkeit meiner Pflanzen hinter ir normalen zurückblieb und zwar weil alle meine Pflanzen des Caivary-Abutilon sehr nahe Verwandte sind. Wenigstens aber bieten auch diese Versuche einen neuen, allerdings schon ziemlich überflüssigen Beleg dafür, dass die Fruchtbarkeit nicht als untrüglicher Prüfstein der Zusammengehörigkeit verschiedener Pflanzen zur selben Art zu verwerthen ist. Ebenso zeigen sie, dass die Weise in welches GÄRTNER (»Bastarderzeugung« S. 204) die »Wahlverwandtschaftsgrade der Arten bei der Bastardbefruchtung« berechnete, indem er das Maximum der bei Bastardbefruchtung erhaltenen Samen mit der mittlerer Samenzahl durch »natürliche Befruchtung« an wilden Pflanzen entstandener guter Früchte verglich, ebenso praktisch unbrauchbar sein kann, wie sie theoretisch falsch ist. Soll der Samenertrag durch Blüthenstaut der eigenen und durch den fremder Arten verglichen werden, so ist es, um ein reines Resultat zu erhalten, natürlich unerlässlich, dass alk übrigen Verhältnisse, die möglicherweise jenen Ertrag beeinflusset könnten, in beiden Fällen möglichst gleich seien. Beiderlei Früchte müssen entweder von wildwachsenden oder von im Garten gezogenen, von in freier Luft oder von im Zimmer stehenden Pflanzen, beide vor künstlich bestaubten Blumen gewonnen sein; es müssen entweder Maximum mit Maximum oder Mittelwerth mit Mittelwerth verglichen werden; ja es müssen womöglich beiderlei Früchte zu gleicher Zeit at demselben Stocke gereift sein. Wollte man nach GARTNER's Berechnungsweise mit dem mittleren Samenertrag der durch »natürliche Befruchtung« entstandenen Früchte der Pflanze III, (2,4 Samen im Fach), das Maximum der Samen vergleichen, die der Blüthenstaub von Abutilon striatum an der Pflanze II erzeugte, (7,7 Samen im Fach), so würde die Fruchtbarkeit dieser Bastardverbindung über dreimal so gross sein, als die der reinen Art!


Eine letzte befremdende Thatsache ist es, dass bei den Pflanzer V und VI die reichsten Früchte aus denjenigen Blumen hervorgingen, die gleichzeitig mit Blüthenstaub verschiedener Arten bestaubt worder waren. An der Pflanze V z. B. enthielten 5 durch Abutilon striatun erzeugte Früchte durchschnittlich 5,0 und keine mehr als 6,4 Samen ebenso viel durch Embira erzeugte Früchte durchschnittlich 6,0 und keine mehr als 6,4 Samen im Fach, während eine Blume derselber Pflanze, von deren Narben die eine Hälfte mit Abutilon striatum, die andere mit Embira bestaubt wurde, eine Frucht mit 6,9 Samen im Fache lieferte. — Einen ähnlichen Fall werden wir unten noch einma wiederfinden. — Weitere Versuche werden entscheiden müssen, of dieser Samenreichthum nach gleichzeitiger Bestaubung mit zweierle Blüthenstaub ein blos zufälliger war. Ich bin geneigt, aus unten anzuführenden Gründen, das Gegentheil anzunehmen.

II. Abutilon striatum.

Ein Abutilon, das mir als striatum bezeichnet wurde, findet sich hier bisweilen in Gärten angepflanzt, wo es niemals Früchte trägt. Ich besitze davon drei, aus verschiedenen Gärten stammende Pflanzen, die ebenfalls weder jede für sich, noch mit einander gekreuzt jemals Samen tragen, — ein Beweis, dass alle drei auf ungeschlechtlichem Wege von derselben Mutterpflanze abstammen, nur Theilstücke ein und desselben Stockes sind¹). Ich betrachte sie daher im Folgenden als eine einzige Pflanze.

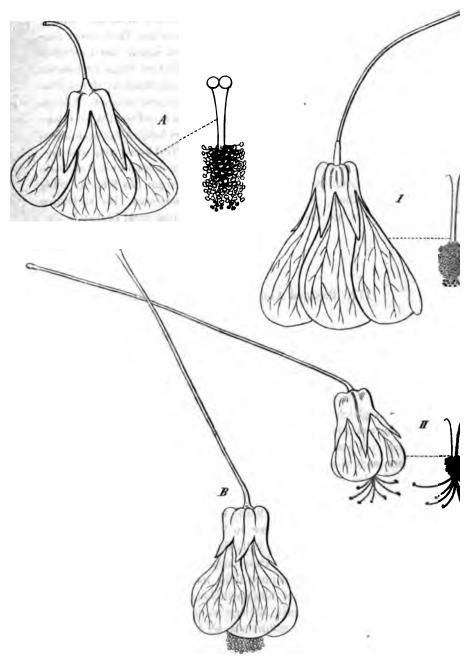
Dieses Garten-Abutilon wird ebenso fleissig, wie die einheimischen

Arten, von Kolibris besucht, aber nicht durch sie bestaubt. Das verschiedene Verhalten der Kolibris wird bedingt durch einen Umstand, dem man gewiss kaum irgend welche Bedeutung für das Gedeihen der Art beigemessen hätte, und durch den sie doch bier zu fast vollständiger **Unfruchtbarkeit verurtheilt ist.** Die Kelchzipfel nämlich sind beträchtlich kurzer, als bei dem Abutilon vom Capivary, und so wird es den Kolibris möglich, die Spitze des Schnabels am Grunde der Blume wischen zwei benachbarten Blumenblättern einzuführen, wobei natarlich Staubbeutel und Narben unberührt bleiben. Den Besuch des Kolibris verrathend bleibt ein kleines Loch an der Stelle, wo derselbe die Blumenblätter auseinandergeschobenhat. (a in der beistehendenFigur).

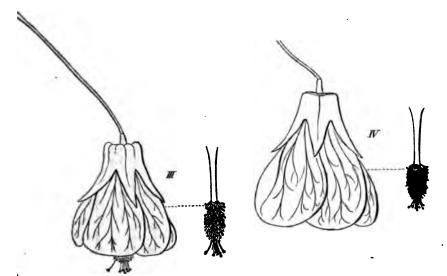
1) »Je l'ai dit et je le répète: on ne juge de la parenté que par la fécondité: heisst es in einem Buche, das zu dem Unverdautesten gehört, was gegen huwm geschrieben wurde. Der berühmte Vorfasser würde nach diesem so emphetisch proclamirten Satze meine drei Pflanzen für ebenso viel verschiedene Arten erklären müssen. Ja, streng genommen, müsste er Staubgefässe und Griffel jeder einzelnen Blüthe bei dieser und allen anderen selbst unfruchtbaren Pflanzen als wrchiedenen Arten angehörig betrachten. S. FLOURENS, Examen du livre de M. Derwin. Paris 1864. S. 101. Ein einziges Mal sahen meine Kinder einen Kolibri von einer grösseren Art, die sonst Abutilon nicht besucht, von unten her an die Blüthen dieser Art heranfliegen. Im September wurden während einiger Wochen zwei meiner Pflanzen von einem Schwarme kleiner schwarzer Honigbienen (Melipona) besucht, die aber ebensowenig Narben und Staubbeutel berührten; sie bissen sich Löcher in den Kelch (b), um zu dem Honig zu gelangen. Einige grosse Hummeln, die ich zur selben Zeit an diesen Pflanzen sah, benutzten die von den Bienen gebissenen Löcher. — Obwohl also die eine meiner Pflanzen rings von Arten umgeben war, durch deren Blüthenstaub sie leicht zu befruchten ist, wurde doch nur eine einzige Frucht durch »natürliche Bestaubunge erzeugt.

Abuțilon striatum Bestaubt :	Zahl der bestaub- ten Blumen	Zahl der reifen Früchte	Zabl de Kleinste	Frucht	in einer Mittel	<u> </u>	in einer	
auf natürlichem Wege mit Blüthenstaub der		1			48		. –	4,8
eigenen Art	5	0						
mit Ab. vom Capivary	8+x	7+68	8	55	37,9	1,0	5,9	4,4
mit Ab. Capivary-stria-		1 • •			, i	Í	·	
tum I	47	9	25	55	87,5	2,5	5,5	4,9
mit Ab. Capivary-stria-	1				20			
tum IV	1	4			1			2,2
mit Ab. Embira	15+x	4+7	47	45	\$9,5	4,9	5,6	1,1
mit Ab. vom Pocinho	44	3	84	45	80,7	2,6	5,9	8,7
gleichzeitig mit Ab. vom	N	1				ï	1	
Capivary und mit	1					:	1	
Embira	8	8	. 17	86	26,5	1,9	4,0	3,0
gleichzeitig mitAb.vom							{	
Pocinho und mit Em-	ii Ii							[
bi ra .	. 2	1			82		i	3,5

Die einzige Blüthe, die ohne mein Zuthun Frucht ansetzte, war, wie die Aussaat der Samen gezeigt hat, durch Blüthenstaub des Abutilon Embira befruchtet worden. — An zwei Stöcken, die von den übrigen Abutilonpflanzen ziemlich entfernt stehen, und bei denen daher eine (überhaupt kaum jemals stattfindende) Bestaubung durch Kolibris oder Immen nicht zu befürchten stand, wurde eine grosse Zahl Blüthen an dem einen mit Abutilon vom Capivary, an dem anderen mit Embira bestaubt, ohne dass diese (in der Tabelle mit a bezeichneten) Blüthen gezeichnet und mit Gaze bedeckt wurden; an ersterem Stocke wurden 63, an dem anderen 7 Früchte geerntet.


Abutilon striatum befruchtet also hier, wie wir bereits sahen und noch weiter sehen werden, fremde Arten und wird von ihnen befruchtet. Somit ist seine Unfruchtbarkeit in unseren Gärten nicht dem Klima, sondern dem Umstande zuzuschreiben, dass wir nur Theile einer einzigen Pflanze hier besitzen. Dasselbe mag der Grund der Unfruchtbarkeit mancher anderen stets auf ungeschlechtlichem Wege vermehrten Pflanzen sein, z. B. des Ingwers und der süssen Bataten, deren Blüthenstaub und Eichen regelmässig ausgebildet zu sein scheinen. Ebenso mag es sich bei manchen in europäischen Gärten unfruchtbaren Pflanzen verhalten. In anderen Fällen findet sich bei solchen Pflanzen allerdings eine mehr oder weniger bedeutende Verkümmerung der Geschlechtstheile; so beim Arrow-root, dessen Staubbeutel ich stets vollkommen leer fand. Ja, einige scheinen sich sogar des Blüthens völlig entwöhnt zu haben, wie mehrere Arten von Dioscorea. Die Varietäten des Zuckerrohrs hat man danach in blüthende und nicht blüthende eingetheilt.

III. Bastard Abutilon Capivary-striatum.


Ein grösseres Gewicht für die Unterscheidung von Arten und Varietäten als der unvollkommnen oder vollkommnen Fruchtbarkeit bei der ersten Kreuzung legt Gäntnen dem Umstande bei, dass Arten-Bastarde in der ersten Generation fast immer nur einen einzigen Typus zeigen, während bei Varietäten-Bastarden kaum je eine Pflanze der anderen vollkommen gleich ist. Dass dies im Allgemeinen richtig ist, ist nach den so überaus reichen Erfahrungen Gäntnen's nicht zu bezweifeln, wie es ja auch vom Standpunkte der DARWIN'schen Lehre sich leicht erklärt. Dass aber auch dieser Unterschied zwischen Arten und Varietäten kein durchgreifender ist, zeigt der Bastard Abutilon Capivary-striatum. Von den fünf Pflanzen, die ich 1869 gezogen, trägt jede ihr ganz eigenthumliches Gepräge in Wuchs, Blatt, Blüthe und Frucht. Ich lege eine Skizze der Blüthen von den vier zu Versuchen verwendeten Pflanzen bei, zu der ich noch bemerken will, dass I der Riese unter seinen Geschwistern und jetzt über 10 Fuss hoch ist, während IV, obwohl ein halb Jahr älter, kaum 2 Spannen Höhe hat. II ist ebenso durch die Linge der Blattstiele wie der Blüthenstiele ausgezeichnet. Bei I und IV (sowie bei der fünften Pflanze, die erst wenige Blumen brachte) strotzen die Staubbeutel von gutem Blüthenstaub; bei II und III sind sie meist völlig leer und farblos, nur in einzelnen Blüthen findet man in einigen wenigen Staubbeuteln eine geringe Menge Blüthenstaubes, der aber, wenigstens bisweilen (s. s. Abutilon vom Capivary VI), gut ist.

M. VII, 4.

3

A. Blüthe des Abutilon Capivary. B. Blüthe von Abutilon striatum. I. II. Blüthen von 2 verschiedenen Pflanzen des Bastarde Abutilen Capivary-striatum.

III. IV. Blüthen von 2 verschiedenen Pflanzen des Bastards Abutilon Capivary-striatum.

Abutilon Capivary-stria- tum I Bestanbt	Zahl der bestanb- ten Blamen	Zahl der reifen	Zahl de Kleinste	r Samen Fracht Grösste		Durchscl Samen Kleintse	in einem	
auf natürlichem Wege mit Blüthenstaub der- selben Pflanze	? 8	2	60	62	61,0	5,0	6,2	5,6
mit Ab. Capivary-stria- tum II		0						
mit Ab. Capivary-stria- tum IV	3	2	58	74	64,5	6,4	6,5	6,4
mit Ab. vom Capivary	7	5	50	68	61,8	4,5	6,8	5,9
Bit Ab. striatum	5	5	28	64	89.4	2,3	5,8	4,0
mit Ab. Embira mit Ab. vom Rio do	16	2	58	55	54,0	4,8	5,0	4,9
Testo	8	0						
mit Ab. vom Pocinho	8							
gleichzeitig mit Ab. vom					39			8,5
Cepivary u. striatum	2	2	52	.58	52,5	5,2	5,8	5,9
Abutilon Capivary-stria- tum Il								
mit Ab. Capivary-stria-	1							
tum I	8	3	45	52	48,5	5,8	6,4	6,1
Dil Ab. vom Capivary		8	46	50	48,0	6,0	6,6	6,8
mit Ab. striatum	2	9	37	50	48,5	4,6	5,6	5,4
mit Ab. Embira	8	3	48	44	29,5	2,6	5,4	8,9
mit Ab. vom Rio do						-,-	<i>•</i> ,.	
Testo	4	0						
gleichzeitig mit Ab. vom								
Capivary und Ab. striatum	4	4			88			5,4

2.*

Fritz Müller,

Abutilon Capivary-stria- tum III	Zahl der bestaub-		Zahl de	r Samen i Frucht	in einer		hnittliche in einem	Zahl der Fache
Bestaubt :	ten Blumen	Früchte	Kleinste	Grösste	Mittel	Kleinste	Grösste	Mittel
mit Ab. Capivary-stria-						1		
tum I mit Ab. Capivary–stria–	5	5	44	55	44,8	4,4	5,2	4,4
tum II	4	0						
mit Ab. Capivary-stria-						1		
tum IV	2	2	28	32	30,0	3,5	4,0	3,7
mit Ab. vom Capivary	7	4	85	55	45,5	8,9	- 6,4	5,4
mit Ab. striatum	4	4	29	44	86,5	3,2	4,4	3,7
mit Ab. Embira	4	3	82	45	39,3	3,2	5,0	4,2
mit Ab. vom Rio do						ļ		
Testo	8	0						
mit Ab. vom Pocinho	4	2	43	47	45,0	4,7	4,8	4,7
gleichzeitig mit Ab. vom	lí.		i					
Capivary und Ab. striatum		4			54 -	i		5,4
gleichzeitig mit Ab. v.	•	'				1		0,1
Pocinho und Embira	2	4			58			6,4

An der kümmerlichen vierten Pflanze, die nur wenige Blüthen brachte, wurde eine Blume mit Abutilon Capivary-striatum I, drei mit Abutilon vom Capivary, eine mit Abutilon striatum und eine mit Abutilon Embira bestaubt; nur die mit Abutilon striatum bestaubte reifte eine Sfächrige Frucht mit 35 Samen (4,4 Samen im Fach).

Betrachten wir zuerst die an der Pflanze I erhaltenen Ergebnisse. Sie ist, wie beide elterlichen Arten, unfruchtbar mit ihrem eigenen Blüthenstaub; fruchtbar mit dem der Eltern und des Bastards IV und zwar, entgegengesetzt dem gewöhnlichen Verhalten, fruchtbarer mit diesem, als mit jenen. Sie lieferte mit dem Bastard IV einen höheren Samenertrag, als irgend eine Pflanze der mütterlichen Art, wenn mit Blüthenstaub der eigenen Art befruchtet! Wir haben bereits gesehen, dass ihr Blüthenstaub, wenn zur Befruchtung der mütterlichen Art verwendet, meist einen reicheren Samenertrag lieferte, als der der reinen Art. Auch hierin verhält sich diese Pflanze ganz wie ein Varietäten-Bastard.

Die beiden durch »natürliche Befruchtung« (wahrscheinlich mit Blüthenstaub des Abutilon vom Capivary) entstandenen Früchte waren im Gegensatz zu der Samenarmuth der meisten derartigen Früchte des Capivary-Abutilon reich an Samen und liefern gerade dadurch einen guten Beleg für die Richtigkeit der oben gegebenen Erklärung jener Samenarmuth. Sie stammen nämlich von den ersten Blüthen der Pflanze, die eine nach der andern aufblühten, also nicht mit Blüthenstaub desselben Stockes bestaubt werden konnten. Die späteren Blüthen sind fast alle zu künstlicher Bestaubung benutzt worden. Bei Bestaubung mit Embira fielen meist die ganzen Blüthen oder wenige Tage nach dem Abfallen der Blumenkrone die jungen Früchte ab; von 16 (oder mit Einschluss des Abutilon vom Rio do Testo, von 19) Blüthen wurden nur 2 reife Früchte erhalten.

Die Pflanzen II und III, die von männlicher Seite fast vollkommen unfruchtbar waren, lieferten, wie die Tabelle nachweist, ebenfalls einen ziemlich reichen Samenertrag; auffallend ist, dass bei ihnen die Bestaubung mit Embira viel leichter anzuschlagen schien, als bei der ersten Pflanze: von 3 und 4 bestaubten Blumen wurden 2 und 3 Früchte geentet.

Bei der Pflanze III wiederholt sich die Erscheinung, dass die reichsten Früchte durch Bestaubung mit zweierlei Blüthenstaub erzielt wurden. Das Abutilon vom Capivary erzeugte durchschnittlich 5,4, striatum 3,7 Samen im Fach; beiderlei Blüthenstaub vereinigt gab 5,4 Samen. Ja während Abutilon Embira durchschnittlich 4,2 — das Abutilon vom Pocinho 4,7 Samen lieferte, fanden sich in einer durch Blüthenstaub dieser beiden Arten erzeugten Frucht 6,4 Samen. Dies war überhaupt die samenreichste unter 19 Früchten, die von dieser Pflanze geerntet wurden.

Unter den Früchten der dritten Pflanze findet sich eine sehr arme mit nur 14 Samen, die aus der Tabelle hätte wegbleiben sollen; die Blume war mit einer unzureichenden Menge von Blüthenstaub aus einem einzigen zweifächrigen Staubbeutel bestaubt worden, wie solche einzeln fast in jeder Blüthe des Bastards I, sowie der mütterlichen Art (des Capivery-Abutilon) vorkamen.

Bemerkenswerth ist noch das Verhalten der Bastardpflanzen gegen Bluthenstaub von Abutilon striatum und von Embira. Keine Bestaubung schlug sicherer an, als die mit Abutilon striatum, der väterlichen Art, - keine schwieriger, als die mit Embira. - 12 Blumen, mit Abution striatum bestaubt, lieferten eben so viel Früchte; die einzige Frucht, die an der Pflanze IV reifte, war dieses Ursprungs. Von 34 Blumen dagegen, die mit Embira (einschliesslich der Abart vom Rio do Testo) bestaubt wurden, wurden nur 7 Früchte erhalten. Diese Früchte aber waren samenreicher (4,4), als die durch Abutilon striatum erzeugten (3,9). Am auffallendsten tritt dieses Verhältniss bei dem Bastard I hervor, wo 19 Blumen mit Embira bestaubt 2 Früchte mit durchschnittlich 4,9, dagegen 5 Blumen mit striatum bestaubt auch 5 Früchte mit durchschnittlich 4,0 Samen im Fach gaben. Nicht immer entspricht also der grösseren Leichtigkeit, mit der die Befruchtung angenommen wird, auch ein grösserer Samenreichthum. Dasselbe gilt wohl überhaupt für alle bei der Fruchtbarkeit der Pflanzen in Betracht kommenden Umstände; im Allgemeinen wird wohl, je leichter die Bestaubung von der Narbe angenommen wird, um so kräftiger auch die Einwirkung des Blüthenstaubs auf den Fruchtknoten, um so sicherer und vollkommener die Befruchtung der Eichen, um so samenreicher die Frucht, um so keimfähiger der Samen, um so kräftiger und fruchtbarer die Nachkommenschaft sein. Einen vollkommenen Parallelismus aber wird man, wie in dem eben angeführten, so in vielen anderen Fällen vermissen.

IV. Abutilon (Embira branca der Brasilianer).

Bestaubungsversuche wurden an zwei Stöcken vorgenommen; da sich zwischen den Ergebnissen kein erheblicher Unterschied zeigt, fasse ich sie in eine einzige Tabelle zusammen.

Die Vermittler der Bestaubung sind auch hier die Kolibris. Die Blüthen hängen nicht, wie bei den bisher besprochenen Formen, sondern ihre Achse steht fast wagerecht; die Griffel treten nicht gerade aus der Staubfädenröhre hervor, sondern biegen sich beim Austritt fast rechtwinklig um, so dass die Narben nach allen Seiten über die Staubbeutel hinausragen, — eine Lage, die bei der Richtung der Blumenkrone offenbar für die Bestaubung günstiger ist. Zwischen den Staubgefässen pflegt bei dieser Art eine Menge winziger Käfer sich zu sammeln, welche auf die Kolibris ebenso anlockend wirken mögen, wie der Honig, der im Grunde der Blume ziemlich reichlich abgesondert wird¹).

Abutilon Embirs Bestaubt :	Zahl der bestaub- ten Blumen	Zahl der reifen	Zahl de Kleinste	Frucht	1		hnittliche in einem Grösste	
Durch Kolibris mit Blüthenstaub des-	9	114	5	69	81,1	0,8	4,9	8,9
selben Stocks mit fremdem Blüthen-	48	0						
staub der eigenen Art mit der Varietät von	7	7	80	69	56,7	2,1	5,7	4,1
Rio do Testo	6	4	59	60	59,5	4,8	4,6	4,4
mit Ab. vom Capivary	48	40	84	74	49,3	4,4	4,6	3,6
mit Ab. striatum mit Ab. Capivary-stria-	46	6	6	23	12,0	0,4	1,9	0,9
tum I	44	10	8	56	84,8	0,6	4,8	2,6
mit Ab. vom Pocinho gleichzeitig mit Blü- thenstaub der eige- nen Art und mit Ab.	11	5	28	43	37,4	3,0	3,8	2,9
vom Capivary gleichzeitig mit Ab. vom Capivary und mit Ab.	4	4			50			3,8
striatum	8	2	42	55	48,5	8,2	4,2	8,7

4) Aus der Menge von Insectenresten, die DARWIN, BURMEISTER u. A. im Magen

•

Von den sehr zahlreichen durch »natürliche Befruchtung« entstandenen Früchten wurde nur ein kleiner Theil untersucht; das Ergebniss ist, wie man sieht, dasselbe wie bei dem Abutilon vom Capivary, indem sie im Durchschnitt nur etwa halb so viel Samen enthalten, wie künstlich befruchtete.

Bei Bestaubung mit Blüthenstaub desselben Stockes fiel nur in drei Fällen 3—4 Tage nach der Bestaubung die ganze Blüthe ab, in 9 Fällen 4-8 Tage nach der Bestaubung die junge Frucht; in einem Falle hielt sich die Frucht 21 Tage. Die Unempfänglichkeit für die Bestaubung mit eigenem Blüthenstaube ist also keine so vollkommene, wie bei dem Abuülon vom Capivary.

Wenn auch die Befruchtung mit Blüthenstaub der Arten vom Capivary und vom Pocinho, sowie des Bastards Abutilon Capivary-striaum I noch einen höheren Samenertrag lieferte, als die »natürliche Befruchtung«, so steht doch weit mehr als bei dem Capivary-Abutilon der Ertrag der Bastardfrüchte gegen den der künstlich mit Blüthenstaub der eigenen Art befruchteten zurück. Ob etwa die grössere Geneigtheit des Capivary-Abutilon, Bastardbefruchtung anzunehmen, im Zusammenhang steht mit dessen vollständiger ausgeprägter Selbstunfruchtbarkeit, kann nur durch weit umfangreichere Versuche an zahlreichen auf ihr Verhalten zum eigenen Blüthenstaube genau geprüften Arten entschieden werden. Doch mag erinnert werden an die Schwierigkeit der Bastarderzeugung in der derselben Familie angehörigen Gattung Hibiscus, deren Arten, soweit meine Erfahrung reicht, vollkommen fruchtbar sind mit eigenem Blüthenstaube, sowie andererseits an die überraschende Leichtigkeit, mit der fernstehende selbstunfruchtbare Arten von Vandeen sich kreuzen lassen.

So weit der Bericht über den Samenertrag meiner Bestaubungsversuche. Ich schliesse ihm als nothwendige Ergänzung einige Worte an über die aus dem Samen gezogenen jungen Pflanzen.

Im April 1869 hatte ich frischen hier geernteten Samen von drei Verschiedenen Früchten des Capivary-Abutilon ausgesät. Die Pflanzen, durch deren Erzeugung ich diese Früchte erhalten hatte, waren Geschwister, aus Samen derselben Frucht gezogen. Nur 2 Pflänzchen ^{Ringen} auf von 180 Samen; (es sind die oben mit V und VI bezeichneten Pflanzen). Ich schrieb dies damals der Ungunst der Witterung

^{der} Kolibris angehäuft fanden, hat man gewiss mit Recht geschlossen, dass Insecten ^{èinen} wesentlichen Bestandtheil ihrer Nahrung bilden und nicht blos zufällig mit ^{dem} Honig eingeschlürft werden. Wenn man aber nun umgekehrt behauptet hat, ^{dass} der Honig nur beiläufig und zufällig mit den Insecten aufgenommen wurde, so ^{liegt} dafür auch nicht die Spur eines Beweises vor.

oder der unpassenden Jahreszeit zu. — Nun aber habe ich von der Ernte, über die ich so eben berichtet, Samen von weit über 100 Früchten ausgesät und fast alle haben reichliche und kräftige Pflanzen geliefert. Zu gleicher Zeit und an gleicher Stelle mit den übrigen wurden auch sieben verschiedene Aussaaten des Capivary-Abutilon gemacht und zwar:

- 1) zwei Aussaaten von 2 Früchten der Pflanze V, erzeugt durch Blüthenstaub ihres Oheims III. — Gesät am 4. October, gingen nach 14 Tagen reichliche Pflanzen auf, die aber bis jetzt nicht sehr kräftig wachsen.
- 2) vier Aussaaten von Früchten der Pflanze I, erzeugt durch Blüthenstaub ihres Bruders II. — Zwei Aussaaten vom 4. October keimten nach 24, eine vom 20. October nach 48, eine vom 24. October nach 21 Tagen. — Mehr als 200 Samen lieferten kaum über ein Dutzend so schwächlicher Pflänzchen, dass nur 4 die ersten Wochen überlebten und bis heute ein sehr kümmerliches Wachsthum zeigen ¹).

() Das Missrathen dieser Aussaaten war mir sehr verdriesslich, da sie zu Beobachtungen über die Vererbung der Eigenthümlichkeiten einzelner Blüthen bestimmt waren. Ein ähnliches Missgeschick, veranlasst durch Ueberschwemmung, Dürre, Raupenfrass, Ameisen u. s. w. hat bisher fast alle meine derartigen Versuche vereitelt. Das Wenige, was ich hierüber in Bezug auf Abutilon zu sagen habe, mag hier eine Stelle finden.

Die Zahl der Griffel ist bei dem Capivary-Abutilon, wie bei anderen Arten, eine sehr schwankende. Die Pflanze VI wurde aus Samen einer 9 griffligen Blume gezogen, die mit Blüthenstaub einer anderen ebenfalls 9 griffligen Blume befruchtet war; bei ihr herrschen nun die 9 griffligen Blüthen entschieden vor. Ich finde 38 Früchte dieser Pflanze verzeichnet, von denen 4 8 fächrig, 24 9 fächrig und 40 40 fächrig waren; danach würden die 8 griffligen Blüthen 440/0, die 9 griffligen 63 0/0, die 40 griffligen 26 0/0 bilden. Leider ist ein Vergleich mit den durch eine Ueberschwemmung zerstörten Eltern nicht mehr möglich. Bei drei noch lebenden Geschwistern dieser Eltern, den Pflanzen I, II, III fanden sich unter 400 Blüthen

			bei I	bei II	bei III
mit	7	Griffeln	: 0	0	4
-	8	-	8	8	6
-	9	-	25	43	89
-	40	-	54	48	54
-	44	-	48	6	3

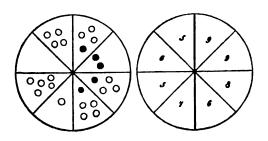
An der Pflanze I wurde sogar einmal eine Blume mit 42 Griffeln beobachtet. (Man muss beim Zählen der Griffel die Röhre der verwachsenen Staubfäden aufschlitzen, in der sich nicht selten einzelne Griffel verbergen; dadurch wird es eine etwas zeitraubende Arbeit.) 3) eine Aussaat von Samen einer Frucht der Pflanze IV, erzeugt durch Blüthenstaub ihres Bruders II, am 11. October. — Erst nach einem vollen Monat, am 11. November zeigten sich einige Pflänzchen. Ob von den 56 Samen überhaupt mehr als zwei gekeimt haben (soviel Pflanzen sind noch vorhanden), kann ich nicht sagen. Die Pflänzchen zeigen ein etwas kräftigeres Wachsthum, als die unter 2, erwähnten.

Ich darf nicht unterlassen anzuführen, dass die Samen der einen noch nicht einmal ganz reifen Frucht, die ich vom Capivary mitgebracht hatte und die so verschrumpft waren, dass sie des Säens gar nicht werth schienen, gut aufgingen. Ich glaube nicht zu irren, wenn ich das verspätete Keimen nur weniger Samen der Pflanzen I und IV, und die Schwächlichkeit der Sämlinge dem Umstande zuschreibe, dass diese Samen durch Geschwister der betreffenden Pflanzen erzeugt worden waren, so dass also bei diesem Abutilon nicht nur die Bestaubung mit Blüthenstaub desselben Stockes völlig wirkungslos wäre, sondern auch die Befruchtung durch die nächsten Verwandten zwar ziemlich reichlichen Samen, aber nur wenige schwächliche Nachkommenschaft erzeugen würde. Ich gedenke diesen Punkt noch ferner ins Auge zu fassen und kann den Wunsch nicht unterdrücken, dass auch mit anderen selbst unfruchtbaren Pflanzen ähnliche Versuche angestellt werden möchten.

An den meisten meiner Versuchspflanzen hatte ich einzelne Blumen gleichzeitig mit Blüthenstaub zweier verschiedenen fremden Arten bestaubt (und zwar eine gleiche Zahl Narben mit jeder Art). Wie erwähnt hatte ich von solchen Blumen mehrfach besonders samenreiche Früchte erhalten. Diese Versuche waren angestellt worden, um durch sie nach Giarmar's Vorgang über den »Grad der sexuellen Verwandtschaft der beiden Arten zu der weiblichen Unterlage« zu entscheiden, falls der

Die Pflanze V stammt von einer 9 griffligen Blume von II, befruchtet mit Blüthenstaub einer 44 griffligen Blume der Mutter von VI; bei ihr fanden sich unter 100 Blumen

mit	7	Griffeln 2					
-	8	-	27				
-	9		88				
-	40	-	84				
-	44	-	2				


Beim Vergleich mit der Mutterpflanze (II) fällt auf, dass sich das Verhältniss der 9 griffligen zu den 10 griffligen Blumen fast gerade umgekehrt hat; bei der Mutter ist es etwa 9:10, bei der Tochter etwa 14:9. — Auffallender noch ist die grosse Zahl von Blumen (fast 300_0) mit weniger als 9 Griffeln, während die Mutter solcher Blumen nur 30_0 und darunter gar keine mit 7 Griffeln brachte.

Fritz Müller,

Samenertrag darüber in Zweifel lassen sollte. Das Ergebniss der Aussaat ist nun ein ganz unerwartetes gewesen. Mit Kölneuten's und W. HERBERT'S früheren Erfahrungen übereinstimmend behauptet Gärtnen. dass bei »gleichzeitiger Bestaubung mit verschiedenen Pollenarten« nicht etwa »der eine Pollen eine gewisse Zahl von Eichen befruchtet, der andere aber eine andere«, dass vielmehr »nur Eine gleichförmige Befruchtung durch eine von den Pollenarten stattfindet, nämlich durch denjenigen Pollen, welcher die stärkste sexuelle Verwandtschaft zur weiblichen Unterlage hatte« (GXRTNER, Bastarderzeugung im Pflanzenreiche S. 36). Der treffliche GÄRTNER ist vorsichtig genug, dies nur für diejenigen Arten als gültig auszusprechen, an denen er selbst, Kölreuter und W. HERBERT die betreffenden Versuche angestellt. - Bei Abutilon scheint nun, soweit ich bis jetzt urtheilen kann, stets das Gegentheil, die Erzeugung von zweierlei Bastarden stattzufinden. Mit Sicherheit kann ich dies für jetzt nur für diejenigen Fälle behaupten, in denen Blüthenstaub von Embira zugleich mit dem einer anderen Art zur Verwendung kam. Denn schon fast vom Erscheinen des ersten Blattes an sind die Bastarde der Embira auf den ersten Blick an ihren langen schmalen Blättern zu erkennen. Ich führe daher einstweilen nur folgende Fälle an :

- Eine Frucht von Striatum, befruchtet durch Capivary und Embira, lieferte 6 Sämlinge von Striato-Capivary, 3 Sämlinge von Striato-Embira.
- Eine Frucht des Capivary-Abutilon IV, befruchtet durch Embira und Striatum, lieferte 4 Sämling Capivary-Embira, 5 Sämlinge Capivary-striatum.
- Eine Frucht des Capivary-Abutilon V, ebenso befruchtet, lieferte 3 Sämlinge Capivary-Embira, 5 Capivary-Striatum.
- 4) Eine Frucht des Capivary-Abutilon VI, ebenso befruchtet, gab 6 Capivary-Embira, 5 Capivary-striatum.
- 5) Eine Frucht derselben Pflanze, ebenso befruchtet, gab 5 Sämlinge Capivary-Embira, 20 Capivary-striatum.

In Betreff der vier ersten Fälle muss ich bemerken, dass ich versäumt hatte, die zu dicht stehenden Pflänzchen rechtzeitig zu verpflanzen und dass daher die Mehrzahl bei einer anhaltenden Trockniss zu Grunde ging; die oben gegebene Zahl der übrig gebliebenen ist zu gering, um weitere Betrachtungen daran zu knüpfen. Dagegen verdient der fünfte Fall noch eine besondere Besprechung. Ich hatte in diesem Falle die Samen jedes Faches besonders ausgesät und dabei die Ordnung, in der die Fächer aneinander stiessen, bemerkt. Die Sämlinge aus einem der 8 Fächer sind leider alle jung umgekommen. Ich stelle das Ergehniss wohl am anschaulichsten in einer Figur dar, in welcher schwarze Kreise die Bastarde Capivary – Embira, weisse Kreise die

Bestarde Capivary-striatum vorstellen mögen. Man sicht, der Blüthenstaub von Embira hat seine Einwirkung auf vier Fächer beschränkt, wahrscheinlich dieselben, deren Narben mit ihm belegt worden waren, während der Blüthenstaub des Abutilon Striatum seinen Einfluss über die ganze Frucht ausgedehnt hat 1). Ich stelle daneben eine Figur, welche die Zahl der Samen in den einzelnen Fächern der Frucht zeigt, yon der diese Sämlinge stammen. Die 4 Fächer rechts sind samenreicher (32), als die 4 Fächer links (23). Die Zahl der Eichen bei diesem Abutilon ist 8 bis 9 im Fach; in 2 oder 3 Fächern der rechten Seite sind also sämmtliche Eichen befruchtet worden. Ob die samenreichen Fächer die sind, auf welche zweierlei Blüthenstaub einwirkte, kann ich leider nicht sagen. Man lernt ja gewöhnlich erst im Verfolg einer Untersuchung alle Umstände kennen, auf die zu achten von Werth sein kann. Wenn aber Früchte, durch Blüthenstaub zweier fremden Arten erzeugt, sich samenreicher erwiesen, als solche, die dem Blüthenstaube der einen oder andern dieser beiden Arten ihre Entstchung verdankten, so scheint es allerdings wahrscheinlich, dass in diesen Früchten diejenigen Fächer, auf welche zweierlei Blüthenstaub einwirkte, mehr Samen enthalten werden als die, in welchem nur einerlei Blumenstaub sich geltend machte.

Die Thatsache, dass bei Abutilon aus solchen Früchten zweierlei Bastarde hervorgehen, scheint eine einfache Erklärung für deren grösseren Samenreichthum zu bieten und eben deshalb möchte ich diesen nicht für blos zufällig halten. Der Mangel an »Wahlverwandtschaft«, um mich des bequemen Ausdrucks von Gärtnen zu bedienen, giebt sich nicht selten, besonders bei völlig unfruchtbaren Verbindungen, schon auf der Narbe kund, indem Narbe und Blüthenstaub entweder gar nicht,

⁴⁾ Es ist durch GÄRTNER bekannt, dass man von einer einzigen Narbe aus alle Fächer eines mehrfächrigen Fruchtknotens befruchten kann; bei dem Abutilon vom Capivary habe ich dasselbe beobachtet. Die Verschmelzung getrennter Carpelle zu einem einzigen Fruchtknoten ist daher nicht blos ein »morphologischer Fortschritt«, sondern von wesentlichem Nutzen für die Befruchtung der Pflanzen.

oder feindlich 1), oder unvollkommen, wenige oder nicht ins Narbengewebe eindringende Pollenschläuche entwickelnd, auf einander einwirken; in andern Fällen macht sich derselbe erst nach der Befruchtung der Eichen geltend, indem die Samen vor der Reife vertrocknen oder der Embryo sich nur unvollkommen entwickelt. In der Mehrzahl der Fälle aber, in denen die Einwirkung zeugungskräftigen Blüthenstaubes auf eine empfängnissfähige weibliche Unterlage eine hinter der normalen zurückbleibende Samenzahl erzeugt, dürfte dies davon abhängen, dass nur ein Theil der Eichen befruchtet wird. Dass aber einige Eichen eines Fruchtknotens von Blüthenstaub einer fremden Art befruchtet werden, andere nicht, deutet auf eine Verschiedenheit der Eichen oder, mit Gärtner zu reden, darauf hin, dass nicht alle die gleiche Wahlverwandtschaft zu dem fremden Blüthenstaube besitzen. Kommen nun Pollenschläuche von zwei fremden Arten gleichzeitig im Fruchtknoten an, so werden es wahrscheinlich nicht immer dieselben Eichen sein, die für beiderlei Arten sich unempfänglich erweisen; manche, die von der ersten Art nicht befruchtet worden wären, werden es durch die zweite und umgekehrt, wodurch denn natürlich eine grössere Zahl von Samen erzeugt wird, als durch jede einzelne der fremden Pollenarten.

Nach KÖLRBUTER'S und GÄRTNER'S Erfahrungen soll, wenn eine zur Befruchtung hinreichende Menge eigenen Blüthenstaubes und gleichzeitig fremder Blüthenstaub auf die Narben gebracht wird, »der eigene Befruchtungsstoff nur allein angenommen, der fremde hingegen gänzlich verdrungen und von der Befruchtung ausgeschlossen« werden. (GÄRT-NER, Bastarderzeugung S. 34). Auch dies gilt wenigstens nicht immer für Abutilon. Ich habe an Blumen des Capivary-Abutilon eine Narbe mit Blüthenstaub der eigenen Art, die übrigen mit Blüthenstaub von Abutilon striatum oder Embira bestaubt. Die Bestaubung der einen Narbe würde ausgereicht haben, eine ziemlich samenreiche Frucht zu liefern; so erhielt ich von einer Blume der Pflanze II, in welcher eine einzige Narbe mit Blüthenstaub der Pflanze I bestaubt wurde, eine Frucht mit 54 Samen (5,4 im Fach), eine der reichsten Früchte, die ich von dieser Pflanze erntete. Allein aus der »gemischten Bestaubung« ging dennoch nicht blos die reine Art hervor. So wurde an einer Blume

⁴⁾ Diese »tödtliche Bestäubung«, wie er sie nennt, scheint zuerst Gäntnen an Lychnis diurna nach Bestäubung mit Pollen von Saponaria officinalis, Silene bellidiflora und Lychnanthus volubilis beobachtet zu haben. Häufig [ist sie bei den Vandeen (Oncidium, Burlingtonia, Gomeza, Notylia u. s. w.) nach Bestaubung mit eigenem Blüthenstaub, wie auch nach [Bestaubung von Oncidium flexuosum mit Pollinien von Notylia.

der Pflanze V eine Narbe mit Blüthenstaub der Pflanze II, die sieben übrigen Narben mit Blüthenstaub von Embira bestaubt; aus dem Samen der so erhaltenen Frucht habe ich 10 Sämlinge gezogen, von denen 9 Bastarde (Abutilon Capivary-Embira) sind und nur einer der reinen Art (Abutilon vom Capivary) angehört.

Nach der Meinung Kölreuten's und Herbert's sollen »bei einer Vereinigung einer geringen Menge des eigenen mit einer grösseren eines fremden Befruchtungsstoffs « Varietäten (Kölreuter's »Tincturen oder halbe Bastarde «) hervorgebracht werden können, die »zwar keine wirklichen Hybriden wären, aber in einem gewissen Grade von der natürlichen Form abweichen«. Gäntnen bestreitet diese Möglichkeit aufs Entschiedenste. Bei der Leichtigkeit, mit der sich bei ihnen zweierlei Samen in derselben Frucht erzeugen, dürften die in Gärten jetzt so zahlreich vertretenen Abutilon-Arten besonders geeignet sein, solche »Tincturen« entstehen zu lassen, deren Möglichkeit ich trotz allen Versuchen und Gegengründen GÄRTNER's nicht von vornherein in Abrede stellen möchte. Der Blüthenstaub wirkt ja nicht nur auf die Eichen, sondern, wie u. A. HILDEBBAND's Versuche an Orchideen beweisen, auch auf den ganzen Fruchtknoten. Dass aber ein Fruchtknoten, auf den zweierlei Blüthenstaub eingewirkt, eine der Eigenthümlichkeit der beiden Pollenarten entsprechende Rückwirkung äussern könne auf die in ihm reifenden Samen, scheint mir nicht unwahrscheinlich, wenn ich an das bekannte Beispiel von Lord Monton's arabischer Stute denke, die von einem Ouagga-Hengste einen Bastard geboren hatte und später von einem schwarzen arabischen Hengste zwei Füllen warf, deren Beine noch deutlicher gestreift waren, als die des Bastards, ja als die des Quagga selbst.

Auch in dieser Beziehung dürften daher weitere Versuche an Abutilon-Arten über den Erfolg der gleichzeitigen oder successiven Bestaubung mit verschiedenen Pollenarten wünschenswerth erscheinen.

Itajahy, Sa. Catharina, Brazil, im Januar 1871.

Untersuchungen über den Bau und die Entwickelung des Cellulose-Mantels der Tunicaten.

Eine akademische Preisschrift

von

Oskar Hertwig, stud. med. aus Muhlhausen.

Hierzu Taf. IV. V. VI.

I. Allgemeine Bemerkungen über den Cellulose-Mantel der Tunicaten.

Unter den vielen und interessanten Eigenthümlichkeiten, welche die Thierclasse der Tunicaten auszeichnen, steht nächst der Embryologie dieser Thiere die morphologische und chemische Beschaffenheit ihres Mantels in erster Reihe. Dieser Mantel, die Tunica, von der die Classe ihren Namen führt, ist daher auch schon Gegenstand vielfacher Untersuchungen gewesen. Seitdem zuerst im Jahre 1845 KARL SCHMIDT an dem Tunicaten-Mantel das Vorkommen von Cellulose im Thierreiche nachgewiesen, und dadurch die Aufmerksamkeit der Forscher auf diesen Gegenstand gelenkt worden ist, sind mehrere grössere Arbeiten über die histologische und chemische Beschaffenheit des Tunicaten-Mantels veröffentlicht worden. Die erste eingehende chemische und mikroskopische Untersuchung, welche sich über eine sehr grosse Anzahl von Salpen und Ascidien aus den verschiedensten Gruppen erstreckte, verdanken wir Löwig und Kölliker. Ihre in den Annales des sciences naturelles 1846 erschienene Arbeit bildete lange Zeit die Hauptquelle für unsere Kenntniss vom feineren histologischen Bau des Tunicaten-Mantels. Diese Beobachtungen sind unverändert in das zusammenfassende Hauptwerk über die Organisation der Weichthiere von BRONN (1862) mit übergegangen. An die Arbeit Köllikes's sich anschliessend

Untersuchungen über d. Bau u. die Entwickelung des Cellulose-Mantels der Tunicaten. 47

weröffentlichte H. SCHACHT in MÜLLER'S Archiv 1851 eine, dieselbe in wingen Punkten ergänzende Untersuchung des Mantels von Phallusia mammillata und Cynthia microcosmus.

Die neueste Behandlung desselben Gegenstandes liegt uns in einer mit den Hülfsmitteln der neueren Mikroskopie und besonders mit stärkeren Vergrösserungen ausgeführten Arbeit von FRANZ EILHARD SCHULZE vor: Ueber die Structur des Tunicatenmantels und sein Verhalten im polarisirtem Lichte (Zeitschrift für Zoologie von SIEBOLD und Kölliker 1863). In derselben ist namentlich die Bedeutung der von Kölliker und SCHACHT als Kerne beschriebenen Gebilde als Bindegewebskörperchen richtig gewürdigt worden. Doch bin ich in Betreff der daselbst aufgestellten Histiogenese und der Natur der sogenannten Hohlzellen im Phallusienmantel zu ganz entgegengesetzten Ansichten gekommen; daher werde ich auf diese Arbeit später noch näher eingehen müssen. Zerstreute Angaben finden sich noch in Vogr's, LEUCKART's und HUXLEV'S Untersuchungen über Salpen und Pyrosomen.

Ueber die embryonale Entstehung des Mantels liegen in MILNE ED-WARDS', KROHN'S, KOWALEWSKY'S und KUPPFER'S Arbeiten kurze Mittheilungen vor, die trotz mancher Widersprüche im Einzelnen doch alle im Wesentlichen dahin gehen, dass der Cellulosemantel als eine persistente embryonale Hülle aufzufassen sei. Endlich hätte ich noch auf die betreffenden Abschnitte in BRONN'S » Classen und Ordnungen der Weichthiere « und auf die kurzen Notizen in GEGENBAUR'S vergleichender Anatomie (II. Aufl. p. 166 u. 169) zu verweisen.

Trotz der verhältnissmässig grossen Anzahl von Detailuntersuchungen ist Vieles in Bau und morphologischer Bedeutung des Tunicatenmantels noch unklar geblieben, Vieles in den Angaben der verschiedenen Beobachter widersprechend.

Um diese Widersprüche und Unklarheiten zu beseitigen, hatte die philosophische Facultät der Universität Jena zur Bewerbung um den Preis der Herzoglich Sachsen-Altenburgischen Josephinischen Stiftung für das Jahr 1870 die Aufgabe gestellt: » Durch neue selbstständige Untersuchungen soll die Morphologie der Tunicaten und insbesondere die Entwickelungsgeschichte ihres Mantels aufgeklärt werden.«

In der Hoffnung, diese Aufgabe lösen zu können, unternahm ich die nachstehend mitgetheilten Untersuchungen, welche den dafür ausgesetzten Preis erhielten. Die meisten Beobachtungen wurden an einer Reihe von wohlerhaltenen Spiritus-Exemplaren aus dem zoologischen Museum in Jena angestellt. Ich verdanke dieselben der Güte meines verehrten Lehrers, Herrn Professor HAECKEL, dem ich hierbei zugleich für seine freundschaftliche Unterstützung meinen herzlichsten Dank Oskar Hertwig,

ausspreche. Später erhielt ich dann noch während eines dreiwöchen lichen Aufenthaltes auf der Insel Lesina, an der Küste des südlich Dalmatiens, treffliches Material von lebenden Ascidien, an denen i die durch Untersuchung der Spiritus-Präparate gewonnenen anatou schen Resultate noch einmal nachprüfen konnte. Zugleich fand i dabei die erwünschte Gelegenheit, die embryonale Entwickelung u erste Entstehung des Mantels zu studiren.

Bei diesen Studien liess ich auch die übrige Entwickelung (Ascidien-Eies nicht ausser Acht. Das hohe Interesse, welches die Blu verwandtschaft der Ascidien und der Wirbelthiere in den letzten Jahr erregt hat, veranlasste mich, bei dieser Gelegenheit jenem hochwic tigen Gegenstande meine besondere Aufmerksamkeit zuzuwenden. ich an der Hand der jüngst erschienenen vortrefflichen Arbeit Kov LEWSKY'S jedes Stadium der embryonalen Ascidien-Entwickelung seinen Abbildungen zu vergleichen suchte, so will ich es hier ni unerwähnt lassen, dass ich die daselbst gemachten Angaben in Hauptsache vollkommen bestätigt fand. Demnach müssen die kürzl von Dönnz in einer oberflächlichen Mittheilung in Reichent's Archiv hobenen Zweifel in die Genauigkeit der Kowalswessy'schen Untersucht gen völlig ungerechtfertigt erscheinen. Die von Dönırz daran geknüj anspruchsvolle Polemik zeugt von eben so viel Mangel an Kenntn wie an Verständniss des Objectes. Derselbe hat den ausführlichen, grosser Sorgfalt und Ausdauer angestellten Beobachtungen von Kov LEWSKY weder genaue eigene Untersuchungen, noch irgend begründ Einwände anderer Art entgegenzustellen vermocht. Daber müssen se gegentheiligen Behauptungen völlig haltlos erscheinen.

Ich wende mich jetzt zunächst zur Darstellung meiner Beobatungen über den Bau des Tunicatenmantels. Ehe ich mich jedoch histologische Details einlasse, halte ich es für zweckentsprechend, zu das Verhältniss des Mantels zum übrigen Organismus in Kürze zu örtern. In Betreff dieses Verhältnisses variiren die Angaben noch sehr, dass eine richtige Würdigung desselben der eingehenderen 1 trachtung des Mantels selbst vorausgeschickt werden muss.

2. Verhältniss des Cellulose-Mantels zum übrigen Organism

Die Körperwand der Tunicaten wird am zweckmässigsten in z Schichten getheilt: 4) eine äussere Schicht, welche nur aus Binder webe besteht und die von SCHMIDT, Löwig, und Köllikker nachgew sene Cellulose Reaction liefert, und 2) eine innere Schicht, die th

48

Untersuchungen über d. Bau u. die Entwickelung des Cellulose-Mantels der Tunicaten. 49

aus Bindegewebe, theils aus darin eingelagerten Muskelfasern und Gefässen zusammengesetzt ist.

Für die äussere Schicht findet man in der Literatur die Benennungen: Tunica externa, Cellulosemantel und Testa, für die innere die Benennungen: Tunica interna und Muskelschlauch. Die von MILNE EDWARDS als dritte Tunica beschriebene innerste Membran bleibt hier ganz unberticksichtigt, nicht etwa weil deren Existenz bezweifelt würde, sondern weil wir uns sonst auf Organisationsverhältnisse verwickelterer Art einlassen müssten, die dem Zweck dieser Arbeit entfernt stehen. Bei den Salpen erreicht die Tunica externa eine bedeuunde Mächtigkeit, so dass sie die bei weitem grösste Masse des Thieres ausmacht. (Taf. IV. Fig. 1. A). Bei den Pyrosomen und zusammengesetzten Ascidien bildet sie die allen Individuen gemeinsame Grundmasse des Stockes, in welcher keine Linien die Grenzen des zu jedem Individuum ursprünglich gehörenden Mantels mehr andeuten. (Taf. IV. Fig. 2. A). Bei den genannten Tunicaten ist meistens die Testa mehr oder minder transparent und in verschiedenen Graden gallertig weich. Unter den einfachen Ascidien schliessen sich die Phallusien in der Beschaffenheit und Mächtigkeit der Testa an die vorhergehenden an; doch besteht in derselben bei einigen Phallusia-Arten eine eigenthümliche Gefässeinrichtung, die bei Schilderung der Tunica interna näher besprochen werden soll. Bei den Cynthien endlich ist der Cellulosemantel verhältnissmässig von der geringsten Dicke; dagegen derb, dunkel gefärbt, vollkommen undurchsichtig und lederartig. (Taf. IV. Fig. 3 und 4. A: Manche Cynthien sind äusserlich der Baumrinde nicht unähnlich, und sind wegen dieses unscheinharen Aeusseren bis jetzt wenig beachtet worden. Bei allen mir bekannten Ascidien liefert diese äusserste Schicht des Körpers stets eine ausgeprägte Cellulosereaction, und zwar schneller und vollständiger bei den Arten mit lederartiger als bei denjenigen mit gallertiger Beschaffenheit. Auf ihrer äussern Fläche findet sich kein Epithel, wie hie und da früher irrthümlich behauptet worden ist. Dagegen trifft man zwischen ihr und der zweiten Körperschicht stets eine continuirliche, einfache Lage platter Zellen, die man meistens als Mantelepithel bezeichnet hat (Taf. IV. Fig. 4-4. c). Es sind dies die eigentlichen Epidermiszellen, wie ich später zeigen werde; daher werden sie auch unter diesem Namen weiter aufgeführt werden. Auf Querschnitten bilden sie eine deutliche Trennungslinie zwischen Tunica interna und externa, was besonders an den mit Carmin gefärblen Präparaten hervortritt. Ohne diese Zellenlage würden beiden Tuniken continuirlich in einander übergehen.

Einige Forscher geben an, dass nur bei einem Theil der Tunicaten ¹⁴. vil. 4. ⁴ nämlich bei den Salpen und Verwandten, ein fester Zusammenhang zw 🔎 schen innerem und äusserem Mantel existire, bei einem andern, de Cynthien, beide Theile nur an der Ingestions- und Egestionsöffnur zusamenhingen, sonst aber getrennt seien. Auf diese irrthümliche Anschauung war sogar eine Eintheilung der Tunicaten-Classe in Monochitoniden und Dichitoniden basirt worden. Auch von BRONN und Anderer wird dieses verschiedenen Verhaltens öfters gedacht. Dem gegenüber ist hervorzuheben, dass beide Körperschichten bei allen Arten in einem continuirlichem Zusammenhang stehen. Ueberall wo man beide Theile getrennt zu finden wähnt, ist dies Folge künstlicher Präparation. Dass diese künstliche Trennung sich bei den fälschlich so genannten Dichitoniden, nämlich den Gynthien, gelegentlich der Präparation leicht einstellt, ist nicht auffallend, wenn man bedenkt, wie verschieden der Härtegrad zwischen der knorpligen Aussenschicht und der weichen Innenschicht ist, und dass beide nur durch eine Lage zarten Epithels vereinigt sind. (Taf. IV. Fig. 1-4). Da dieses Epithelium, die eigentliche »Epidermis«, constant die beiden Schichten trennt, so ist die viel erörterte Frage, ob nur die Innenseite des Cellulosemantels oder auch die Aussenseite desselben eine Epithellage trage, zu Gunsten der ersteren Ansicht erledigt. Dies Verhalten wird auch durch die Entwickelungsgeschichte vollständig erklärt.

Von Bedeutung ist die Art und Weise des Zusammenhanges der innern und äussern Leibesschicht an der Ingestions - und Egestionsöffnung. LEUCKART und auch HUXLEY geben an, dass an den genannten beiden Stellen beide Schichten in einander übergingen. Nach den Resultaten, die an Längsschnitten durch die beiden Leibesöffnungen von Salpen und Cynthien gewonnen wurden, und die vollkommen mit den Ergebnissen der Präparation der einzelnen Schichten übereinstimmen, ist das Verhältniss ein anderes. Man kann sich leicht überzeugen, dass an den Leibesöffnungen die Cellulosehülle eine Strecke weit nach innen sich umschlägt und die Innenfläche der Tunica interna bedeckt, um dann entweder in einer geraden Linie oder in einzelnen Zacken scharf abzuschneiden. (Taf. IV. Fig. 4 und 4). Die Epidermiszellenlage setzt sich dabei an den Uebergangsstellen in das die Kloakenhöhle auskleidende Epithel an der Innenseite der inneren Körperschicht fort. Auf diese Weise wird die letztere von der Gellulosehulle gleichsam wie von einer Zwinge umfasst und dieses Verhalten erklärt es, warum äussere und innere Schicht auch dann noch an der Ingestions- und Egestionsöffnung fester zusammenhängen, wenn der anderweitige Zusammenhang schon gelockert ist.

Cotersuchungen über d. Bau n. die Entwickelung des Cellulose-Mantels der Tunicaten. 51

3. Structur der Tunica interna.

Ich schliesse hieran eine kurze Darstellung der inneren Körperschicht oder Tunica interna (Taf. IV. Fig. 1-4. b), wobei ich mich auf die allgemeinsten Verhältnisse betreffs der Vertheilung der Musculatur und der Blutgefässe beschränken, sowie Einiges über die Structur des hier vorhandenen Bindegewebes anführen werde. Die grösste Dicke besitat die Tunica interna bei einigen Cynthien, weshalb man an diesen ihren Bau am leichtesten studiren kann. Besonders geeignet sind Cynthia Canopus (Fig. 3) und C. polycarpa (Fig. 4). Die Musculatur theilt sich hier in drei Schichten, in eine äussere und in eine innere Längsmuskellage, welche durch eine mittlere Ringmuskelschicht getrennt werden. Jede Schicht ist durch stärkere und schwächere Bindegewebszüge in grössere und kleinere Muskelbündel getrennt. Zwischen den einzelnen Bündeln finden sich im Bindegewebe grössere und kleinere, rundliche und ovale Lücken. Es sind dies die wandungslosen Blutbahnen. Dieselben bilden ein System von Canälen, welches sich an den Verlauf der Längs- und Ringmusculatur eng anschliesst, und stehen mit den Kiemengefässen durch hohle Querstränge in Verbindung, die in grosser Anzahl von der Tunica interna zur Kiemenwand quer hinüber-Bei den zusammengesetzten Ascidien und den Phallusien ist gehen. die innere Körperschicht von geringem Durchmesser und zeigt in vielen Fällen nicht mehr jene charakteristische Anordnung der Musculatur. Die Muskelbundel sind spärlicher und kreuzen sich oft in den verschiedensten Richtungen. Bei den Salpen endlich verlaufen nur breite Ringmuskelbänder (Fig. 1 d) in grossen Abständen von einander in der inneren Schicht, die hier sehr zart ist und ebenfalls ein reiches Blutgefässnetz führt.

Bei vielen festsitzenden Tunicaten bildet die Epidermiszellenlage Ausstülpungen in die verdickte Mantelbasis und veranlasst dadurch die Bildung von Stolonen, vermöge welcher die meisten an ihrer Unterlage wie mit Wurzeln anhaften.

Bei Phallusia mamillata und einigen andern wird durch besondere Wachsthumsverhältnisse der Tunica interna eine eigenthümliche Einrichtung im äussern Cellulosemantel hervorgerufen. Derselbe ist nämlich von einer grossen Anzahl von Blutgefässen durchsetzt, die als wenige Hauptstämme an einer Stelle in ihn eindringen und sich vielfach dichotomisch verästeln (Taf. IV. Fig. 5). Meist verlaufen zwei Gefässe neben einander. Schacht bezweifelt diese Angabe Kölliken's, indem er stets nur ein Gefäss isolirt gesehen haben will; doch kann ich dieselbe

1, *

durchaus bestätigen. Dagegen bin ich zu anderen Resultaten in Betreff des Uebergangs des einen in das andere Gefäss gekommen. Kölliker behauptet nämlich, dass an der äusseren Mantelfläche beide Gefässe schlingenförmig in einander übergehen und dass der schlingenförmige Uebergang eine kolbenförmige Erweiterung darstelle. Von diesem Uebergang habe ich mich nicht überzeugen können. Die kolbenförmige Erweiterung wird jedesmal nur von einem Gefäss gebildet, der Uebergang des zuführenden Canals in den abführenden erfolgt schon etwas früher, derart dass die Zwischenwand des Doppelgefässes plötzlich verschwindet und so aus dem Doppelten ein einfaches Gefäss entsteht, welches an seinem Ende kolbig anschwillt. Was nun den Bau der Gefässe anbelangt, so ist jede Doppelröhre oder, wo nur ein Gefäss für sich verläuft, dieses allein nach aussen von einem zarten Epithel bedeckt, das deutlicher nur bei Carminfärbung hervortritt (Taf. V. Fig. 43. a; Taf. VI. Fig. 30. a). Dasselbe ist identisch mit der Epidermiszellenlage und stellt in seiner Gesammtheit nichts anderes dar als eine tief in den Mantel hineinragende und vielfach dichotomisch sich verästelnde Epithelausstülpung. Nach innen ist das Epithel von einer zarten Schicht homogenen Bindegewebes bedeckt, welches gleichzeitig auch die etwas stärkere Scheidewand der in der Epithelhülle verlaufenden beiden Röhren bildet (Fig. 13. p), dasselbe führt kleine spindelförmige Zellen. Ausserdem bemerkt man noch an jedem Gefäss in dem Bindegewebsstroma spiralig verlaufende Fasern, die in den Hauptstämmen dicht zusammenliegen, in den feineren Aesten spärlicher werden und an den Enden ganz aufhören. SCHACHT vergleicht sie den Spiralfasern in den Tracheen der Insecten, ohne über ihre Natur sich näher zu äussern. BRONN spricht von spiralfasrigen Arterien. Es sind dies Muskelfasern, die vom inneren Mantel her mit dem Bindegewebe zusammen den Epithelausstülpungen nachgefolgt sind.

Diese Circulationseinrichtung ist indessen nicht allein auf einige Phallusien beschränkt. Auch bei Cynthia microcosmus, welche auf dem Triestiner Fischmarkt zum Verkauf ausgeboten wird, habe ich dieselbe angetroffen, allerdings viel spärlicher als bei Phallusia mamillata. Die grösseren Stämme sind ebenfalls doppelt (Fig. 30. pr); die Enden den Verästelungen in noch grösserer Ausdehnung einfach und am Ende kolbig angeschwollen. Diese Cynthia bietet ein vorzügliches Object, um an den grösseren Stämmen den Bau der Gefässe zu studiren : die beiden sich begleitenden Röhren, die ihnen gemeinsame äussere Epithellage, die bindegewebige Trennungslamelle derselben und die zarte, die Innenseite einer jeden auskleidende Bindegewebsschicht (Taf. VI. Fig. 30). Die spiraligen Muskelfasern fehlen hier. Der Verlauf eines

Untersuchungen über d. Bau u. die Entwickelung des Cellulose-Mantels der Tunicaten. 53

jeden Gefässes ist durch eine beträchtliche Ansammlung von Pigmentzellen charakterisirt, welche in dem Cellulosemantel liegen und oft eine dichte Hülle um dasselbe bilden. Ob an vielen Punkten Doppelgefässe in den Mantel eindringen oder ausschliesslich an einer Stelle, wie bei Phallusia mamillata am Sattel, habe ich nicht feststellen können; ein grösseres Doppelgefäss wurde an der Egestionsöffnung angetroffen.

Es tritt uns hier die Frage entgegen, wie wir uns die Entstehung dieser Gefässeinrichtung vorzustellen haben. Auf Grund der oben mitgetheilten Thatsachen scheint folgender Hergang angenommen werden ru müssen. Von der Epidermiszellenlage aus bilden sich Ausstülpungen in die Cellulosemasse hinein, gleichwie solche auch zur Stolonenbildung Veranlassung geben. Das Bindegewebe folgt Schritt für Schritt; auch ein Blutgefässhohlraum schickt einen schlingenförmigen Ausläufer in die Ausstulpung hinein (Taf. IV. Fig. 6). In der Bindegewebsschicht, welche die beiden Arme des Bogens trennt, erblicken wir die Lamelle, welche späterhin die beiden sich weiter entwickelnden Gefässe scheidet (Fig. 6. p). An der Spitze der ersten Ausstülpung entstehen zwei neue getrennt vorrückende Wachsthumspunkte, in welche sich das begleitende Bindegewebe und der Bluthohlraum zugleich mit fortsetzt. ^{Die} trennende Lamelle hingegen bleibt in ihrem Wachsthum etwas ^{zurück}, und da hierdurch eine Blutstauung in den vorgeschobenen Ge-^{fässs}prossen entstehen muss, so bewirken diese mechanischen Ver-^{hältn}isse eine kolbenförmige Ausdehnung an den dem Druck am meisten ausgesetzten Enden (Fig. 7). Nun rückt auch die Trennungslamelle sich spaltend in die beiden Arme weiter vor (Fig. 8. p. p 1. p 2.). Die Ebene, in welcher die dichotomische Theilung der Endsprossen erfolgt, und die Ebene, in welcher die Trennungslamelle liegt, ist keine will-^{kurliche}, sondern beide halten ein und dieselbe Richtung ein. In ^{dieser} Weise entsteht im Mantel ein reiches hin- und rückleitendes ^{Blut}gefässnetz, welches seinem Bau und seiner Entstehung nach nichts anderes ist als ein sehr complicirtes System von wiederholt dichotomisch setheilten Gefässschlingen.

In morphologischer Beziehung sind demnach die Mantelgefässe als den Stolonen homologe Gebilde zu erachten. Als weitere Erläuterung ^{und} als ein neuer Beleg für die vorgetragene Auffassung möge eine ^{embryologische} Beobachtung KROHN's dienen, die ich in ihrer Hauptsache ^{hier} wiedergebe :

»Aus der Leibesmasse, und zwar mitten von der Bauchfläche wachsen drei Fortsätze immer tiefer in den Mantel bis dicht an seine Oberfläche. Diese theilen sich gablig in sechs Aeste, deren Enden kolbenförmig angeschwollen sind. Die Zerästelung schreitet dicht-

Oskar Hertwig,

tomisch immer weiter fort und stets findet man die spätern Endzweige auf die oben angezeigte Art erweitert. Endlich verdoppeln sich die ursprünglich noch ganz einfachen Hauptstämme und Acste, während ihre gegen die Peripherie des Mantels gerichteten kolbenförmig erweiterten Endzweige noch einfache Röhren sind. « Wie diese Verdoppelung vor sich geht, lässt KROHN unerörtert. Die Circulation ist nun folgende : »In jenen grösseren, ganz schon wie beim erwachsenen Thiere einander begleitenden Gefässen strömt das Blut in zwei entgegengesetzten Richtungen, in dem einen Gefässe gegen die Endzweige hin, in dem andern zum Herzen. Kurz vor der Theilung der letzten Aeste in die Endzweige sieht man diese beiden Ströme bogenförmig in einander übergehen. Dagegen ist in den jedesmaligen Endzweigen noch keine continuirliche Blutströmung zu beobachten. Es dringen zwar auch in sie Blutkörner, diese stagniren aber öfter und häufen sich zuweilen übermässig an. Nur zeitweise sieht man sie in Fluss kommen, und in den einen oder den andern der gedachten Ströme wieder zurückkehren. Alles dies dauert so lange, bis die Verdoppelung sich auch auf die Endzweige erstreckt.« (KROHN, Ueber Entwicklung der Ascidion. Müllen's Archiv 1852, S. 320. 321.)

Jetzt noch einige Worte über das Bindegewebe der inneren Körperschicht. Bei Salpa, bei Phallusia mamillata, P. intestinalis etc., bei Cynthia Canopus, C. polycarpa, C. papillata etc. besteht dasselbe aus einer homogenen Grundsubstanz mit eingelagerten Zellen, die bald rund sind ohne Ausläufer, bald mehr oder weniger zahlreiche Ausläufer in die Umgebung ausschicken. Dieses Bindegewebe liefert keine Cellulosereaction, wodurch es sich wesentlich von dem des äussern Mantels unterscheidet. Zwar giebt LEUCKAART an, dass bei Salpa demoeratica auch die Tunica interna gleich der externa mit Jod und Schwefelsäure sich blau färbe; doch widersprechen dem andre Beobachter; auch mir ist es trotz vielfacher Versuche, die in der verschiedensten Art und Weise angestellt wurden, nie geglückt, diese Reaction hervorzurufen.

Hieraus darf man indessen nicht den verfrühten Schluss ziehen, dass nur das Bindegewebe des äussern Mantels eine cellulose-artige Grundsubstanz besitze. Dass auch das Bindegewebe innerer Organe dieselbe darbieten kann, ist mir an Cynthia mytiligera nachzuweisen geglückt. Da auch die histologischen Eigenschaften dieses Bindegewebes sich von denen der genannten Schicht unterscheiden, so möge hier eine Schilderung desselben folgen.

Die innere Tunica von Cynthia mytiligera ist beträchtlich dick, indem auf die Muskelschicht noch eine starke Lage Bindegewebe folgt. Untersuchungen über d. Bau u. die Entwickelung des Cellulose-Mantels der Tunicaton. 55

Desselbe besteht aus einer homogenen Grundsubstanz, in welcher mahlreiche elastische, sich locker durchschlingende, stark spiralig gekrümmte Fasern liegen (Taf. VI. Fig. 23). Zwischen ihnen sicht man arte, körnige, runde Zellen. Einige derselben sind von wenigen Faiem dicht umschlungen.

Ausserdem finden sich in dem Fasergewirr hie und da einzelne spärliche Faserbündel, welche man am besten mit einem um eine Scheibe aufgerollten Zwirnsfaden vergleichen kann. Sie liegen bald fach, bald stehen sie senkrecht auf der Kante, und sind im Innern entweder solid oder enthalten Protoplasma mit ein oder zwei Zellenkernen (Fig. 23. cd). Alle diese Gebilde finden sich auch im Bindegewebe des Darmes vor, aber in einem anderen Verhältnisse. Hier überwiegt die bomogene Zwischenmasse, die Fasern finden sich nur spärlich, durchflechten sich auch nicht, sondern sind für sich lockenartig aufgerollt. Auch die Faserbündel mit der Zelle im Innern fehlen nicht (Fig. 26). Forschen wir nun nach dem Ursprung der zerstreuten Fasern, so scheinen sie durch Auflockerung der Faserknäuel zu entstehen, welche wiederum ein Product der in ihnen enthaltenen Zelle sein werden. Behandelt man einen dünnen Schnitt durch den Muskelschlauch mit lod und Schwefelsäure, so färben sich alle Fasern tief blau, so dass die einzelnen Muskelbündel in ein blaues Netzwerk eingeschlossen sind. Behandelt man in gleicher Weise einen Schnitt durch Darm und Costa. so bläuen sich ebenfalls die spärlichen Fasern, während die Zwischenmasse gelb bleibt.

lieraus erhollt, dass auch Bindesubstanz innerer Organe bei einzelnen Arten eine Gellulosereaction lieforn kann.

4. Entwickelung des Cellulose - Mantels.

Wir kommen jetst zum zweiten Theile dieser Arbeit, der über den Cellulose-Mantel selbst ausführlicher handeln soll. Hierbei werden wir zuerst seine Entstehung, alsdann seinen feineren histologischen Bau und sein Wachsthum beschreiben.

Was zunächst die Entwickelung des Mantels betrifft, so sind darüber in letzter Zeit zwoi verschiedene Ansichten von Kuppen und Ko-VALEWSEN aufgestellt worden. Beide sind nach meinen Erfahrungen nicht richtig.

Nach Kuppersn soll in den noch unbefruchteten Eiern des Eierstocks an der Oberfläche des Dotters durch freie Zellenbildung eine Schicht von kleinen, mit gelbem Pigment gefärhten Zellen entstehen. Er be-

Oskar Hertwig,

zeichnet dieselben als Testazellen. Um den Rest des Dotters bilden dieselben eine einschichtige Epithelkapsel. Zwischen dieser und dem Dotter entsteht allmählich ein ganz pellucider Zwischenraum, der nach dem Eintritt des Eies in den Eileiter und nach der Befruchtung an Ausdehnung noch zunimmt. In seiner Mitte schwebt frei die Dotterkugel und lässt sich daraus schliessen, dass der Zwischenraum keine Flüssigkeit enthält, sondern eine bereits gallertige Masse; dieselbe soll von den gelben Zellen ausgeschieden sein und soll schon die Gallertsubstanz der Testa vorstellen.

KOWALEWSKY weicht von KUPPPER darin ab, dass nach seinen neueren Untersuchungen, die an in Chromsäure erhärteten Eierstöcken angestellt wurden, die Testazellen nicht aus dem Dotter durch freie Zellenbildung entstehen, sondern von Follikelzellen abstammen. Welche von diesen beiden Ansichten die richtige ist, muss ich dahin gestellt sein lassen, da mir das für diese Untersuchungen günstigste Object, Ascidia intestinalis nicht zur Hand war, und ich deshalb über diesen Punkt keine Untersuchungen angestellt habe. Mich interessirte vorzüglich die Frage, ob wirklich die Entstehung des Mantels mit diesen gelben Zellen in Zusammenhang stände.

KUPFFER giebt darüber Folgendes an. In der schon weit entwickelten Larve lockern sich durch die Streckbewegungen, die dem Ausschlüpfen vorausgehen, die bisher noch ziemlich an einander schliessenden Testazellen, und es wird die Gallertschichte dadurch deutlicher wahrnehmbar, indem die von einander getrennten Zellen einer nicht flüssigen pelluciden Masse anhaftend erscheinen. Durch die Bewegungen der Larve vertheilen sich Gallerte und Zellen gleichmässiger um sie. Sobald der Embryo nach Zerreissung der Eihülle frei wird, quillt die Gallerte etwas auf; die Zellen sitzen an derselben ganz oberflächlich, als klebten sie derselben blos an. Während an den Zellen innerhalb der Eihaut keine Spur von Bewegungen wahrzunehmen war, zeigen sich jetzt solche; die Zellen strecken Fortsätze aus, werden sternförmig, ziehen sich kuglig zusammen, kurz es sind exquisit amöboide Elemente. Die gelbliche Farbe blasst ab, schwindet aber nicht ganz.

Nach Kowalewsky sollen die gelben Zellen zur Zeit der ersten Furchungsstadien ganz auf die Peripherie der Gallertsubstanz kommen und an ihr so zu sagen ankleben. Später sollen sie farblose Fortsätze in die ganz durchsichtige Substanz senden, immer tiefer eindringen und sich dabei entfärben. Indem die Fortsätze unter einander sich verbinden, entsteht ein förmliches Netzwerk im Gallertmantel.

Die so beschriebenen Vorgänge habe ich nicht beobachten können.

Meine eigenen Untersuchungen wurden an den Eiern von Phallusia memillata und virginea (?) angestellt. Bei den Eiern dieser Species liegen (übereinstimmend mit den Beobachtungen Kowalzwszy's) die sogenannten Testazellen nicht in einer continuirlichen Schicht um den Dotter, sondern vereinzelt und stellenweise auch in Haufen beisammen. Sie sind kuglig und führen gelbe Pigmentkörnchen, besonders zahlreich bei der zweiten Art. Den Zwischenraum zwischen Dotter und Eihaut nimmt eine flüssiggallertige Substanz ein, in der die Testazellen liegen. Mit Jod färbt sich dieselbe braun, welche Färbung bei Schwefelsäuresusatz noch zunimmt. Dagegen tritt auf keine Weise Blaufärbung ein. Schon dieser Umstand macht es etwas bedenklich, in jener Gallerte die spätere Cellulosesubstanz des Mantels erblicken zu wollen.

Während des Furchungsprocesses gehen die Testazellen weiter keine Veränderungen ein. Nur werden sie, je nach der Ausdehnung des sich theilenden Dotters, bald epithelartig an die Wand der Eihaut angedrückt; bald versammeln sich eine grössere Anzahl passiv bewegter Zellen an den freien Stellen zwischen Eihaut und Furchungskugeln. An einigen von ihnen bemerkt man deutlich, wie sie kurze Fortsätze ausstrecken, so dass auch jetzt schon ein geringer Grad von amöboider Bewegung ihnen zukömmt.

Das erste Auftreten des Mantels beobachtete ich erst zu der Zeit, wo der Schwanz schon eine bedeutende Länge erreicht hatte. Bei stärkerer Vergrösserung konnte ich nämlich bemerken, wie eine feine Contour in einiger Entfernung rings um das äussere Epithel hinzog. Ausserhalb dieser Contour lagen die Testazellen in dem freien Raume der Eihöhle, ohne dass an ihnen irgend eine Bezichung zu dem heranwachsenden Embryo sich feststellen liesse. Sobald die Larve anfängt stärkere Bewegungen zu machen, kann man die gelben Zellen frei herumflottiren sehen.

Ein sehr beweisendes Bild erhielt ich, als ich auf einen Embryo, der schon einen hyalinen Saum zeigte, die Jodschwefelsäurereaction anwandte. Die Larve schrumpfte natürlich stark zusammen; aber rings um die innere, dunkelbraune Masse des embryonalen Körpers (Fig. 10. E) zeigte sich ein schön blauer Saum (Fig. 9. A). Ausserhalb desselben, in grösserer oder geringerer Entfernung, lagen die sogenannten Testazellen (Fig. 9. t) entweder haufenweise oder in Reihen angeordnet, viele ganz vereinzelt, durch die Eihtulle (Fig. 9. y) rings umschlossen. Bei einer eben ausgeschlüpften Larve, an der der Schwanz noch erhalten ist, fällt es auf, dass die gelben Testazellen meist nur äusserst spärlich vertreten sind und dass die noch vorhandenen dem feinen hyalinen Saum, der das ganze Thier umgiebt, stets äusserlich aufgeOskar Hertwig,

lagert sind, indem sie gleichsam an ihm anzukleben scheinen. Beimehreren Larven in diesem Stadium konnte ich nur zwei oder drei anhaftende gelbe Zellen finden, während ihre Anzahl im unentwickelten Ei fünfzig gewiss überstieg. Fast alle waren beim Austritt des Embryo zugleich mit der Abstreifung der Eihtlle verschwunden. Erzeugt man bei Larven mit einer grösseren Anzahl gelber Zellen einen Strudel unter dem Deckglas durch erneuten Wasserzusatz, so gelingt es nicht selten, einige der adhaerenten Zellen hinwegzuschwemmen.

Ausserdem bemerkt man schon in diesem Stadium in der Collulosohülle einzelne kleine Zellen mit Ausläufern (Fig. 10. a). Dieselben sind ganz farblos, ohne das charakteristische gelbe Pigment, und nur ungefähr halb so gross, als die sogenannten Testazellen (Fig. 10. *t*). Aus diesen Beobachtungen geht hervor, dass bei dem Ausschlüpfen der Larve die gelben Zellen mit der Eihaut abgestossen werden und verloren gehen.

Wenn der Schwanz fettig degenerirt, wird ein neues Bildungsmaterial von daher dem Embryo zugeführt. Dieser Ernährungszuwachs äussert sich auch darin, dass die hyaline Mantelsubstanz an Dicke zunimmt und dass vom Epithel aus eine grosse Anzahl Zellen in die Cellulosemasse einwandern. Taf. IV. Fig. 10 giebt dieses Stadium wieder. Man sicht die leere Celluloschülle des Schwanzes (Fig. 10. Sch.) mit äusserlich anhaftenden gelben Zellen (I), ferner die äussere Epithe lschicht (B), un diese herum die hyaline Gelluloseschicht (A) mit mehreren hellen länglich gestreckten Zellen (a), die einen Korn und mehrere Ausläufer zeigen. Einige von diesen spindelförmigen oder sternförmigen Zellen liegen dem Epithel ganz dicht an. Nach aussen von dieser Schicht bemerkt man stellenweise noch eine zweite, äusserste Lamelle (Fig. 10. R), in und an der einige gelbe Zellen liegen (1). Setzt man Jod und Schwefelsäure zu, so wird die leere Schwanzhülle blau, desgleichen die dem Embryo zunächst gelegene hyaline Schicht (A). Dieser liegt aber noch ausserdem stellenweise eine braungewordene Masse auf (R). Das sind die noch anhaftenden Theile der Eihulle, in welcher sich noch einzelne sogenannte Testazellen befinden (t).

Endlich konnte ich bei einer Larve mit noch wohl erhaltenem Schwanze bei starker Vergrösserung eine Zelle gerade in dem Augenblicke beobachten, wo sie sich zum Theil in der Epithelschicht, zum Theil in der Gellulosemasse befand (Fig. 14. x). Der in letzterer befindliche Theil war kopfartig angeschwollen und durch einen schmalen Hals von dem übrigen, im Epithel liegenden Theile getrennt. In letzterem lag noch der Kern.

Ich hoffte unter dem Mikroskop die Einwanderung der Zelle bis

58

Caterauchungen über d. Bau u. die Entwickelung des Cellulose-Mantels der Tunicaten. 59

um Ende verfolgen zu können, aber leider starb der Embryo nach einer Stunde, die er unter dem Deckgläschen zugebracht hatte, ohne dass das Bild im Wesentlichen ein anderes geworden wäre.

Aus diesen Beobachtungen ergeben sich folgende Schlüsse. Die gelben Zellen, welche bei Ascidia canina epithelartig, bei Phallusia mamillata und andern gruppenweise und zerstreut um den Dotter herum liegen, welche KUPPFER und ebenso KOWALEWSKY als Testazellen bezeichnen, und durch deren Einwanderung in eine gallertige Masse der Mantel entstehen sollte, haben an der Bildung desselben nicht den geringsten Antheil. Die Testazellen sind vielmehr den Eihtüllen zuzurechnen. Demnach werden sie auch bei Durchreissung der Eihtüllen gleich diesen vom freiwerdenden Embryo mit abgestreift. Gelbe Zellen, die auch dem freien Thiere später noch ankleben, sind anhaftende Ueberreste, die nach kurzer Zeit sich ebenfalls ablösen.

Der Mantel entsteht dagegen, nachdem in dem embryonalen Körper bereits die eigentliche Epidermis (das einschichtige äussere Pflaster-Epithel) und die wichtigsten inneren Theile differenzirt und angelegt sind, zunächst als eine zarte Cuticula, welche aussen auf der Zellenschicht der Epidermis aufliegt und von dieser ausgeschieden wird. Allmählich treten in der dicker werdenden Cuticula vereinzelte Zellen auf, welche aus der Epidermis in dieselbe eingewandert sind. Sobald sich nun durch Verfettung des Schwanzes neues Ernährungsmaterial im Embryo anhäuft, so erfolgt auch von der Epidermis aus ein kräftigerer Bildungsprocess. Die Dicke der Celluloseschicht nimmt zu und es wandern vom Epithel aus zahlreichere Zellen in sie ein, welche von nun an ihrem Verhalten zur Intercellularsubstanz gemäss als Bindegewebszellen zu bezeichnen sind. Auf diese Weise kömmt der, bei den verschiedenen Ascidien-Arten so mannichfach gestaltete Mantel zu Stande. Derselbe ist als eine, vom Epithel ausgehende Bindegewehsbildung zu betrachten, oder mit anderen Worten: der Ascidien-Nantel ist eine äussere Cuticular-Bildung der Epidermis, welche durch Einwanderung von isolirten Zellen der letzteren in wirkliche Bindesubstanz übergeht.

5. Histologischer Bau des Cellulose-Mantels.

Der Mantel der Ascidien zeigt in seinem histologischen Verhalten bei den verschiedenen Arten erhebliche Verschiedenheiten und bietet weine reiche Auslese verschiedener Bindegewebsformen dar.

Bei Salpen, Pyrosomen, compositen Ascidien und einigen Phallu-

Oskar Hertwig,

sien besteht der Mantel aus einer homogenen Grundmasse, in wet spärliche kleine Bindegewebszellen eingestreut sind. Ein nach Est säurezusatz deutlich hervortretender Nucleus mit Nucleolus ist umget von einer dünnen, zuweilen sehr bedeutenden Schicht feinkörnin Protoplasma, das zarte Ausläufer in die umgebende Masse aussend

Nach Zusatz von Jod und Schwefelsäure treten dieselben deutlich hervor und sind weiter zu verfolgen, in vielen Fällen bis zu ihrer Ve einigung mit benachbarten Zellen. Löwig und Köllingen beschreib diese Gebilde, sowie ähnliche bei Cynthia als Kerne, Kernfasern et was schon FRANZ EILHARD SCHULZE als irrthümlich zurückgewiesen bi Die Form dieser Zellen kann bei verschiedenen Arten sehr wechseln sein, bald rundlich, bald keulenförmig gestreckt, spindelförmig et mit mehr oder minder deutlicher Verästelung (Taf. V. Fig. 19. 20. 26) Einzelne dieser Zellen können Pigment führen; die Farbe ist je nach den Arten verschieden: roth, gelb, grün, braun u. s. w. Auch amöboide Bewegungen dieser Bindegewebszellen, die schon Köllung aufgefallen waren, konnte ich bei einigen derselben in geringem Grad beobachten.

Ein sehr auffälliges Mantelgewebe zeigen einige Phallusien, so besonders Phallusia mamillata. Dasselbe hat schon früher die Aufmerksamkeit von Kölliker und Schacht auf sich gezogen, und auch den Mittelpunkt von FRANZ EILHARD SCHULZE'S Untersuchungen gebildet. In einer' spärlichen homogenen Grundmasse liegen grosse rundliche Hohlzellen mit wandständigem Kern, die embryonalen Chordazellen ganz ähnlich sehen und oft nur durch eine dünne Scheidewand von einander getrennt Zwischen ihnen liegen in der homogenen Grundmasse eingesind. streut Bindegewebszellen mit Ausläufern (Taf. V. Fig. 12. 13). Die grossen Hohlzellen, die, wenn auch selten, zuweilen in kleineren Format auftreten und Uebergänge zu den Bindegewebszellen zeigen, fasst SCHULZE als die eigentlichen embryonalen Mantelzellen auf. Neben einander liegende Hohlzellen mit abgeplatteten sich berührenden Wänden beschreibt er als Resultat kürzlich stattgehabter Theilung (Fig. 45). Sie sollen in einer frühen Embryonalperiode das Mantelgewebe aller Tunicaten nach seiner Annahme gebildet haben. Aus ihnen sollen allmählich die mit Ausläufern versehenen Bindegewebszellen hervorgegangen sein. Die Bildung der verschiedenen Gewebsformen des Tunicatenmantels aus solchen embryonalen Zellen hat man sich nach seinen Worten so vorzustellen. »Durch allmähliche Umwandlung der äusseren Protoplasmarinde der wohl ursprünglich wandungslos zu denkenden embryonalen Zellen in homogene hyaline Cellulosemasse und ein Verschmelzen dieser so gebildeten Rinden mit einander entsteht ein der

60

innehungen über d. Bau u. die Entwickelung des Cellulose-Mantels der Tunicaten. 61

inda dorsalis ähnliches Gebilde. Denkt man sich diese Metamorphose Protoplasma bei einzelnen Zellen in der Weise vorrückend, dass d von der ursprünglichen Zelle nichts mehr als der Kern mit einem m- oder spindelförmigen Protoplasmareste übrig bleibt, während dere auf der früheren Stufe stehen bleiben, so haben wir je nach m Mengenverhältniss, in dem beide Arten von Zellen zu einander then, die Structur des Mantels von Aplidium, Phallusia etc. Bleiben r keine Zellen auf der ursprünglichen Stufe stehen, sondern findet Everwandlung des äussern Protoplasma in Cellulosesubstanz bei allen keich in der angedeuteten Weise statt, so erhalten wir den Mautel von rosoma, Ascidia intestinalis, Salpa, Botryllus etc. Bleibt endlich de gleichsam aus den Zellmembranen und ihren Verdickungsschichten sentstandene Cellulosegrundsubstanz nicht hyalin, sondern spaltet sie wich in Fasern, so haben wir das Gewebe des Mantels von Cynthia, Boltenia etc. «

Dieser von EILHARD SCHULZE angenommenen Histiogenese kann ich nicht beipflichten. Wie schon bei der embryonalen Entwickelung des Mantels angeführt wurde, finden sich bei Phallusia mamillata anfänglich nur kleine Spindel- oder Sternzellen. KUPFFER und KOWALEWSKY haben ebenfalls an Tunicatenembryonen nie jene Hohlzellen beobachtet und ferner giebt KROHN speciell von unsrer Phallusia mamillata an, dass die grossen, rundlichen, dünnwandigen Zellenräume erst später erscheinen : Anfangs sei ihre Zahl noch gering, später nehme sie zu und zugleich würden auch die Zellenräume grösser.

Jede der grossen rundlichen Hohlzellen besitzt einen Nucleus mit Nucleolus, der zuerst von Eilhard Schulze nachgewiesen wurde und beidünnen Schnitten an einem grossen Theil der Zellen auf das deutlichste zur Anschauung zu bringen ist (Fig. 14, I-IV). Derselbe ist iumer wandständig, entweder in das Lumen der Zelle oder in die umgebende Cellulosesubstanz hineinragend. Den Inhalt der Hohlzellen bildet zum allergrössten Theil kein Protoplasma, sondern eine wasserhelle, thre Flüssigkeit (Fig. 12. 13). Daher färben sich die Kugeln mit Carmin nur schwach und stellenweise. Ausser dieser Flüssigkeit findet sich noch eine sehr geringe Menge Protoplasma vor. Schacht beschreibt dasselbe als eine Zellmembran, die sich genau wie der Primordialschlauch der Pflanzenzelle verhalten soll, zierlich gefaltet sei, kleine Körnchen enthalte und durch Jod und Schwefelsäure sich braun färbe, sowie durch Schwefelsäure allein zusammenschrumpfe. EILHARD Scuulze fasst diese Membran als äussere Protoplasmaschicht auf, in welcher auch der Kern-liegen und durch deren Umwandlung die Celluksemasse entstehen und die Kugelzellen sich verkleinern sollen. Die

٤

Oskar Hertwig,

Existenz einer äusseren continuirlichen Protoplasmaschicht kann ich n bestätigen. Nur um den Kern beobachtete ich jeder Zeit eine mehr minder bedeutende die Cellulosewand eine Strecke weit bekleiden mit Carmin sich färbende, körnige Masse, von welcher zarte Fäder der Aussenwand der Kugel ausstrahlen (Fig. 14, II).

Die Bilder, welche EILHARD SCHULZE als Theilung von Kugelze beschreibt, habe ich ebenfalls bei Phallusien erhalten (Fig. 45); ich k aber in ihnen nicht Theilungsvorgänge erblicken, sondern nur Forn die nothwendigerweise entstehen müssen, wenn zwei grosse mit Flüs keit gefüllte Blasen, an Volum noch wachsend, an einer Seite mit ih Wänden zusammenstossen und sich so gegenseitig abplatten. Zu Gun dieser Auffassung spricht der Umstand, dass sich nicht nur zwei, sond Reihen von drei, vier, fünf und mehreren solchen nebeneinander lagerten Zellen vorfinden, von denen die mittleren zwei durch den d pelten Druck abgeplattete Wände besitzen. Dieselben sind zuwe faltig zusammengeschoben. Andere Bilder, die für Theilungsvorgä in den grossen Kugelzellen sprechen könnten, habe ich nicht erha und folgere daraus, dass dieselben überhaupt theilungsunfähig sind.

Die Unmöglichkeit der Entstehung von Bindegewebszellen aus kugligen Gebilden lässt sich endlich noch durch eine kleine Berechn nachweisen. Zählt man nämlich auf der inneren Schicht des Cellule mantels, wo sich fast nur Bindegewebszellen vorfinden, deren Am auf einem bestimmten Raum und zählt ferner in der Mitte des Man die Anzahl der Kugelzellen auf einem gleichen Raume, so fällt letz 3-5 mal niedriger aus, während sie nahezu gleich sein müsste. I selbe Missverhältniss ergiebt sich, wenn wir die Grundmasse, die e zwischen zwei oder drei Kugelzellen gelagerten sternförmigen Zelle kömmt, mit der Grösse der Kugelzellen vergleichen.

Es bleibt jetzt die Frage nach der Entstehung der Kugelzeller beantworten übrig. Betrachtet man dünne Schnitte von Phallusia millata, so fällt.es auf, dass am Cellulosemantel eine innere Sch existirt, in der sich nur ganz vereinzelt eine Kugelzelle findet (Fig. Dieselbe ist gewöhnlich kleiner, als an anderen Stellen des Man Dagegen zeigen sich in der hyalinen Grundsubstanz zahlreiche, s verästelte Bindegewebszellen. Untersucht man dieselben mit stärk Vergrösserung, so besteht ein Theil derselben durchweg aus Pr plasma, ein anderer dagegen zeigt nur am Rande, wo die Ausläufer a treten und besonders in der Umgebung des Kernes Protoplasma, zwischen eine davon freie, mit Flüssigkeit erfüllte Stelle (Fig. 42 Fig. 46). Diese Bindegewebszellen sind theils gestreckt, theils neh sie eine rundliche Gestalt an, die fast vollkommen kuglig werden ka

Untersachungen über d. Bau u. die Entwickelung des Cellulose-Mantels der Tunicaten. 63

Ansserdem sieht man in dieser Gegend nicht selten Kugelzellen, die 5 - 40 mal kleiner sind, als die grössten derartigen Blasen. Bei der zweiten von mir untersuchten Phallusia-Species sind im ganzen Mantelgewebe die grossen Kugelzellen seltener; dagegen finden sich ausser zahlreichen sternförmigen Zellen überall durch den Mantel zerstreut zahlreiche kleine bläschenförmige Körper mit Ausläufern, wie Sternzellen, die wandständiges Protoplasma mit einem Kern und ein Flüssigkeitströpfehen im Innern besitzen, mithin vollkommen sehr kleinen Kugelzellen gleichen (Fig. 46, II. III.). Endlich lässt sich in einzelnen Fällen, besonders bei Jod- und Schwefelsäurebehandlung beobachten, dass auch von der Umgebung der Kerne grosser Kugelzellen in die Cellulosemasse Protoplasmaausläufer ausgehen (Fig. 44, III).

Ich glaube in diesen verschiedenen Bildern die Entstehung der Kugelzellen vollständig vor Augen zu haben. Wir haben uns dieselbe so vorzustellen. In den einfachen Bindegewebszellen, welche im Mantel aller Tunicaten vorkommen und aus eingewanderten Epidermiszellen entstanden sind, sammelt sich bei einigen Arten Flüssigkeit im Innern an. Die sternförmige Zelle wird dadurch nach und nach viel grösser und nimmt eine rundliche oder selbst kugelige Gestalt an. Der Kern wird an die Wand gedrängt. Das Protoplasma bekleidet in einer dünnen Schicht, um den Kern dichter angehäuft, die Wand des so entstandenen Blaschens. Wird die Flüssigkeitsmenge bedeutender, so reicht schliesslich das Protoplasma nicht mehr aus, um als geschlossene Membran den füssigen Inhalt zu umhüllen. Es bleibt allein um den Nucleus angehäuft und schickt von da einzelne Fäden an der Kugelinnenfläche hin, wie solche auch in die umgebende Cellulosemasse von ihm ausstrahlen. für diesen Process der flüssigen Zellinfiltration bieten sich uns Analoga in dem blasigen Bindegewebe der Arthropoden und Mollusken, den Chordazellen und auch in den Fettzellen der Wirbelthiere. Alle diese Zellen sind Gebilde, die wir uns durch Ansammlung einer füssigen Substanz in dem Protoplasma einfacher Bindegewebszellen mistanden denken müssen. Die Lebensthätigkeit der Bindegewebszelle durchläuft hier zwei Phasen: In der ersten Phase bildet sie äussere, in der zweiten innere Plasma-Producte (HAECKEL, generelle Morphologie, Vol. I. pag. 281). In der ersten Phase entwickelt sich die Cellulose, die nach aussen abgesetzt wird. In der zweiten Phase dagegen sammelt sich flüssig bleibende Substanz im Innern der Zelle an und bildet so eine Blase. Die Wand dieser Blase wird zuerst von einer sehr dünnen Protoplasmaschicht, später nach deren Durchbruch theilweise von der festen Zwischenmasse der Cellulose-Grundsubstanz gebildet. Auch fand ich einzelne Blasenzellen vor, deren Wand mit einem körnigen Beleg

Oskar Hertwig,

von Kalksalzen bedeckt war. Durch Carmin wurde derselbe nicht gefärbt, und auf Säurezusatz lösten sich die Körnchen unter Entwickelung von Luftblasen auf.

Einen Befund will ich nicht unerwähnt lassen, welchen ich bei Phallusia mamillata selten, häufig bei der zweiten Phallusienart angetroffen habe; nämlich Kugelzellen mit zwei, drei und mehr wandständigen, und von gesonderten Protoplasmamassen eingehüllten Kernen (Fig. 14, V. VI.). Die Anzahl dieser von einem Protoplasmahof umgebenen Kerne war in einzelnen Fällen so bedeutend und ihre Lage derart, dass sie den Schein einer besonderen, die Innenwand des Raumes auskleidenden unvollständigen Epithelschicht hervorriefen. Ich lasse es dahingestellt, ob wir uns diese Gebilde durch Theilung der ursprünglichen Bindegewebszelle entstanden denken sollen oder durch Verschmelzung mehrerer benachbarter Blasenzellen oder durch Einwanderung beweglicher Zellen in eine schon entwickelte Blasenzelle. Es reiht sich dieses Bindegewebe naturgemäss an das als blasiges Bindegewebe von LEVDIG bezeichnete an.

Ueber die Vertheilung der Bindegewebszellen mit Ausläufern und der kugligen Blasen im Mantel von Phallusia mamillata ist noch Einiges hinzuzusügen. In Betreff dieses Punktes verweise ich zugleich auf SCHACHTS' Arbeit, der dieses Verhältniss genau und zutreffend geschildert hat. An der Innenseite der Celluloseschicht, nach aussen vom Mantelepithel, folgt eine ziemlich ansehnliche homogene Schicht mit gestreckten Bindegewebszellen, deren Lüngsaxe der Mantelfläche parallel gerichtet Vereinzelt kommen auch kleine Kugelzellen in dieser ist (Fig. 12). Schicht vor. Auf diese folgt die blasige Gewebsschicht. Anfangs sind die einzelnen Blasen noch etwas kleiner und durch beträchtlichere Zwischensubstanz getrennt: mehr von der Innenfläche entfernt erreichen sie ihre grösste Ausdehnung und dann bildet die Zwischensubstanz meist nur noch zarte Zwischenwände. Rings um die Gefässe zeigt sich ein dem entsprechendes Verhältniss (Fig. 43): zunächst dem Epithel eine mehr oder minder beträchtliche homogene Schicht mit reichlichen Bindegewebszellen; dann folgt die Blasenschicht, welche zuerst mit kleinen und durch reichlichere Zwischenmasse getrennten Kugelzellen beginnt. Ganz auf der Aussenseite des Mantels liegen zerstreute Haufen von grünlich-braunen Pigmentzellen, welche die Tüpfelung auf der Oberfläche von Phallusia mamillata hervorrufen.

Eine sehr interessante und bis dahin bei den Tunicaten noch nicht bekannte Bindegewebsart traf ich bei Phallusia cristata an. Bei dieser Art befindet sich nämlich zwischen dem Muskelschlauch und dem dünnen Mantel ein ziemlich beträchtlicher Zwischenraum. Der Mantel entUntersuchungen über d. Ban n. die Entwickelung des Cellulose-Mantels der Tunicaten. 65

hält ebenfalls die beschriebenen Kugelzellen, aber keine Gefässe. Ich schnitt ein Loch in den Mantel, um die austretende Flüssigkeit zwischen ihm und dem Muskelschlauch zu untersuchen. Unter dem Mikroskop fand ich den Objectträger mit frei herumschwimmenden Kugelzellen bedeckt, bestehend aus einer zarten Membran mit Flüssigkeit im Innern, einem wandständigen Kern mit Protoplasma und feinen, von diesem ausgehenden Fäden (Fig. 14, I. II.). Die Zellen sind sehr zart und wasserreich, denn an den in Alkohol conservirten Thieren fand ich sie nachtriglich ganz geschrumpft und unkenntlich. Die Kugelzellen sind also bier durch eine flüssige Intercellularsubstanz von einander getrennt. So etlärte sich zugleich auf einfache Weise der anfangs befremdende Befund, dass Mantel und Muskelschlauch durch einen Hohlraum getrennt sein sollten. Eine Lücke war nicht vorhanden. Flüssiges Bindegewebe füllte sie aus. Hierdurch aufmerksam geworden, liess ich bei anderen Phallusien (parallelogramma, intestinalis), wo der Muskelschlauch frei im äusseren Mantel zu hängen scheint, Flüssigkeit austräufeln und entdeckte in dieser ebenfalls eine Menge von kleinen sternförmigen nackten Zellen, welche in Grösse und Kern den Bindegewebszellen des Gallertmantels entsprachen und amöboide Bewegungen ausführten. Mit der stärksten Vergrösserung betrachtet, änderten sie ihre Form jeden Augenblick, indem sic bald hier, bald da einen Fortsatz ausstreckten und wieder einzogen. Fig. 25 a - q giebt die Formveränderungen wieder, welche eine und dieselbe Zelle im Verlauf von weniger als zehn Minuten durchmachte. In diesem Falle haben wir ein Bindegewebe mit ganz lüssiger Intercellularsubstanz, von kleinen, amöbenartigen Zellen belebt, vor uns.

Eine andere Form der Bindesubstanz treffen wir bei den Gynthien und ihren Vorwandten an. War bei den bisher geschilderten Ascidien die Zwischensubstanz homogen, so ist sie hier, in mehr oder minder hohem Grade bei den einzelnen Arton, fasrig zerfallen. In geringerem Grade fasrig ist der Mantel von Cynthia canopus, C. polycarpa, C. echinata, in höherem bei C. mytiligera, C. microcosmus und besonders C. papillata. Während bei den meisten die Faserzuge in einer Richtung verlaufen und sich durchflechten (Taf. VI. Fig. 26, 29, 30), bemerkt man bei Cynthia papillata zwei Systeme von Faserzugen, die sich unter rechtem Winkel kreuzen, und in der ganzen Dicke der Mantelsubstanz mit einander abwechseln (Fig. 27, e, f). In EILHARD SCHULZE's Arbeit ist dieses Verhältnisses eingehender geschildert.

Die eigentlichen Formelemente sind bei allen Arten kleine Spindel-^{zellen} mit einem stäbchenförmigen Kern, deren Grösse nach den Species steringe Differenzen darbietet. Sie werden in dem einen Mantel reich-

Bd. VII. 4.

licher, in dem anderen spärlicher angetroffen (Fig. VI. Fig. 26, 28, 29, 30). Diese langgestreckten Bindegewebszellen können weiterhin Veränderungen eingehen. Wie bei den Tunicaten mit homogener Zwischensubstanz das Gewebe durch die flüssige Infiltration eigenthümlich verändert wurde, so tritt bei den Cynthien eine Pigmentinfiltration an deren Stelle. Dabei nehmen die früheren Zellen an Umfang um das Zwei-, Drei- und Mehrfache zu, werden körnig und enthalten einen gelben oder braunen Farbstoff, der den Kern meist nicht mehr erkennen lässt. Bei Cynthia polycarpa, C. canopus, C. echinata treten Pigmentzellen nur vereinzelt auf (Fig. 29. d), dagegen massenhaft bei C. papillata und C. microcosmus (Fig. 27. d, 30. d). Bei ersterer liegen sie schon der Epithelschicht dicht an und nehmen von da nach aussen mehr und mehr ab, indem sie allmählich zu einem körnigen Detritus zerfallen. Bei Cynthia microcosmus hullen sie die Mantelgefässe dicht ein und treten oft so reichlich auf, dass Pigmentzelle an Pigmentzelle liegt. Wie schon bemerkt, haben wir dieselben auch da, wo sie zuweilen ganz dicht dem Epithel eines Gefasses anliegen, als Abkömmlinge der gestreckten Bindegewebszellen zu betrachten, deren Ursprung wir wiederum von ausgewanderten Epidermiszellen abzuleiten haben.

Nach aussen geht das Mantelbindegewebe fast stets in einen gelben Saum über, der die Cellulosereaction nicht liefert.

Noch einiger Bildungen will ich gedenken, die durch besonderes Wachsthum des Bindegewebes an einzelnen Stellen hervorgerufen werden und gar zierliche, regelmässige Formen bilden können. Als solche interessiren uns die Stachelbildungen bei Cynthia papillata und jene Dornen, denen Cynthia echinata ihren Namen verdankt. Hier finden sich an der ganzen Manteloberfläche zapfenartige Verlängerungen. Ein jeder dieser Zapfen ist vollkommen solide, an seiner Spitze etwas verdickt, und trägt auf der Verdickung einen mittleren, längeren Stachel, und um diesen im Kreise herum 8-12 horizontal gestellte und zuweilen gablig getheilte kleinere Stacheln, die wieder mit Stachelchen besetzt sind (Fig. 32). Zwischen den ziemlich gedrängt stehenden Zapfen sind die Zwischenräume noch mit kleinen Stacheln bedeckt. Dadurch erhält das Aeussere dieser Species ein ungemein charakteristisches Aussehen, das mit einem Stechapfel oder noch besser mit manchen Cactusformen, besonders Melocactus, sich vergleichen lässt. Stacheln und Manteloberfläche sind mit der gelben, die Cellulosereaction nicht liefernden, dunnen hornartigen Schicht bedeckt.

Eine andere eigenthümliche Bildung producirt das Bindegewebe des Mantels von Cynthia mytiligera. Es entspringen von seiner Oberfläche viele, 1-2 Zoll lange rankenförmige Ausläufer (Fig. 33). Dieselben Unternchangen fiber d. Ban u. die Entwickelung des Cellulose-Mantels der Tunicaten. 67

sind vollkommen solide und bestehen ganz aus Bindegewebe, in dem grosse gelbe Pigmentzellen liegen. Die Pigmentzellen zeigen einen doppelten Contour, was auf eine besondere Membran hinweist, und besitzen einen deutlichen Kern (Fig. 31). Im übrigen Mantel kommen sie selten vor. Mit diesen Ranken verkleben und verkitten sich Sandkörner, Nollusken-Schaalen, Trümmer von Echinodermen-Skeleten und andere Bestandtheile des Meeresbodens, so dass die Cynthia oft ganz dicht mit einer Masse von fremden Körpern bedeckt ist.

6. Wachsthum des Ascidien - Mantels.

Wie wir von der Epidermiszellenlage die erste Entstehung des Mantels haben ausgehen sehen, so müssen wir auch in dieser die hauptsächlichste Quelle seines weiteren Wachsthums erblicken. Wir werden daher zunüchst auf diese für den Mantel so wichtige Bildung noch einige Blicke werfen.

Die Epidermiszellenlage ist einschichtig. Die Zellen sind plattenförmig oder fast kubisch, von rundlichem oder polygonalem Umriss. Bei den Salpen haftet das Epithel. wenn man äussere und innere Mantellage trennt, zum Theil dieser, zum Theil jener an, und ist wegen seiner sehr zarten Beschaffenheit oft nur schwer wahrzunehmen. Die Zellen sind gross und sehr flach (Taf. V. Fig. 18). Bei Phallusien sind die Epithelzellen von einander durch eine mässige Menge Zwischensubstanz getrennt. Ihre Grösse ist geringer als bei Salpa costata (Fig. 17). Ganz ebenso verhält sich das Epithel an den Mantelgefässen und Endkolben von Phallusia mamillata, wo es dem Beobachter leicht entgeht (Fig. 22). Bei den Cynthien sind die Epithelzellen meist noch etwas kleiner als bei den vorhergehenden; in den Stolonen und Gefässen sind sie mehr spindelformig gestreckt (Fig. 28. a). Von Cynthia papillata beschreibt EIL-HAND SCHULZE (abweichend von Löwig und Kölliker) ein schönes, grosses ^{•Cylinderepithel}, von dessen Existenz ich mich indessen nicht habe überzeugen können. Auch hier beobachtete ich nur das schon erwähnte, kleinzellige, platte Epithel, welches nach innen der Musculatur dicht aufliegt und nach aussen unmittelbar streckenweise von den Pigment-^{zellen} bedeckt wird, so dass man es auf Querschnitten schwer sieht. Dagegen kann man es in ganzer Ausdehnung leicht darstellen, sobald man die Musculatur vom äusseren Mantel abzieht. Derselben haftet bei dieser Operation die Epithelschicht an und man hat jetzt nur noch von der so erhaltenen Lamelle die Muskelbündel vorsichtig abzutragen, um ^{threr} ansichtig zu werden. An Stellen, wo man vom Cellulosemantel die

Oskar Hertwig,

Zellenlage abgestreift hat, sieht man noch deutlich die Contouren der einzelnen Zellen, indem jede in einer kleinen Aushöhlung der Cellulosesubstanz gleichsam in diese eingelassen liegt. Auf Querschnitten fällt auf, wie die Zellen meist eine dachziegelförmige Anordnung zeigen und einzelne mit einer Spitze in die Cellulosemasse hineinragen. Häufig liegen langgestreckte Bindegewebszellen der Epithelschicht dicht an und machen durchaus den Eindruck, als ob sie kürzlich vom Epithel aus in die Grundsubstanz ausgetreten seien (Fig. 26. a, b). Günstige Objecte für solche Beobachtungen bietet die Mantelbasis von Cynthia polycarpa, in welche stolonenartige Fortsätze hineinragen (Fig. 28. b, b). Hier sieht man deutlich, wie um die Einstülpungen herum die Bindegewebszellen grösser, protoplasmareicher und häufiger sind, zuweilen dem Epithel dicht anlagern oder halb aus demselben hervorragen.

Alle diese Bildungen deuten darauf hin, dass das Dickenwachsthum des Mantels hauptsächlich von der Epidermis aus erfolgt, sowohl von der die Innenseite des Mantels, als von der die Stolonen und Blutgefässe auskleidenden Epithelialzellenschicht. Ebenso wie die erste Entstchung erfolgt auch das weitere Wachsthum durch Ausscheidung einer celluloseartigen Grundsubstanz und Einwandern einzelner Epithelzellen in dieselbe, welche dann weitere Metamorphosen eingehen können. Von diesem Gesichtspunkt aus betrachtet, erklären sich uns verschiedene Bildungen, deren schon früher Erwähnung gethan wurde. lch erinnere an die Verhältnisse von Phallusia mamillata, wo wir eine homogene Schicht, in der fast nur kleine Bindegewebszellen liegen, an der Innenseite des Mantels und um die Gefässe, also überall zunächst dem Epithel vorfinden, und erst weiter nach aussen kleinere Kugelzellen auftreten sehen (Fig. 12, 13). Diese Anordnung erklärt sich von selbst aus dem eben beschriebenen Wachsthum und aus der Voraussetzung, dass die Kugelzellen aus Bindegewebszellen hervorgehen. Ferner haben wir hervorgehoben, wie bei Cynthia papillata und C. microcosmus an der Innenseite des Mantels die Pigmentzellen massenhaft angehäuft sind, nach aussen abnehmen und öfters körnig zerfallen (Taf. VI. Fig. 27, 30). Endlich ist noch zu betonen, wie bei den Cynthien, besonders papillata, eine schichtenweise Ablagerung der Mantelsubstanz sich lwmerkbar macht (Fig. 27).

Hierbei bleibt nicht ausgeschlossen, dass auch durch Theilung der schon im Cellulosemantel liegenden Bindegewebszellen und weitere Ausscheidung von Cellulose aus ihnen das Mantelwachsthum gefördert werden könne. Jedenfalls aber wird dieses das untergeordnete sein, da in den meisten Fällen die secretorische Zellthätigkeit eine andere Richtung eingeschlagen zu haben scheint: in der Bildung von Pigment Colessuchungen über d. Bau n. die Entwickelung des Cellulose-Mantels der Tunicaten. 69

1.25

und der Ansammlung von Flüssigkeit in dem Protoplasmakörper der Zellen selbst.

Die gewonnenen Resultate der vorliegenden Untersuchung lassen sich etwa in folgenden Sätzen zusammenfassen :

1. Der Cellulosemantel der Tunicaten (Tunica externa) und die bindegewebige innere Körperschicht (Tunica interna) hängen bei allen Tunicaten mehr oder mit der innig zusammen, sind jedoch stets durch eine einzige zusammenhängende epitheliale Zellenlage, die eigentliche Epidermis, getrennt. Bei Phallusia intestinalis, P. cristata etc. wird nur der Schein einer weiteren Trennung hervorgerufen, indem den angeblichen Zwischenraum flüssiges oder halbflüssiges Bindegewebe ausfüllt.

2. Die Gelluloseschicht setzt sich an der Ingestions- und Egestionsöffnung eine Strecke weit über die innere Körperschicht fort, ohne irgendwo in dieselbe überzugehen.

3. Auch im Inneren des Tunicatenkörpers kann ein Bindegewebe vorkommen, das die Cellulosereaction des Mantels liefert, so im Muskelschlauch und am Darm von Cynthia mytiligera.

4. Die Musculatur bildet bei den Ascidien (nicht bei den Salpen und ihren Verwandten) ein System von sich kreuzenden glatten Muskelfaserbündeln, in deren Interstitien die wandungslosen Blutgefässe verlaufen. Bei gut entwickelter Musculatur lassen sich zwei Längsfaserlagen und eine sie trennende Ringfaserlage unterscheiden.

5. Die Blutgefässe im Mantel von Phallusia mamillata führen kein eigenes inneres Epithelium und gehören ihrer Entstehung und ihrem Bau nach noch zur inneren Leibesschicht; sie sind überall durch Mantelepithel (Epidermis) und eine dünne Lage aus der inneren Tunica ausgestülpten Bindegewebes von der Cellulosemasse getrennt. Eine ganz gleiche Gefässeinrichtung findet sich im Mantel von Cynthia mierocosmus. Beide sind den Stolonenbildungen, wie sie namentlich an der Basis des Mantels vorkommen, homolog.

6. Der Cellulose-Mantel ist keine persistente Eihaut. Er entsteht nicht aus den Testazellen, sondern zunächst als Cuticularbildung von den Epidermiszellen aus. Dieses Stadium findet sich dauernd erhalten im Mantel von Doliolum und Appendicularia, in dem sich keine Formelemente vorfinden. Später wandern bei den Ascidien Epidermiszellen in den Mantel ein und bilden seine ursprünglichsten und auf einem gewissen Stadium allen Ascidien-Arten in derselben Form zukommenden zelligen Elemente. Die ursprüngliche Cuticularschicht der Epidermis verwandelt sich also später durch Zelleneinwanderung in wirkliche cellulose Bindesubstanz. 7. Auch das Dickenwachsthum des Mantels findet später hauptsächlich von der Epidermis aus statt. wie die Befunde auf Querschnitten und die Vertheilung der Stern- und Blasenzellen bei Phallusia sowie der Spindel- und prigmentzellen bei Cynthia lehren.

8. Das Bindegewebe des Cellulose-Mantels bildet sich später nach zwei verschiedenen Typen weiter aus : erstens solches mit homogener Zwischensubstanz, und zweitens solches mit fasrig zerfallener Intercellularsubstanz. Die Formelemente des ersteren sind besonders Sternzellen. Durch Flüssigkeits-Ansammlung im Inneren gehen aus ihnen die Kugelzellen oder Blasenzellen im Mantel der Phallusia mamillata hervor. Die Formelemente der fasrigen Bindegewebsart sind kleine Spindelzellen. Durch Pigmentaufnahme entstehen aus ihnen die zweifach oder mehrfach grösseren Pigmentzellen.

9. Die höchste Organisation erreicht in Folge der eigenthümlichen secundären Vascularisation der Mantel von Phallusia mamillata und Cynthia microcosmus.

10. Das sogenannte polygonale Mantelepithel, zwischen der cellulosen Tunica externa (Cuticula) und der bindegewebigen Tunica interna (Cutis), ist die eigentliche Epidermis der Tunicaten.

Untersuchungen über d. Bau u. die Entwickelung des Cellulose-Mantels der Tunicaten. 71

Erklärung der Abbildungen.

Tafel IV.

- Längsschnitt durch die Ingestionsöffnung von Salpa costata. Ϊg. 4. A Cellulosemantel (Cuticula). **B** Tunica interna (Cutis). C Mantelepithel (Epidermis). a Bindegewebszellen. b Blutraum. c Inneres Bpithel (Fortsetzung der Epidermis).
 - d Ringmuskelbündel.
- Schnitt durch den Stock einer compositen Ascidie (Botryllus sp.) 2. ig. Bezeichnungen wie in Fig. 4.
 - Querschnitt durch die Leibeswand von Cynthia canopus. 3.
 - Bezeichnungen a-d wie in Fig. 4.
 - e Aeussere Längsmuskelschicht.
 - f Innere Längsmuskelschicht.
 - g Bierstock.

ig.

- A Kuglige Anhäufungen von Zellen im Mantel.
- Längsschnitt durch die Ingestionsöffnung von Cynthia polycarpa. 4. ig. Bezeichnungen wie in Fig. 3.
- Schematische Darstellung eines Mantelgefässes von Phallusia maig. 5. millata.
 - h Hinleitendes Gefäss.
 - r Rückleitendes Gefäss.
 - k Endkolben.
- Schematische Darstellung beginnender Mantelgefässbildung von Fig. 6 - 8. Phallusia mamillata. (Fig. 6 früheres, Fig. 7-8 weiter entwickelte Stadien.
 - rhk wie in Fig. 5.
 - m Mantelepithel.
 - n Bindegewebe, das die Innenwand des Gefässes bildet.
 - p Bindegewebslamelle, welche auf- und absteigenden Arm trennt; in Fig. 7 schraffirt dargestellt; chenso in Fig. 8, wo sie sich in die Arme p^1 und p^2 theilt.
- Junger Embryo von Phallusia mamillata, mit Jod und Schwefelsäure Fig. 9. behandelt.
 - A Cellulosehülle.
 - E Leib des Embryo.
 - y Bibülle.
 - t Testazellen.
- Ausgeschlüpfter Embryo von Phallusia mamiliata, dessen Schwanz sich Fig. 10. schon rückgebildet hat.
 - A B E wie oben.
 - R Reste anklebender Eibüllen.

Oskar Hertwig,

Sch Cellulosehülle des rückgebildeten Schwanzes. a t wie oben.

- Fig. 11. Ein kleines Stück vom Cellulosomantel eines Embryo von Phallusia mammillata.
 - x Eine Zelle, welche aus der Epidermis in die Cuticula einwandert.

Tafel V.

- Fig. 12. Schnitt durch den Cellulosemantel von Phallusin mamillata.
 - a Epithelzellen (Bpidermis).
 - **b** Ausgewanderte Epithelzellen.
 - c Gestreckte Bindegewebszelle.
 - d Sternförmige Bindegewebszelle.
 - e Beginnende Infiltration der Bindegewebszellen.
 - f Kuglige Abrundung der infiltrirten Zellen.

g Grosse Kugelzelle.

- Fig. 13. Schnitt durch den Mantel von Phallusia mamillata. Zwei Gefasse sind durchschnitten.
 - Bezeichnungen a g wie in Fig. 42.
 - h Hinleitendes Gefäss.
 - r Rückleitendes Gefäss.
 - p Trennungslamelle.
- Fig. 14. Blasenzellen (Kugelzellen).
 - I u. II Freie Blasenzellen aus dem Mantel von Phallusia cristata.
 - III Zelle aus dem Mantel von Phallusia mamillata, mit einer Sternzelle durch Ausläufer verbunden.
 - IV Zelle von ebendaher, mit in die Cellulosemasse hineinragendem Zellkern.
 - V u. VI Kugelzelle mit zwei oder mehr Kernen mit Protoplasma.
- Fig. 15.
- I und II Zwei und mehr bei ihrem Wachsthum sich gegenseitig abplattende Kugelzellen von der innern Mantelschicht von Phallusia.
- Fig. 46. Bindegewebszellen, in denen sich Flüssigkeit ansammelt, von Phallusia mamillata.
- Fig. 17. Mantelepithel (Epidermis) von Phallusia mamillata.
- Fig. 18. Mantelepithel (Epidermis) von Salpa costata.
- Fig. 19. Reich verästelte Bindegewebszellen aus dem Sattel im Mantel von Phallusia mamillata.
- Fig. 20. Verschiedene Formen von Bindegewebszellen I, II, III, IV aus dem Mantel von Salpa costata.
- Fig. 21. Zellen aus dem Mantel von Phallusia intestialis.
- Fig. 22. Epithel eines Gefässendkolbens von Phallusia mamillata.

Tafel VI.

- Fig. 38. Querschnitt durch das Bindegewebe des Muskelschlauchs von Cynthia mytiligera.
 - a Bindegewebszelle.

Untersuchungen über d. Ban u. die Entwickelung des Cellulose-Mantels der Tunicaten. 73

- **b** Bindegewebszelle mit wenigen Fasern umgeben.
- c Bindegewebszelle in einem Faserknäuel.
- d Faserknäuel ohne Zelle.
- e Bindegewebsfasern.
- Fig. 24. Bindegewebe aus der Darmwand von Cynthia mytiligera.
 - Bezeichnungen wie bei Fig. 23.
- Fig. 25. Verschiedene Formen einer amöboiden Zelle aus dem flüssigen Bindegewebe von Phallusia parallelogramma.
- Fig. 26. Querschnitt durch den Mantel von Cynthia canopus.
 - a Mantelepithel.
 - b Ausgewanderte Epithelzelle.
 - c Spindelförmige Bindegewebszelle.
- Fig. 27. Querschnitt durch Muskelschlauch und Mantel von Cynthia papillata.
 - A Muskelschlauch.
 - B Mantel.
 - a-c wie in Fig. 26.
 - d Pigmentzelle.
 - e | abwechseinde Faserlagen
- Fig. 38. Stolonen aus der Mantelbasis von Cynthia polycarpa.
 - a b c wie in Fig. 26.
- Fig. 39. Mantel von Cynthia polycarpa.
 - c d wie in Fig. 26.
- Fig. 30. Querschnitt durch den Mantel von Cynthia microcosmus.
 - a c d wie oben.
 - g Bindegewebszellen der inneren Tunica.
 - h Hinleitendes Gefäss.
 - r Rückleitendes Gefäss.
 - p Trennende Lamelle.
- Fig. 31. Pigmentzelle aus den Ranken von Cynthia mytiligera.
- Fig. 32. Mantelfortsätze von Cynthia echinata.
- Fig. 33. Ranke von der Manteloberfläche von Cynthia mytiligera.

Beiträge zur Kenntniss des Baues der Ascidien.

Eine akademische Preisschrift

von

Richard Hertwig,

stud. med. aus Mühlhausen.

Hierzu Taf. VII. VIII. IX.

I. Allgemeine Bemerkungen über die Morphologie der Ascidien.

Die überraschenden Entdeckungen, welche vor vier Jahren Ko-WALBWSKY über die embryonale Entwickelung der Ascidien veröffentlichte, haben die Aufmerksamkeit der Zoologen dieser merkwürdigen Thiergruppe in einem früher unbekannten Maasse zugewendet. Die höchst interessante und wichtige Uebereinstimmung, welche nach jenen, inzwischen von KUPFFER bestätigten Entdeckungen in der individuellen Entwickelung zwischen diesen niedrig organisirten Würmern und dem niedrigsten Wirbelthiere, dem Amphioxus, besteht, hat einen gänzlich unerwarteten Lichtstrahl in die dunkle Stammesgeschichte der Thiere hinein fallen lassen. Denn eingedenk des innigen ursächlichen Zusammenhanges, welcher zwischen der Ontogenie und der Phylogenie der Organismen, zwischen der individuellen Entwickelungsgeschichte des Thieres und der paläontologischen Geschichte seiner Vorfahren besteht, muss man aus jener ontogenetischen Uebereinstimmung zwischen Amphioxus und den Ascidien unmittelbar den höchst wichtigen phylogenetischen Schluss ziehen, dass die gemeinsame Stammform aller Wirbelthiere unter allen uns bekannten Thierformen mit den Ascidien die nächste Verwandtschaft besessen und mit ihnen aus einer gemeinsamen älteren Stammform sich entwickelt hat.

Unsere anatomischen Kenntnisse vom Baue der Ascidien befinden sich dagegen noch heute in einem Zustande von Unvollkommenheit, der

Beiträge zur Kenntniss des Baues der Ascidien.

zu jenen embryologischen Aufschlüssen einen starken Gegensatz bildet. Seit SAVIGNY's klassischer Arbeit, den unübertroffenen » Recherches anatomiques sur les Ascidies « etc. sind im Ganzen nur wenige und unbedeutende Fortschritte in der Anatomie der Ascidien gemacht worden. Noch heute sind wir vollkommen im Unklaren, welche Bedeutung einzelnen, für die Tunicatengruppe charakteristischen Organen, dem Endostyl, der Bauchrinne, der Flimmergrube etc. zuzuschreiben ist. Was da Leber ist, ob eine Niere vorhanden und wie gebaut, sind noch ungelöste Fragen. Bei mehreren Ascidien sind sogar die Geschlechtsorgane noch unbekannt.

Um dieses Dunkel etwas aufzuhellen und die morphologische Kenntniss der Tunicaten zu fördern, hatte die philosophische Facultät der Universität Jena zur Bewerbung um den Preis der Herzoglich Sachsen-Altenburgischen Josephinischen Stiftung für das Jahr 1870 die Aufgabe gestellt: »Durch neue, selbstständige Untersuchungen soll die Morphologie der Tunicaten und insbesondere die Entwickelungsgeschichte ihres Mantels aufgeklärt werden.«

Zur Beantwortung eines Theiles dieser Aufgabe wurden die nachstehend mitgetheilten Untersuchungen unternommen, welche den dafür ausgesetzten Preis erhielten. Das anatomische Material für dieselben lieferte eine Reihe von Ascidien aus dem zoologischen Museum in Jena, welche in Spiritus vortrefflich conservirt waren. Dieselben wurden mir mit der grössten Liberalität von meinem verehrten Lehrer, Herrn Professor HABCKEL zur Verfügung gestellt, dem ich hierbei zugleich für seinen freundschaftlichen Rath meinen herzlichsten Dank abstatte. Später konnte ich die an den Weingeist-Präparaten angestellten Untersuchungen noch wesentlich durch Beobachtungen an lebenden Ascidien ergänzen, welche ich auf der Insel Lesina, an der Küste des südlichen Dalmatiens, in grosser Menge erhielt.

Obgleich meine Untersuchungen zu meinem Bedauern sehr unvollständig geblieben sind und keinen Anspruch darauf machen können, volles Licht in die vielen dunkeln Theile der Ascidien – Anatomie zu bringen, so hoffe ich doch, dass wenigstens einige Theile derselben dadurch wesentlich werden aufgeklärt und damit zugleich Anregung zu weiteren Untersuchungen gegeben werden. Ich werde zunächst die anatomischen Verhältnisse des Perithoracalraums, sodann den Endostyl und die Bauchrinne, und endlich den Bau des Darmes und der Leber erörtern.

Richard Hertwig,

II. Perithoracalraum.

Das Verhältniss der Leibeshöhle der Ascidien zur Kieme und zu dem die Kieme umgebenden Perithoracalraum wird in den verschiedenen anatomischen Beschreibungen der Ascidien verschieden ange-Die meisten Darstellungen lassen die Leibeshöhle und den goben. Perithoracalraum ungetrennt in einander übergehen. Die einfache Ueberlegung, dass die Leibeshöhle der Blutflüssigkeit zur Circulation dient und dass der Perithoracalraum durch die Egestionsöffnung und indirect durch die Kiemenspalten und die Ingestionsöffnung nach aussen mündet, lässt das Unzureichende dieser Auffassung klar hervortreten. Bei Untersuchung dieser Theile kam ich auf Verhältnisse, die mit den von MILNE EDWARDS bei verschiedenen Compositen-Ascidien beschriebenen entweder übereinstimmen oder auf dieselben zurückgeführt werden können, und nur in wenigen thatsächlichen Punkten und in der Deutung der Verhältnisse weiche ich von dem genannten Forscher ab.

Nach MILNE EDWARDS (Observations sur les Ascidies composées pag. 234) liegt bei den zusammengesetzten Ascidien der Kiemensack frei innerhalb einer ihn allseitig umgebenden und nur an bestimmten Stellen mit ihm in Verbindung tretenden Membran. **Dieselbe bildet** einen Sack, dessen Anheftungsstellen an die Kieme durch mehrere bei den Clavellinen gelb gefärbte Linien markirt sind; nämlich: 1) durch zwei horizontale Linien, die je einen Ring um die Ingestionsöffnung und den Oesophaguseingang bilden (Taf. VII. Fig. 1. c d); 2) durch zwei verticale Linien, welche beiderseits des Thoracalsinus (des ventralon Blutsinus und des über demselben liegenden Endostyls) vom Anfang zum Ende der Kieme herabziehen (Fig. 1. b b), demnach die beiden Kreise (c u. d) verbinden. Später beschreibt MILNE EDWARDS Anbeftungen an den Muskelschlauch (m) längs einer gelben Linie, welche von der Ingestions - zur Egestionsöffnung geht und um letztere einen Kreis boschreibt (Taf. VII. Fig. 1. a).

Den zwischen der Kieme und dieser Haut-Lamelle liegenden Raum nennt er Perithoracalraum und den unterhalb der Egestionsöffnung gelegenen dorsalen Abschnitt desselben (wegen seiner Beziehung zu den Mündungen des Darms und der Geschlechtsorgane) die Cloake (Taf. VII. Fig. 4. a). Die Basis der Gloake wird von dem Theil der Perithoracallamelle gebildet, welcher in der Peripherie des Oesophaguseingangs sich an die Kieme befestigt (h). Sie trennt die Leibeshöhle und den Perithoracalraum und trägt die Geschlechtsöffnung (g) und den After (i).

Beiträge zur Kenntniss des Banes der Ascidien.

Perner giebt er von dieser Membran, die er Tunica tertia nennt, an, dass sie am Oesophagus und Anus in die Darmwandung sich fortsetze. Letztere Auffassung halte ich bei den Beziehungen, in denen Kieme und Darmeanal zu einander stehen, für vollkommen verfehlt.

BROWN giebt in seiner Darstellung der Tunicaten (Classen und Ordnungen der Weichthiere) eine sehr unklare Schilderung der MILNE EDwards'schen Beobachtungen. Mangel an Anschauung und somit auch einer richtigen Beurtheilung sind wohl der Grund, dass er sich ihm nicht anschliesst. Ob es zweckmässig ist, den Namen der Tunica tertia enzuführen, ist auch mir freilich sehr zweifelhaft; wie mir überhaupt die Eintheilung in verschiedene Tuniken eine verfehlte zu sein scheint. be alte Auffassung, dass man es mit getrennten, nur an einzelnen bestimmten Stellen in Verbindung tretenden Schalen zu thun habe, ist ebenso unhaltbar, wie das Bestreben, dem die Bezeichnungen ihren Usprung verdanken, ein verfehltes war: nämlich Tunicaten und Mollusken zu homologisiren. Man kann nur von Schichten der Leibeswand sprechen, welche überall in inniger Verbindung stehen, auch da, wo deselbe scheinbar nicht vorhanden ist, wie bei Phallusia intestinalis. Diese Schichten unterscheiden sich nur durch die verschiedenen, in ihnen enthaltenen Gewebselemente. Die sogenannte Testa oder der Cellulose-Mantel ist eine, in Bindegewebe übergehende Cuticularbildung und hängt als solche mit dem unter ihr liegenden Epithel, der 'eigentlichen Epiderinis genetisch engstens zusammen, wie in der vorangehenden Arbeit meines Bruders über den Mantel der Ascidien gezeist worden ist. Ausser dieser epidermoidalen Schicht, nämlich der eigentlichen Epidermis und dem von ihr gebildeten Mantel kann man noch von einer darunter liegenden Bindegewebsmuskelschicht sprechen. Welche Bedeutung der »Tunica tertia« von MILNE EDWARDS eigentlich zukommt, wird aus der folgenden Darstellung klar werden.

An die Compositen-Ascidien schliessen sich in der Bildung des Perithoracalraums (ebenso wie in der Anordnung des Darmcanals, der Länge der Kieme etc.) Phallusia intestinalis und die nächstverwandten Ascidien (der vierte Phallusien-Tribus von SAVIGNY) unmittelbar an. Ich übergehe deshalb eine nähere Schilderung derselben und erwähne nur, dass ich die Tunica tertia nicht als einen frei herabhängenden, sondern in ganzer Ausdehnung der inneren Wand des Muskelschlauchs abhaftenden Sack vorfand.

Bei den übrigen Phallusien und allen Cynthien¹) treten durch

¹⁾ Die von SAVIGNY zuerst vorgeschlagene Trennung der Phallusien und ⁽¹⁾ athien ist völlig gerechtfertigt. Jedenfalls sind diese beiden Artengruppen

secundäre Veränderungen im Bau bestimmte Modificationen ein. Diese Veränderungen finden nach zwei Seiten hin statt.

Im ersten Falle lagert sich das Darmrohr, welches bei Phallusia intestinalis unterhalb des Kiemenkorbs liegt, neben denselben, zwischen ihn und den Muskelschlauch und zwar in die linke Seite des Thieres¹). Gleichzeitig bildet der Darm, anstatt einer einfachen, eine doppelte Schlinge.

Im zweiten Falle wächst die Kieme mit ihrer ventralen Seite bedeutender als mit der dorsalen, und bildet so eine Ausbuchtung, welche tiefer zu liegen kommt als der Oesophaguseingang, demnach auch an den Darmschlingen vorüber sich nach abwärts erstreckt. Diese einseitige Wachsthumszunahme wird bei manchen Phallusien so bedeutend, dass jenes ventrale Kiemendivertikel tiefer hinabreicht, als die untersten Theile des Darmknäuels, und dass der ventrale Sinus die doppelte und dreifache Länge des dorsalen erreicht.

Diese Vorgänge müssen auch einen Einfluss auf den Perithoracalsack haben. Je höher die Darmschlingen zu liegen kommen, in um so engere Beziehungen treten sie zu der Membran des Sacks, um so dichter muss diese an sie sich anschmiegen, und anstatt in ganzer Ausdehnung dem Muskelschlauch aufzuliegen zum Theil jetzt den Darm bedecken, indem dieser sich zwischen die Lamelle und den Muskelschlauch einschiebt. Es lassen sich nun zwei Grade dieser Beziehungen unterscheiden, die durch Uebergangsstufen mit einander verknüpft sind. Im ersten Grade umschliesst die Lamelle alle Darmschlingen gemeinsam, wie es bei allen Phallusien der Fall ist. Im zweiten Grade umgiebt sie jede Darmwindung einzeln, und heftet sie nach Art eines Mesenteriums an die Muscularis an. Dann gewinnt es den Anschein als läge der Darm frei im Perithoracalraum. So bei den meisten Cyn-

durch Verschiedenheit der Kieme, der Ovarien, des Bindegewebes der Testa etc., so gut charakterisirt, dass es als Rückschritt zu bezeichnen ist, wenn man sie wieder confundiren will, wie KUPPFER und KOWALEWSKY thun. Ich bestreite damit nicht die Möglichkeit, dass es Formen giebt, die sich nicht unter beide Rubriken bringen lassen und Charaktere der Phallusien und Cynthien verbinden. Diese würden dann eine selbstständige, zwischen beiden stehende dritte Gattung bilden müssen.

^{4/} Bezüglich der topographischen Orientirung über die Begriffe Links und Rechts, Dorsal und Ventral ist bei den Ascidien erst durch die Embryologie fester Grund gewonnen worden. Durch die Lage des Ganglions wird die Rückenseite, durch die Lage des Endostyls die Bauchseite bestimmt. Die Ingestionsöffnung entspricht dem oralen (vorderen), die festsitzende Basis der Ascidie dem aboralen (hinteren) Pole der Längsaxe.

5

hien. Die Leibeshöhle der Phallusien ist mit der merkwürdigen Zwitterdrüse, (den bläschenförmigen Ovarien und Hoden) vollkommen usgefüllt. Bei den Cynthien ist sie durch die enge Umlagerung der Organe durch die Tunica tertia fast verloren gegangen. Hier liegen uch die Geschlechtsorgane, eng von letzterer umschlossen, scheinbar im Perithoracalraum.

(Zur Erläuterung vergleiche man die Schemata Fig. 2-5 und ihre Erklärung in der am Ende folgenden Tafelerklärung.)

Ueber diese hier im Allgemeinen dargestellten Verhältnisse des Perithoracalraums sind nun an den von mir untersuchten Ascidien-Arten noch folgende speciellere Eigenthümlichkeiten zu bemerken. Bei Phallusia mamillata reicht die Kieme bis an die tiefste Stelle der Darmschlingen herab, so dass der Bogen, den hier der ventrale Sinus (Fig. 2 und 3. v. Taf. VII) beschreibt, in einem Theile seines Veraufs der Curve der Schlinge folgt, welche durch den Oesophagus Fig. 3. oe), den Magen (Fig. 3. g) und den ersten (aufsteigenden) Theil ks Dünndarms (Fig. 3. i,) gebildet wird. Längs dem Ventralsinus whlägt sich die Tunica tertia von der Kieme zum Muskelschlauch über; ¹⁰ der Stelle, wo der Darm und der Ventralsinus neben einander agern, spannt sie sich natürlich zwischen Kieme einerseits, und Darm and Muskelschlauch and ererse its aus (Fig. 4. v). Sie reicht vom Bein des Oesophagus (hier auch den dicht neben diesem lagernden Endabschnitt des Rectums (Fig. 2 und 3. r) erreichend) bis zum Anang der Kieme und hört an deren ringförmiger Insertion am Muskelchlauch anf. Ich nenne sie ventrale Muskelkiemenlamelle.

Ihr gerade gegenüber beginnt am Anfang der Kieme die dem doralen Sinus folgende Verbindungslamelle der Kieme und des Muskelrhlauchs (Fig. 2 u. 3. d, Fig. 6. d), welche nicht bis zum Oesophagus erabreicht, sondern oberhalb desselben endet. Dorsale und ventralefustelkiemenlamelle bilden so Scheidewände, welche den Perithoracalaum in eine rechte und linke Hälfte theilen (Fig. 4, 5 u. 6. pd u. ps). Nese Trennung würde eine vollkommene sein, wenn beide am Oesohagus sich erreichten. Da dies aber nicht der Fall ist, kommt dicht ber dem Oesophagus und Anus und unmittelbar unter der Egestionsfung eine Communication zwischen beiden Räumen zu Stande. Nesen die Gommunication zwischen linkem und rechtem Perithoracalum bildenden Raum nennt MILNE EDWARDS Cloake (Fig. 2, 3, 6. *Cl*). bezundäre Verwachsungen der Kieme mit dem Muskelschlauch sind userdem in einer Anzahl ohne Regelmässigkeit gestellter, an Grösse ehr variirender Bälkchen gegeben. Dieselben sind hohl und stellen Nebenbahnen vor, durch welche das Blut aus der Muskellamelle nach dem Kiemenschlauch gelangen kann.

Dieselben Verhältnisse finden sich bei Phallusia cristata, P. octodentata, und einer dritten Species, die ich nicht bestimmen konnte. Bei ihnen ragt (als einziger Unterschied von Phallusia mamillata) das Rectum bedeutend über den Oesophagus hinaus; dem entsprechend setzt sich auch die ventrale Muskelkiemenlamelle dem dorsalen Sinus entlang als dorsale fort und schliesst erst mit dem Ende des Rectums ab. Aber auch so trifft sie nicht mit dem von oben herabkommenden Theil der dorsalen Membran zusammen, so dass auch hier eine Communication beider Perithoracalräume bestehen bleibt. Aehnliche Verhältnisse finden sich auch hei den übrigen Phallusien wieder, ausgenommen die Formen, welche dem vierten Tribus von SAVIGNV angehören (P. intestinalis, P. canina etc.) und welche in dieser Hinsicht den Compositen sich anschliessen.

Von den Cynthien steht den Phallusien in Anordnung der Eingeweide C. microcosmus am nächsten. Bei ihr ist Magen, Dünndarm und Oesophagus nebst dem Ovarium der einen Seite in eine gemeinschaftliche Hülle der Tunica tertia eingeschlossen und bildet eine Masse, die durch unbedeutende Prominenz und durch gelbe Farbe (wegen des Reichthums an Blutgefässen) von dem rothgelb gestreiften Muskelschlauch sich abhebt. Ventrale und dorsale Muskelkiemenlamelle sind wie bei den Phallusien. Nur die abweichende Lage der Darmschlingen bewirkt einige unwichtigere Differenzen.

Bei Cynthia mytiligera liegen nur der Mittel- und Endtheil des Darms nach links verdrängt, während Oesophagus und Magen ihre Lage in der Medianlinie des Thieres bewahren (Taf. VII. Fig. 7. oe u. g). Beide schieben sich zwischen den Muskelschlauch und den Ventralsinus ein, so dass die ventrale Muskelkiemenlamelle auf ihrem Wege erst den Magen und Oesophagus umfasst, bevor sie zur Tunica muscularis gelangt. Beide Organe liegen somit in einer Lamelle, welche sie einerseits an der Kieme (v'), andererseits am Muskelschlauch (v'') festhält (Taf. VII. Fig. 7. v'v''; der andere Theil der Membran ist auf der Figur nicht sichtbar und zeigt das normale Verhalten). Eine dorsale Lamelle ist kaum vorhanden, wodurch die Communication zwischen rechtem und linkem Perithoracalraum weiter wird.

Von dem in der linken Seite des Thiers gelegenen Theil des Darms ist der Endabschnitt, das Rectum (R) durch ein eigenes, die Intestinalschlinge (I) dagegen durch ein gemeinsames Mesenterium an der Muskeltunica festgehalten. Das letztere ist noch in zweierlei Hinsicht bemerkenswerth. Es geht nicht von der Höhe der Schlinge direct zur Muskelwand, sondern steigt erst dem Darm entlang abwärts, bevor es sich auf jene überschlägt (Fig. 8). Ausserdem bildet es innerhalb der Schlinge eine merkwürdige Falte, für die ich keinen Grund ausfindig machen konnte (Fig. 7. m). Ich erwähne sie deshalb, weil sie SAneur fälschlicherweise für ein Ovarjum hielt¹).

Bei C. rustica²) weichen nur die Beziehungen des Darmcanals zur Tunica tertia ab. Der Darm ist hier in seiner ganzen Länge durch eine jede Darmwindung einzeln überziehende Duplicatur. der Tunica tertia festgehalten am Muskelschlauch.

Cynthia canopus und C. polycarpa repräsentiren die grössten Redactionen des ursprünglichen Baues. Die ventrale Lamelle ist hier nur wischen Oesophagus, Magen, Kieme und Muskelschlauch vorhanden; sonst ist sie vollkommen rückgebildet, ebenso wie die dorsale Muskelkiemenlamelle. Auch die übriggebliebenen Theile, sowie das Mesenterium des Darms sind nicht mehr eine homogene Lamelle, sondern in eine Reihe Fasern zerfallen, welche durch ihre dichte Aneinanderlagerung die ursprüngliche Form einer Membran noch erkennen lassen. Beide Formen bilden die Endglieder einer Reihe, in der der ursprüngliche Typus des Ascidienbaues, wie er in den meisten Compositen, in der Phallusia intestinalis und P. canina am besten mir erhalten zu sein scheint, allmählich sich verwischt und zuletzt nur durch Vergleichung der Zwischenstufen herauszuerkennen ist.

Nun noch einige Worte gegen MILNE EDWARDS' Auffassung der Tunica lertia. Dass sie keinen, dem Kiemenkorb analog innerhalb des Muskelschlauchs frei schwebenden Sack bildet, der nur an bestimmten Stellen an der Kieme und der Körperwand angeheftet sei, darauf habe ich schon oben hingewiesen. Die grossen Monascidien bieten hier hessere Objecte als die durchsichtigen kleinen Clavellinen. Die Tunica lertia lagert in ganzer Ausdehnung der Musculatur fest auf und die gelben Linien bezeichnen nur die Stellen, an denen die Tunica mit dem Kiemenkorb in Verbindung tritt.

Ferner geht sie nicht, wie MILNE EDWARDS will, in die Wandung

,**M.** VII. 1

¹⁾ Die Ovarien sind bei keiner der von mir untersuchten Cynthien unpaar. Entweder sind ein oder zwei Paar oder eine grössere Anzahl vorhanden. Bei C. ^{mytiligera} wies ich sie mit den Hoden vereint in den merkwürdigen Buckeln nach, welche in der Fig. 7 mit O bezeichnet sind.

³⁾ Ich gebe diesen Namen einer auf Lesina von mir gefundenen Art, welche auf die Beschreibung von O. F. Müller (Zoologia Danica) und von FABRICIUS (Fauna Groenlandica), aber ebenso auch auf GRUBE'S Schilderung der C. microcosmus passt. 30 übereinstimmend C. rustica und C. microcosmus im Acusseren waren, so gross war ihr Unterschied in der inneren Organisation.

Richard Hertwig,

des Darmcanals über (wenigstens nur am Anus), während am Oesophagus die innere Kiemenwand in den Darmcanal sich fortsetzt. Ich glaube vielmehr, dass die Epithellage der Tunica tertia sich in das äussere Epithel der Kiemenstächen fortsetzt. Man kann wenigstens an Querschnitten durch die ventrale Muskelkiemenlamelle nachweisen, dass beide Epithelschichten unmittelbar in einander übergehen (Taf. VIII. Fig. (7. S Sp)). Es stellt somit die Tunica tertia eine Membran dar, welche den gesammten Perithoracalraum auskleidet und alle denselben umgebenden Organe überzieht. Zur Veranschaulichung mögen die schematischen Figuren 4, 5, 6 (Taf. VII.) dienen. Braun bedeutet Darmepithel, blau Tunica tertia, roth die Tunica muscularis.

Diese auf die anatomische Untersuchung begründeten Ansichten haben durch Kowalewsky's neueste embryologische Untersuchungen volle Bestätigung erfahren. Kowalewsky schildert hier die Bildung des Perithoracal – und Cloakenraums als Einstülpung zweier Bläschen von der Epidermis aus. Diesen wachsen Fortsätze vom Anfangsabschnitt des Darmrohrs entgegen (des Theiles, der später zur Kieme wird). Die Fortsätze legen sich an die eingestülpten Bläschen an, verwachsen mit ihnen und die Verwachsungsstellen werden zu den ersten Kiemenspalten. Kowalewsky hat so das Entstehen der vier ersten Spaltenpaare beobachtet und den Process dann nicht weiter verfolgt¹).

Nehmen wir aber die Notiz KROHN's, (über Entwickelung von Phallusia mamillata, Müller's Archiv 1852), dass die anfangs paarig angelegten Egestionsöffnungen allmählich verschmelzen, zu Hülfe, so können wir uns unmittelbar das Bild der erwachsenen Asoidie aus dem Stadium, welches Kowalewsen beobachtet hat, ableiten.

Man denke sich, dass die primitiven Cloakenbläschen den gesammten vorderen Darmabschnitt von beiden Seiten umwachsen, so müssen sie in einer dem Ventralsinus entsprechenden Linie zusammentreffen, wo ihre beiden Wandungen zu einer gemeinsamen Scheidelamelle verschmelzen, der ventralen Muskelkiemenlamelle.

In gleicher Weise musste eine vollkommene dorsale Scheidewand zu Stande kommen. Indem jedoch der die beiden Egestionsöffnungen trennende Sattel einsinkt und diese in eine gemeinsame Mündung sich vereinen, schwindet die Trennungsmembran zum Theil und erlaubt die Communication beider Perithoracalraumhälften, wie sie durch die Cloake gebildet wird.

⁴⁾ Ich habe auf Lesina Gelegenheit gehabt, die ersten Stadien der Larven von Phallusia mamillata zu beobachten, und kann bestätigen, dass die Cloakenbläsehen Einstülpungen der Epidermis sind. Spätere Entwickelungsstadien zu beobachten, verhinderte mich meine Abreise.

2

Denken wir uns ferner, dass die eingestülpten Epidermissäcke in gleicher Weise, wie den ersten Theil des Darms (die Kieme), so süch die übrigen Abschnitte desselben umwachsen, so ist es verständlich, dass sich die Spuren ihrer Bedeutung immer mehr verwischen.

lst es nun gerechtfertigt, diese Einstülpung mit dem Namen Tunica tertia zu bezeichnen? Ich glaube, man kommt ohne ihn ganz ebenso gut aus, zumal da alle die Ausdrücke: Tunica testae, muscularis, intima, tertia, wie ohen erwähnt, leicht Grund zu irrigen Anschauungen werden. Will man es jedoch thun, so kann man unter Tunica tertia nur das verstehen, was der Einstülpung der Epidermis angehört, d. h. das Epithel mit der ihm zu Grunde liegenden homogenen Membran. Wenn man daher in dem Darmmesenterium (ich untersuchte es bei C. mytiligera) ausser dem beide Seiten überkleidenden unregelmässigen grosszelligen Epithel mit deutlichen Kernen noch vielfach sich durchkreuzende Muskelbündel, Bindegewebskörperchen (und zwischen diesen noch grosse mit Carmin intensiv sich färbende Kugeln, vielleicht Zellenanhäufungen) findet, so sind dies accessorische Dinge, die dem Körperparenchym angehören und nicht der Tunica tertia zukommen.

Die hier vertretene Auffassung der Kiemenhöhle ist in zwei Hinsichten von Bedeutung. Sie erklärt einestheils, wie wir bei der Betrachtung des Endostyls sehen werden, Verhältnisse der Kiemenhöhle der Salpen, die ohnedem unverständlich erscheinen mussten. Anderntheils giebt sie Anhaltepunkte, die Verwandtschaft von Amphioxus lanceolatus vom anatomischen Gesichtspunkt aus weiter zu prüfen. Beim Amphioxus wie bei den Tunicaten müssen wir vorläufig annehmen, dass die in beiden die Kieme umgebende Höhle ein homologes Gebilde ist und einen Sack darstellt, der allenthalben von einem einfachen, eine Fortsetzung der Epidermis des Thieres bildenden Epithel ^{aus}gekleidet wird.

An die Anatomie der Kiemenhöhle möchte ich noch die Lageverhältnisse des Herzens anschliessen. Sie sind für alle Phallusien, aber nur für wenige Cynthien, durch SAVIGNV bekannt geworden, da bei letzteren das Herz meist versteckt oder fast in der Muskelwand liegt und mit Genauigkeit blos durch Nachweis der mikroskopischen Elemente aufzufinden ist. Auch bei den Cynthien hat es die allen Ascidien gemeinsame Lage. Es beginnt am Magenanfang, folgt dem Verlauf der Muskelkiemenlamelle und mündet unter dem Endostyl in den ventralen Blutsinus ein.

Bei Cynthia canopus geht der zarte Herzschlauch vom Anfang des Mägens zum Muskelschlauch, verläuft hier zwischen den die Wand des Perithoracalraumes bedeckenden Bläschen etwas versteckt zum Endostyl und mündet hier in die Kieme.

Bei Cynthia mytiligera ist es noch schwerer zu finden, ebenso bei C. microcosmus. Bei der ersteren liegt es dicht dem Muskelschlauch auf, fast in demselben, da wo die Muskelkiemenlamelle von der Musculatur zum Darm sich überschlägt. Man findet es, wenn man hier den Magen abschneidet und an der Trennungslinie in den Muskelschlauch etwas einschneidet.

Bei Cynthia microcosmus findet man das Herz, wenn man an der Stelle, wo Magen, Kieme und Muskelschlauch zusammentreffen und durch die Tunica tertia zusammengehalten werden, anschneidet. Ich konnte es in diesem Falle jedoch nicht bis zur Kieme verfolgen.

Das Herz besteht bei allen von mir untersuchten Ascidien (wie es schon von den Salpen bekannt war) aus einem musculösen Schlauch, welcher innerhalb eines Hohlraumes, des Herzbeutels, liegt, und an der Wandung desselben längs einer geraden Linie angeheftet ist. Eine zarte homogene Membran trägt feinste quergestreifte Muskelzellen. Die Querstreifung ist erst hei starken Vergrösserungen, dann aber auch sehr deutlich, sichtbar (ZRISS F und Ocular II; E giebt sie nicht deutlich); sie kommt bei den Ascidien überhaupt nur hier vor. Die Zellen sind spindelig und ähneln in Form den glatten Muskelfasern der Säugethiere. welche indessen im Verhältniss zu ihrer Breite nicht so lang sind. Sie sind spiralig um die Längsachse des Herzens angeordnet, in einfacher Lage vorhanden, aber dicht mit ihren spitzen Ausläufern zwischen einander geschoben. Dieser Anordnung der Muskelfasern ist es wohl zuzuschreiben, dass das Herz der lebenden Phallusia mamillata von spiralig verlaufenden Falten eingeschnürt erscheint.

Die Wandung des Herzbeutels fand ich bei Cynthia microcosmus (die übrigen habe ich nicht darauf hin untersucht) mit einer einfachen Schicht kleiner polygonaler Pflasterzellen ausgekleidet. Jede Zelle besitzt einen deutlichen Kern.

III. Endostyl und Bauchrinne.

Die Ascidien theilen mit den niederen Wirbelthieren und dem Balanoglossus die Eigenthümlichkeit, dass der Darmtractus zum Theil der Function der Athmung dient; mit den Wirbelthieren speciell haben sie noch das Gemeinsame, dass der gesammte vordere Abschnitt in dieser Weise differenzirt ist, nicht wie bei Balanoglossus blos die obere Hälfte. Man kann demnach eine Eintheilung des Darmtractus in 1. einen respiratorischen Abschnitt (Kieme) und 2. einen verdauenden, den Darmcanal im engeren Sinne, vornehmen.

Meine Untersuchungen der Kiemenhöhle beschränken sich auf die heiden in ihr liegenden räthselhaften Organe, die Bauchrinne und den Endostyl.

Beide sind bei Ascidien meines Wissens bis jetzt nicht genauer, dagegen bei Salpen schon öfters und ausführlicher untersucht, von LEUCKART, MEYEN, H. MÜLLER etc., deren Ansichten ich jedoch in den für das Verständniss des Organs wichtigsten Punkten bestreite.

LEUCKART behauptet, der Endostyl gehöre der zweiten oder Muskeltunica an und bezeichnet als falsch' die Behauptung MEYEN's, dass er einen Theil des Kiemenapparates darstelle. Es zeigt dies offenbar, dass LECCHART den Endostyl bei Ascidien niemals beobachtet hat. Hier liegt derselbe deutlich im Kiemenkorb, entsprechend dem Verlauf des Ventralsinus. Man muss ihn demnach auch bei Salpen neben dem Kiemenband als ein Residuum des rudimentären Athmungskorbes aufführen. Dass er hier nicht frei im Mantelcylinder liegt wie jenes, sondern der Tunica muscularis fest aufliegt, erklart sich aus seinen Beziehungen zur Muskelkiemenlamelle, die beiderseits des unter ihm gelegenen Ventralsinus herabzieht und letzteren, somit auch den Endostyl, an der Mus-^{cularis} befestigt. Man denke sich die zwischen Ventral- und Dorsalsinus einer Ascidie verlaufenden Querstäbchen obliterirt, so bekommt man den Kiemenkorb der Salpen: 4. den Kiemenbalken schräg die Athem-^{böhle} durchsetzend , 2. den Endostyl nebst Ventralsinus auf dem Muskelschlauch liegend.

Ebenso irrig ist die Angabe H. MÜLLERS', der Endostyl liege auf ^{einer} Rippe der Tunica muscularis, die in den Sinus hineinrage. Ein ^{Blick} auf die Querschnittsfiguren lehrt, dass im Gegentheil der Endostyl ^{über} dem Sinus liegt; es kann über diesen Punkt bei den Ascidien ^{über}haupt gar kein Zweifel sein.

Wir kommen zum Bau des Organs. LEUCKART und HUXLEY trennen Endostyl und Bauchrinne und beschreiben beide als ganz discrete, nur ^{durch} Lagerung zusammenbängende Gebilde (eine Auffassung, die sich ^{auch} in GEGENBAUR'S vergleichender Anatomie und in KUPPFER'S Entwicklungsgeschichte der Ascidien vertreten findet). Nur LEUCKART ist ausführlicher und giebt folgende Darstellung:

1. Die Bauchrinne besteht aus zwei Theilen (Taf. VII. Fig. 9). Der obere Rinnenrand (a) trägt ein Epithel, welches von dem die Kiemenhöhle auskleidenden Epithel nur durch schärfere Contouren und den Besitz von starken, abgeplatteten, auf je einer Zelle einzeln stehenden Flimmerhaaren sich unterscheidet. Meist trägt nur eine Seite Flimmer-

Bichard Hertwig,

haare. Der Rinnengrund (b) trägt grosse polyedrische Zellen mit scharf umschriebenem grossem Nucleus und deutlichem Nucleolus.

2. Der Endostyl besteht aus einer rechten und einer linken Rinne (c, e), die an der Basis dicht zusammenlagern, nach oben etwas divergiren. Sie würden einen Canal darstellen, welcher nach oben offen ist, dem ein Theil seiner Decke fehlt, wenn nicht dieser Mangel durch das Zellenhäutchen (d) ausgeglichen würde, welches den Hohlraum der Rinne und des Endostyls trennt und letzteren zu einem Canal umwandelt. Das Zellenhäutchen fehlt nur am Anfang des Endostyls, wo dann der Hohlraum desselben in die Rinne ausmündet.

Jeder der beiden, einen jeden Halbcanal zusammensetzenden Wülste (ein oberer 1 und ein unterer 2) besteht aus senkrechtstehenden sehr langen Cylinderzellen.

Zwischen beiden Wülsten (bei h) liegt eine krümelige Masse, die wie es scheint Flimmerhaare trägt.

Vom grösseren Theil dieser Angaben kann man sich leicht bei Salpen überzeugen. Nur die den Endostyl und die Bauchrinne trennende Lamelle kleiner Zellen habe ich nirgends, nicht einmal andeutungsweise bemerken können. Nach Schnitten durch den Endostyl von Asoidien (Cynthia canopus, Phallusia mamillata etc.) muss ich ihre Existenz, für die Ascidien wenigstens, ganz entschieden in Abrede stellen. Ich kam zu folgenden Resultaten:

Die innere Fläche der Kieme erhebt sich zu einem beträchtlichen Wulst, wobei die kubischen Epithelzellen bis zur Höhe desselben eine immer mehr cylindrische Form annehmen. Von da nehmen sie an Höhe wieder ab und kehren zur ursprünglichen Form zurück. Sie besitzen einen deutlichen Nucleus und Nucleolus. Ihr letzter Abschnitt bildet den oberen Rand der Bauchrinne und entspricht den Zellen (a) der Salpen (Taf. VIII. Fig. 16 u. 17). Flimmerhaare fand ich nur bei Cynthia microcosmus. Sie waren auf beiden Seiten vorhanden, jedoch nicht continuirlich, sondern an allen Schnitten, die ich machte, beschränkt auf die Höhe der Rinne und den Theil der kubischen Zellen, welcher an die gleich näher zu beschreibenden langen Cylinderzellen stösst.

Der in der Bauchrinne liegende Abschnitt schliesst scharf ab und macht plötzlich langen dünnen cylindrischen Zellen Platz, die an Länge eine Strecke weit zunehmen, dann wieder abnehmen. Sie sind etwas unregelmässig angeordnet und tragen ihren Kern, wie es mir schien, meist an der Spitze (Taf. VII. Fig. 14, 16. b). Obwohl in Form vollkommen abweichend, glaube ich sie doch den grossen polyedrischen Zellen des Rinnengrundes bei den Salpen gleichsetzen zu können, da sie nach Lage ihnen vollkommen entsprechen und die Form sehr variiren kann.

Beiträge zur Kenntniss des Baues der Ascidien.

An sie schliesst sich ein Gonglomerat feinster spindelförmiger Zellen Taf. VII., Fig. 12, 16. d). Diese sind so angeordnet, dass sie einen Keil hilden, welcher mit seiner Spitze zwischen Bauchrinne und Endostyl eingeschoben ist. An den Zellen ist ein Kern deutlich nachzuweisen. Diese Zellen sind es nun, welche wahrscheinlich LEUCKART das Bild einer Scheidewand vorgespiegelt haben, indem sie wegen ihrer keilförmigen Einklemmung zwischen das Epithel des Endostyls und der Bauchrinne durch den Druck beim Schneiden leicht herausgepresst werden und dann zwischen beiden Seiten liegend einen queren Pfropf darstellen. Sie tragen bei Cynthia microcosmus ebenfalls Flimmerhaare, welche ich bei den übrigen Ascidien nicht bemerkt habe.

Etwas abweichend fand ich die Zellen dieser Verbindungsreihe bei Phallusia mamillata (Taf. VII. Fig. 14, Fig. 17 d). Hier waren sie kubisch. Aber auch hier bildeten sie Querbrücken zwischen den Epithelien der Bauchrinne und des Endostyls einer Seite, ein Verhalten, das namentlich an der das Epithel tragenden homogenen Membran (m) deutlich zu verfolgen war, so dass auch hier an LEUCKART's Trennungsschicht nicht gedacht werden kann.

Vom Endostyl selbst bekam ich die klarsten Bilder an Querschnitten von Cynthia canopus, die ich durch Zerzupfungspräparate zu ergänzen suchte.

Die auf die Spindelzellen folgende Schicht (Fig. 16 c' c') besteht aus grossen breiten Cylinderzellen (Fig. 13). Sie stehen senkrecht zur Wand des Endostyls und zeichnen sich durch einen scharf umschriebenen Kern mit Kernkörperchen aus. Sie haben ein runzliges Aussehen, was von Faltungen der Zellmembran herrühren mag, und sind an der Basis breiter, was sich auch am Querschnitt der ganzen Zellenlage in der nach der Basis zu breit werdenden Keilform ausdrückt.

Zwischen ihr und einer ihr vollkommen gleichenden, die Basis des Endostyls seitlich einnehmenden Schicht (c'') liegt ein Keil Spindelzelleu, die den mehrerwähnten vollkommen gleichen (h). Man kann in ihnen die krümelige Masse LEUCKART's vermuthen, doch kann ich nirgends, auch nicht bei Cynthia microcosmus, Flimmerhaare bemerken, die wahrscheinlich auch nicht vorhanden sind. Alle Spindelzellen imbibiren sich schneller mit Carmin als die übrigen. Sie treten bei kurzer Färbung daher durch ihr intensiveres Roth vor den matter tingirten Zellen hervor. So erhält man die klarsten Bilder.

Endlich ist die Mitte der Endostylbasis durch eine Zellenreihe eingenommen, die mir für das Verständniss der Function und für die von mir vertretene Auffassung: dass Bauchrinne und Endostyl als ein Organ aufzufassen sind, den kräftigsten Beweis zu liefern scheinen. Sie werden

Richard Hertwig,

wahrscheinlich auch den Salpen nicht fehlen, und sind von LEUCKART übersehen worden. Auf dem Querschnitt stellen sie eine zarte Masse dar, von der lange Cilien ausgehen. Die Cilien reichen bis in die Bauchrinne hinein (Taf. VIII., Fig. 16 und 17 f).

An einem Zerzupfungspräparat der Endostylbasis von Cynthia mytiligera konnte ich die einzelnen Zellen genauer beobachten (Taf. VII. Fig. 15). Sie waren sehr zart, mit körnigem Protoplasma, nach der Basis zu in eine feine Spitze auslaufend, nach aussen sich verbreiternd. Der Kern war schwer zu erkennen. Sie waren von einer gemeinsamen Cuticula (c) bedeckt und trugen die oben erwähnten langen Cilien.

Welche Bedeutung würden diese langen Cilien in einem allseitig geschlossenen Canal besitzen? Wie wäre es zu erklären, dass sie bei allen Schnitten constant von der Basis ausgehend, bis in die Bauchrinne vordringend gefunden werden, wenn eine Querlamelle dieses Vordringen verhinderte und wenn dies nicht ihre naturgemässe Lagerung wäre? Ausser den ganz sichern Bildern, die ich bekommen habe, sind es diese Ueberlegungen, welche mich darin bestärken, Bauchrinne und Endostyl als ein einziges Organ aufzufassen. Sie schwächen den Einwand, es könne die LEUCKART'sche Lamelle durch den Schnitt zerstört sein, noch mehr ab; obwohl es mir auch ausserdem unverständlich sein würde, dass ich bei mehr denn zwanzig gelungenen Schnitten durch wohlerhaltene Thiere nirgends auch nur eine Andeutung jener Lamelle fand, sondern überall ein enges Aneinanderschliessen der differenzirten Epithellagen.

Hierdurch wird die an und für sich schon ganz unverständliche Auffassung LEUCKART's, dass der Endostyl eine in die vordere Bauchrinne mündende Drüse sei, vollkommen widerlegt. Ebenso wenig lässt sich aber auch die Ansicht GEGENBAUR's aufrecht erhalten, dass der Endostyl ein Stützapparat der Bauchrinne sei und diese nur der Zuleitung der Nahrung zum Oesophagus-Eingang diene. Der Endostyl ist ein so wenig festes Gebilde, namentlich im Vergleich zum derben und resistenten Fachwerk der Kieme, dass er wohl kaum zum Stützen beitragen könnte. Beide Organe liegen bei Phallusien und Cynthien in dem ventralen Abschnitt, der hier die oben besprochene Ausbuchtung bildet. Sie bilden daher denselben weiten Bogen, bevor sie zum Oesophagus gelangen, wie jene undistellen somit, weil den weitesten, den für Zuleitung der Nahrung ungünstigsten Weg dar. Und wollte man dies auch als anderweitig bedingte Anpassungen darstellen, so ist immer noch der schr geschlängelte Verlauf des Organs bei einzelnen Cynthien (C. canopus und C. pomaria) ein noch schwerer in die Wagschale fallender Beweisgrund dagegen.

Mir scheint der complicirte Bau, namentlich die sehr langen Gilien eher für ein Sinnesorgan zu sprechen. Es wäre allerdings der Zutritt von Nervenfasern noch zu beweisen. Dass mir dies nicht glückte, kann dem nicht wunderbar erscheinen, der die ausserordentliche Feinheit der Nervenfasern bei den Ascidien kennt, wo sie gewöhnlich nur an durchsichtigen Thieren eine ganz kurze Strecke weit vom Ganglion aus verfolgt werden können; an den todten Phallusien und Cynthien aber wegen der Undurchsichtigkeit der Gewebe nicht erkennbar sind. Ausserdem ist die Querschnittsmethode für diesen Zweck nichts weniger als praktisch.

Aufschluss muss man hier zunächst von den durchsichtigen Salpen erwarten, und will ich als Stütze für meine Ansicht noch anführen, dass nach Leuckant's Angabe ein Nervenstamm (bei Salpa fusiformis von zehn Nerven der fünfte) einzig und allein zur Bauchrinne tritt.

An der Bauchrinne hat er ihn nicht wieder heraustreten sehen, auch nicht weiter verfolgen können. Man muss daher annehmen, dass in diesem Organe seine Endigung und Ausbreitung stattfindet.

IV. Darmcanal und Leber.

Als Darmcanal im engeren Sinne bezeichnen wir den Theil des Darmrohrs, der die Function der Verdauung zu verrichten hat. Er ist mehr oder minder scharf in drei Abschnitte getrennt: 1. den zuleitenden Theil oder Oesophagus, 2. den erweiterten Abschnitt, in dem die Speisen hauptsächlich mit dem Verdauungssecret in Berührung gebracht werden: Magen, und 3. den Dünndarm, den längsten, wohl hauptsächlich der Resorption dienenden Theil.

Die hier angedeutete Functionstrennung ist jedoch nicht als eine scharfe zu betrachten, indem der Darmcanal in seiner ganzen Ausdehnung nur geringe Differenzirungen zeigt und namentlich das Epithel sehr gleichartig ist.

Bevor ich auf die Resultate meiner Untersuchungen näher eingehe, will ich kurz die Beobachtungen und Deutungen früherer Forscher recapituliren.

Von der histiologischen Zusammensetzung des Darmeanals der Salpen und Appendicularien giebt LBUCKART an. dass ihm eine Muscularis abgehe, dass die Wandung aus einem homogenen zellenreichen Bindegewebe bestehe und ein cylindrisches Flimmerepithel trage, das die Fortbewegung der Speisen besorge.

Was die äusseren Verhältnisse, die Form und Lage des Darms an-

Richard Hertwig,

langt, hat schon SAVIGNY musterhafte und zutreffende Schilderungen für die Ascidien gegeben. Hier finden wir die blättrigen Faltungen des Magens, die das Intestinum der meisten Ascidien durchsetzende Leiste, wolche ihrer wulstigen Form und ihros Verlaufs halber als Costa bezeichnet wird, genauer beschrieben. Ein Blindsack wird von LEUCKART am Cardialende des Salpenmagens, an der Pars pylorica der Ascidien von SAVIGNY erwähnt.

Grosse Confusion herrscht dagegen in der Deutung der Darmanhänge. Namentlich sind als Leber die verschiedenartigsten Bildungen angesprochen worden. Es rührt diese Verwirrung daher, dass man nicht genug die Charaktere, die ein Organ besitzen muss, um als Leber gelten zu können, berücksichtigt hat, nämlich erstens einen directen Zusammenhang mit dem Darmlumen, und zweitens ein Epithel, welches einigermaassen wenigstens drüsige Beschaffenheit aufweist.

Man kann die bei den Tunicaten als Leber bezeichneten Gebilde in folgende vier Unterabtheilungen zusammenfassen, ohne dass jedoch hiermit gesagt sein soll, dass die äbnlich klingenden Schilderungen auch gleichwerthige Objecte vor sich gehabt hätten. Namentlich scheinen die unter III. zusammengefassten Bildungen oft verschiedenartiger Natur zu sein.

I. Das von SAVIGNY bei seinen beiden ersten Tribus der Cynthia beschriebene Organ, das die eine Seite der Darmwand vollkommen einnimmt und dessen Einmündungen hier als Löcher beim Aufschneiden sich finden. Merkwürdigerweise wird es nur von MILNE EDWARDS wieder vorübergehend erwähnt, obwohl es mir die einzige Bildung zu sein scheint, die man mit vollem Recht als Leber bezeichnen kann.

II. Der Blindsack bei Salpen (Vogr) und Appendicularien (HUXLEY).

III. Gefässartige Adnexa: ein Netz von epithellosen Röhren, das aus 1-2 Längsstämmen, feineren anastomosirenden Verästelungen und kolbigen blindsackartigen Anschwellungen besteht. Es umspinnt bei Phallusia 'KRONN' den ganzen Darm, bei Salpen und Doliolen die hintere Hälfte des Darmtractus (LEUCKART), bei Amarucium die mittlere Hälfte des Rectum (MILNE EDWARDS).

IV. Eine den Darm umhüllende Masse (das honiggelbe Organ KROHN's), die aus Bläschen mit einem central in jedem derselben liegenden Kern besteht. Sie findet sich nur bei Phallusien und ist namentlich bei P. mamillata sehr stark entwickelt.

Erwähnt sei noch, dass auch der den Darm von Phallusia intestinalis umgebende Hoden als Leber gegolten hat.

Ich gehe jetzt zur Schilderung meiner eigenen Untersuchungen

er. Leider erlaubten mir die Beschränktheit an Zeit und Material ht, meine Beobachtungen auf eine grössere Anzahl von Arten auszuhnen. Ich kann daher nur Weniges zur Klärung der herrschenden rwirrung, namentlich zur Sichtung dessen, was fälschlich als Paneas, Leber etc. bezeichnet worden ist, beitragen. Doch glaube ich zt schon berechtigt zu sein, einen Theil der früheren Beobachtungen her als falsch zu bezeichnen, einen anderen als höchst zweifelhaft erbeinen zu lassen.

'Indem ich in Kurze die Mittheilung LEUCKART's, dass der Darmcanal r Salpen keine Muscularis besitze und die Fortschaffung der Speisen urch ein cylindrisches Flimmerepithel bewirkt werde, bestätige, gehe h sogleich näher auf die Schilderung der Darmanhänge ein.

Ich wende mich zunächst zu den gefässartigen Bildungen, welche un für Leber gehalten hat, und beginne mit dem Röhrensystem, welbes von Knoun bei Phallusia mamillata beschrieben worden ist. erzusgreifend will ich bemerken, dass ich die Ansicht Knoun's, man abe es hier mit einer Leber zu thun, nicht theilen kann, vielmohr die raglichen Röhren für Blutgefässe halte.

Bevor ich jedoch auf das »Dafür « und »Dawider « näher eingehen inn, glaube ich den Beweis schuldig zu sein. dass die Bildungen, velche KROHN und ich untersucht haben, auch wirklich identisch sind.

KROHN schildert sie als ein bei älteren Thieren schwer nachweisbres Organ, das aus einem System feiner, über den Darm sich ausbreitender Canäle besteht. Die Canäle setzen ein Netzwerk zusammen, biden Schlingen nach Art der Vasa vorticosa und treiben an vielen belen ampullenartige Ausstülpungen. Am reichsten sind sie in der Geta entwickelt und beginnen blind, um allmählich in einen grösseren kamm zusammenzutreten, der dann dem Darm entlang verläuft. Die Intstehung geht von dem Hauptstamm aus, indem derselbe Fortsätze wiht und diese sich dichotomisch verästeln. Der Inhalt der Röhren wird als wasserbell angegeben; ein Epithel wird nicht beschrieben. Im erwachsenen Thier theilt KROHN mit, dass das Organ kaum sichtir sei und nur hie und da in Form einzelner Schläuche an die Oberliche des Darms trete.

Auf Querschnitten von Spiritus-Exemplaren glaube ich dieses Organ den dunkeln Canälen wiederzufinden, welche in den Fig. 23 --- 25 der M. IX. mit a bezeichnet sind. Allerdings erscheint der Inhalt der Röhren bichst sehr verschieden. An meinen Spiritus-Exemplaren bestand derlie aus dunkeln Klumpen von zusammengehäuften braunen Zellen, mit bieutlichem Kerne, während KROBN von einem wasserhellen zellenfreien bist spricht. Dieses Bedenken wurde jedoch später durch die Beob-

Richard Hertwig,

achtung der lebenden Phallusia mamillata widerlegt. Hier stellte sich heraus, dass der Inhalt der Röhren eine wasserhelle Flüssigkeit i welche bei jungen Thieren (die KROHN vorzüglich untersuchte) sä wenige, bei älteren sehr zahlreiche, farblose, kernhaltige Zellen enthäl Diese können nur als Blutzellen gedeutet werden. Der dunkelbraun klumpige Inhalt der Röhren bei den Spiritus-Exemplaren ist geronnens durch den Spiritus verändertes Blut.

In allen übrigen Punkten stimmen KROHN'S Angaben sehr gut i meinen Beobachtungen. Die Verästelungen sind am reichsten in de Gosta, ausserdem in den Falten des Oesophagus und des Magens, die dieselbe Bildung darstellen wie jene : eine Vergrösserung der das Epithi tragenden Fläche. Endlich war das Organ am lebenden Thier nur af einzelne, zwischen der honiggelben Masse hervortauchende, milchweisse Schlingen bemerkbar.

Die Ramificationen der Röhren sind gabelspaltig. Die Zweige bil den Schlingen und Ampullen, nur dass ich die Anfänge bei dem undurchsichtigen alten Thiere nicht beobachten konnte, was, zumal bi Querschnitten, auch nicht erwartet werden kann. Auch die grössere Canäle fehlen nicht. Ausser einzelnen von mittlerem Caliber, welch auf den Zeichnungen zwischen den Bläschen sich finden, konnte ich namentlich einen in der Basis der Costa verlaufenden grössen Hauptstamm makroskopisch bis zum Oesophagus hin verfolgen, ohne dass ich ihn in denselben einmünden sah.

Endlich konnte ich trotz genauester Prüfung einer grossen Anzah Schnitte aus allen Gegenden des Darmcanals keine andere Bildung auf findig machen, welche der KROBN'schen Schilderung nur irgend wi ähnlich gewesen wäre. Kurz, die grosse Uebereinstimmung, sowie der Mangel von anderen Canälen, die in Betracht kommen könnten, lassen mich an der Identität der vorliegenden Organe nicht zweifeln.

Dass diese Röhren nun keine Drüsen, geschweige denn eine Leber seien, scheint mir aus folgenden Erwägungen hervorzugehen: Ersten fehlt jegliches Epithel; denn die Inhaltszellen sind keine Epithelzellen, sondern liegen frei in einer flüssigen, farblosen Intercellularsubstan und füllen mit dieser zusammen, wie man an Querschnitten der Canäle deutlich sicht, deren Lumen vollkommen aus. Zweitens konnte eine Einmündung der Röhren in das Darmrohr weder von mir selbst gefun-⁴ den werden, noch ist sie von KROHN beschrieben worden. (KROHN folgert sie mehr aus der Lage, als dass er sie selbst geschen hat. Man lose seine Schilderung und vergleiche dann das Resumé, das er giebt.) Drittens liegen, wie wir später sehen werden, ganz andere röhrige Bildungen vor, bei denen man die Communication mit dem Darmrohr und

Gleichheit des Epithels in beiden auf das bestimmteste nachweisen n, die man demnach mit vollem Recht als Drüsen bezeichnen kann. haben mit obigen Röhren auch gar nichts gemein und finden sich r bei einigen Gruppen der Cynthien.

Aus allen diesen Gründen glaube ich folgern zu dürfen, dass die schriebenen Röhren Blutgefässe sind und einen local ungewöhnistark entwickelten Theil des Circulationssystems bilden. Diese iste Entwickelung lässt sich durch die doppelte Function der Darmgemeerklären, erstens die Ernährung der Darmwand und namentlich ins Epithels, dessen secretorische Thätigkeit einen reicheren Nahrungsduss bedingt; — und zweitens die Resorption der durch den Vermngsprocess assimilirten Stoffe.

Wahrscheinlich entspricht somit dieser, an einem Theile des arnes so auffallend stark entwickelte Theil der Blutgefässe in seiner arction theilweise dem Lymphgefässsystem der Wirbelthiere. Seinem arphologischen Verhalten gemäss kann es aber nicht, wie Quov und annen wollen, als wirkliches Lymphgefässsystem bezeichnet werden. Is existirt eben noch nicht die Differenzirung des Gefässsystems in einen mährenden und einen resorbirenden Theil. So lange wir nicht diese ifferenzirung vor uns haben, können wir nur von einem Blutgefässstem sprechen.

Weitere Beweisgründe dafür, dass die besprochenen Röhren Blutdisse und keine Leber darstellen, finde ich in der Anordnung und ertheilung derselben. Ihre Anordnung, insbesondere die Schlingendung der feinsten Verästelungen und die Erweiterung zu ampullenrigen Blindsäckchen, bewirkt eine Vergrösserung der Oberfläche, wie ein reicherer Austausch der Bestandtheile erfordert. Am reichsten witheilt sind die Röhren auf den Abschnitt des Darms, an dem wir die bhafteste Resorptionsthätigkeit annehmen müssen. Am meisten spricht ber wohl für meine Ansicht die genaue Untersuchung der Wandungen des Inhalts der Gefässe. Wie schon früher erwähnt, entbehren sie iner selbstständigen isolirbaren Wandung: nur die grösseren Stämme tigen eine circuläre longitudinale Anordnung von Muskelfasern, die den glatten Fibrillen des Hautmuskelschlauchs gleichen und nur 🚔 ein dem Gefässsystem sich anschmiegender Theil desselben aufzuimen sind. Noch entscheidender aber ist die Beschaffenheit der Zellen, wiche man innerhalb der Röhren findet. Diese erscheinen an lebenden Tieren als farblose, mit einem deutlichen Kern verschene amöboide Kelen. Dieselben Zellen finden sich in den Hohlräumen der Kiemen-Mikchen und in den den Mantel durchsetzenden Gefässen wieder, eben-Lis durch farblose Intercellularflüssigkeit geschieden. Da sie demnach

das Lumen von unzweifelhaften Blutgefässen erfüllen, kann man sie hier wie dort sicher als Blutzellen bezeichnen. Die stärkere Anhäufung derselben in den Darmgefässen lässt sich vielleicht darauf zurückführen, dass vermöge der blinden Endigungen und proportional dem vergrösserten Gesammtquerschnitt der Blutbahnen die Geschwindigkeit der Circulation abnimmt.

Endlich entspricht auch der Zeitpunkt und die Art und Weise der Entstehung der fraglichen Darmgefässe vollkommen derjenigen der Mantelgefässe. Nach KROHN'S Schilderung entwickeln sich beide kurt vor der Entstehung des Herzens, beide aus Hauptstämmen, die sich dichotomisch theilen, Ampullen treiben und Schlingen bilden.

Man könnte noch den Einwurf machen, KROHN hätte dann bei der Verfolgung der Entwickelung Bluteireulation wahrnehmen müssen. Dem gegenüber ist jedoch zu bedenken, dass die Circulation in den Mantelgefässen, die doch rings von einer vollkommen durchsichtigen Substans umgeben sind, lange den Beobachtern entgangen ist und nach KROHN's eigenem Geständniss schwer wahrzunehmen ist. Um wie viel leichter mag sie sich am Darm selbst der genaueren Prüfung unterziehen, de hier die grössere Undurchsichtigkeit der Gewebe viel ungünstigere Verhältnisse bietet.

Die Beobachtung der Pulsation an erwachsenen Thieren belehrte mich, wie langsam und träge die Herzthätigkeit ist und wie wenig die Pulswelle sich in die grösseren Gefässe verfolgen lässt.

Von Phallusia manimillata wenden wir uns zu den entsprechenden Verhältnissen bei den Cynthien.

Betrachtet man den Darmcanal einer Cynthie genauer von aussen, so findet man ihn seiner ganzen Ausdehnung nach, am deutlichsten aberam Magen, gestreift. Die Streifen folgen im Wesentlichen der Längenrichtung des Darms und entsprechen nach Savigny den Blättern des Magens, was jedoch nur in beschränkter Weise zuzugeben ist, da die Streifung auch an anderen Darmabschnitten, die der Faltung der Darm wand entbehren, sich vorfindet, wie namentlich am Oesophagus. Am schönsten ist sie am Magen von Cynthia mytiligera entwickelt (Taf. VII-Fig. 7). Bei G. canopus und G. polycarpa bemerkt man bei genaueret Prüfung, dass einzelne der grösseren Streifen nach der Stelle bin convergiren, wo der Herzschlauch der vorderen Magenwand fest anhaftet-Dies führte mich zur Vermuthung, dass sie mit demselben in Beziehung ständen, und veranlasste mich vom Herzschlauch aus Luft zu injiciren. Hierbei ergab sich nun, dass Luftblasen in die Darmwandung eindrangen und dem Verlauf der Streifungen folgten, wobei deren dichotomische, unter spitzem Winkel erfolgende Theilung sich besser verfolgen liess. Ich kam somit zum Schluss, dass die Streifung Ausdruck eines den Darm umspinnenden Gefässsystems sei. Die Vertheilung desselben untersuchte ich genauer auf Querschnitten, wo man sie als Lücken im Bindegewebe wiederfindet (Taf. VIII. Fig. 18). Sie sind am reichsten in der vorderen Magengegend, wo meistens ein Canal an der Basis je einer Falte liegt. Am Oesophagus finden sich bei C. mytiligera (Taf. VIII. Fig. 19) zwei grössere Lücken, welche dieselben Beziehungen zum Muskelsystem erkennen lassen wie die grösseren Stämme bei Phallusia. Cynthia canopus wies nur einen Hauptstamm auf, ausser einigen unbedeutenden Aesten. Im Dünndarm finden sich nur wenige und dazu noch schwächere Canäle.

Ich habe zwar keine Injectionen versucht, aber durch Combination mit den von MILNE EDWARDS über Blutcirculation der Synascidien gegebenen Mittheilungen glaubte ich jetzt schon folgendes Schema der Circulation geben zu können. Das Blut dringt vom Herzen zum Magen und vertheilt sich hier in feinere Aeste, um dann zum Theil in dem grösseren Oesophagealstamm sich zu sammeln und so zur Kieme zu gelangen, zum Theil vielleicht auch dem Dünndarm zu folgen und von hier in den Muskelschlauch oder durch die, viele Commissuren bildenden Haftfäden der Kieme in letztere einzutreten.

Ausser diesen Blutsinus bemerkt man auf Querschnitten noch Canäle, welche Schlingen in den Magenfalten bilden, am deutlichsten am Magen von Cynthia canopus (Taf. VIII. Fig. 21 b). Sie sind von sehr ungleichem Caliber, bald verengt, bald bauchig angeschwollen. Wenn man auch nicht von einem Epithel sprechen kann, so sind die Wandungen doch nicht homogen, sondern tragen Zellen mit deutlichem Kern, die ihrem ganzen Aeusseren nach sich mehr den Gefässepithelien anreihen, spärlich vertheilt sind, jedoch mit der Verminderung des Canallumens en Dichtigkeit zunehmen. Auf Querschnittsfiguren sieht man, dass das Protoplasma der einzelnen Zellen zusammenhängt (Fig. 21 c).

Diese den Capillaren ähnliche Gefässschlingen communiciren mit den grossen Blutsinus (a). Man kann Uebergänge von den letzteren zu den ersteren nachweisen, auch in der Structur der Wand. Die als wandungslos beschriebenen, von aussen als Streifen kenntlichen Sinus zeigen einen äusserst spärlichen Zellenbeleg, den man am besten an den Längsseiten dickerer Querschnitte beobachtet. Ich wage ihn kaum als Gefässepithel zu bezeichnen. Sie sind nicht häufiger als die Bindegewebszellen, welche auf einem gleichen Raum liegen würden. Man kann sie deshalb als Bindegewebszellen ansehen, deren Intercellularsubstanz nur in einer Fläche, nicht allseitig entwickelt ist. Geht man von diesen aus, so kann man die grossen Sinus durch factisch existi-

Richard Hertwig,

rende Uebergangsformen mit den zellenreichen Ganälen verknüpfer In zwei allerdings vereinzelten Fällen habe ich auch einen directer Uebergang beobachten können; hier bildeten die Zellen eines grosser Sinus an einer Stelle zugleich den Eingang in einen zellenreichere Ganal. Der letztere mündete in ersteren aus. Vielleicht würde es gelingen, durch Versuche mit Injection gefärbter Substanzen weiter directe Belege beizubringen.

Für den Ascidienbau sind diese Gefässschlingen insofern von Wichtigkeit, als sie uns die vollkommene Gleichstellung der Blutcirculation bei Cynthien und Phallusien ermöglichen. Beide Beobachtungsreiben stützen und ergänzen sich. Was bei den Phallusien undeutlicher ist, die Communication mit dem Blutgefässsystem, kann bei den Cynthien leicht beobachtet werden. Dagegen die Vertheilung der Gefässe m Darm lässt sich bei ersteren besser verfolgen.

Die hier gegebene Schilderung der Magengefässe von Cynthia canpus passt auch auf andere Cynthien mehr oder weniger. Insbesondere ³ sind sie bei C. mytiligera deutlich zu erkennen, jedoch durch die faserige Differenzirung des Bindegewebes mehr verdeckt.

Die von den Magengefässen gewonnene Anschauung lässt sich nicht. ohne weiteres auf die übrigen Darmabschnitte übertragen. Für de Sinussystem habe ich oben schon die Veränderung beschrieben. Die kleinen von Epithelium ausgekleideten Canäle fehlen am Oesophagus fast ganz; am Dünndarm weichen sie nicht unbedeutend ab und sind nicht ohne weiteres mit den Gefässschlingen des Magens zuvergleichen. Sie sind hier zum grossen Theil bedeutend zellenreicher und zeigen auf Querschnitten der grösseren Stämme ein vollkommen guadratische Epithel. Freilich ist das Bindegewebe auch zellenreicher. Diese kleinen Canäle sind am reichsten in der Costa entwickelt und besitzen meist einen von der äusseren zur inneren Darmoberfläche gehenden Verlauf und eine in dieser Richtung hin erfolgende dichotomische Verästelung. Unweit des Cylinderepithels biegen sie sich um, um demselben parallel zu laufen, oder enden mit Ampullen; häufig sieht man ihre Querschnitte (Taf. VIII. Fig. 20, 22). Was jedoch mich zurückhält, ein entscheidendes Urtheil abzugeben, sind folgende Bedenken:

Ich fand bei Cynthia mytiligera und C. canopus und zwar hauptsächlich an der Costa, dass das Epithel der Tunica tertia sackartig sich einstülpte (Taf. VIII. Fig. 20). Einer der tieferen Einstülpungen lag ein Ganal (a) dicht an, dessen Epithel nicht die geringsten Unterschiede erkennen liess vom Epithel der Tunica. Bei einem anderen Querschnitt verlief ein breiter geschlängelter Canal, der in ganz ähnlicher Weise in der Nähe einer tieferen Einstülpung lag, durch die Costa quer in der

Richtung zum Darmepithel. Wie leicht wäre es möglich, dass diese Canäle nur Einstülpungen des Epithels der Tunica tertia wären? Ihr Reichthum an der Costa (einer Darmfaltenbildung) würde damit stimmen.

Das Epithel der Tunica tertia wird durch einen feinen homogenen Saum vom Bindegewebe des Darms getrennt (Taf. VIII. Fig. 24, 22). Ein ähnlicher Saum umgiebt den grössten Theil der Canäle am Dünndarm von Cynthia canopus (Taf. VIII. Fig. 22g) und noch deutlicher die allerdings sehr spärlichen Canäle am Oesophagus.

Bei Cynthia echinata (MÜLLER'S Zoologia Danica) konnte ich ganz genau beobachten, wie derartige Einstülpungen der Tunica tertia canalartige Bildungen erzeugen. Verhältnisse, wie sie Taf. IX. Fig. 34 zeigt, findet man oft bei den Leberschläuchen des Magens; bei einem grossen Theil schien ihr Zusammenhang mit Einstülpungen direct nachweisbar (Taf. IX. Fig. 30 e e).

Ich halte es daher für wahrscheinlich, dass ein Theil der canalarigen Bildungen auf derartige Einstülpungen zurückzuführen ist. Namentlich muss ein zusammenhängender Epithelbeleg Misstrauen erwecken. Ich möchte eben nicht die Bildung aller Canäle auf diese Art und Weise ohne weiteres erklären. Es können ja Blutgefässe und Einstülpungen neben einander existiren. Meine Beobachtungen reichen in diesem Punkte nicht aus. Jedoch scheinen sie ausreichend, um manche Nidungen, welche man irriger Weise als Leberschläuche beschrieben hat, auf andere, für den Organismus unwichtigere Theile zurückzuthren.

Was HUXLEY in VICTOR CARUS' Icones zootomicae als Leber von der Costa einer Cynthia abbildet, scheint weiter nichts als eine schlauchfirmige Hineinwucherung des den Perithoracalraum auskleidenden Epithels zu sein. Dieselbe für eine Leber zu erklären liegen keine hinreichenden Gründe vor.

Ebenso wenig sind die bei den Phallusien als Leber beschriebenen Bischen (das honiggelbe Organ KROHN's) als Leber zu deuten. Nach meinen Untersuchungen bestehen dieselben aus geschlossenen Follikeln, welche ein concrementartiges gelbes Körperchen enthalten (Taf. IX. Fig. 23). Die Wandung des Follikels besteht aus einer homogenen Membran (d). Auf derselben liegen zahlreiche runde Körperchen, von denen tinige netzartig sich verbindende Ausläufer bilden (Fig. 26). Sie beisten den eigenthümlichen Glanz und das starke Lichtbrechungsverbigen von Fettkörperchen. Ihr Umriss ist meistens unregelmässig Tudlich. Ich würde sie für Zellen halten, wenn ein deutlicher Kern Bechweisbar wäre. Trotzdem ist es wahrscheinlich, dass sie aus wirk-N. VII. 4. lichen Zellen durch Verlust des Kernes und Umwandlung des Protoplasma entstanden sind.

Das in jedem Bläschen liegende gelbe concrementartige Körperchen besteht aus einer oder mehreren Zellen, welche mit Carmin sich intensiv färben. Sie sind umschlossen von einer schichtenweis abgelagerten glashellen Substanz, die oft der Follikelwand anhaftet. Mit Säuren behandelt wird das gelbe Concrement unter lebhafter Gasentwicklung etwas heller, ohne jedoch vollkommen klar zu werden. Die Ablagerung kohlensaurer Salze als Ausscheidungsproducte des thierischen Organismus spricht jedenfalls_mehr für ein excretorisches als ein secretorisches Organ. Wahrscheinlich ist dieses »honiggelbe Organ « der Phallusien als Niere zu deuten.

Während die bisher betrachteten Darmanhänge wohl alle mit Unrecht als Leber bezeichnet wurden, existirt dagegen ein echtes leberartiges Organ als drüsiger Anhang des Magens bei einem Theile der Cynthien, wo dasselbe von SAVIGNY und MILNE EDWARDS aufgefunden worden ist. Die Cynthia echinata (FABRICIUS, fauna Groenlandica; O. F. MÜLLER, Zoologia Danica), bei welcher ich dasselbe untersuchte, fehlt in SAVIGNY'S Aufstellung und reiht sich demnach als neues Glied einer seiner beiden ersten Tribus ein.

Von aussen betrachtet fällt der Magen der Cynthia echinata durch die gelappte Form auf, welche seine nach der Kieme zu gelegene Wand besitzt (Taf. IX. Fig. 27). Auf Querschnitten sicht man, dass die erheblich verdickte Magenwand aus länglichen, einfachen oder spärlich verästelten Drüsenschläuchen besteht, welche dasselbe Epithel besitzen wiedie drüsenfreie entgegengosetzte Darmwand. Fig. 28, Taf. IX. giebt die Formverhältnisse eines solchen Querschnitts durch den drüsenführender Theil der Magenwand genau wieder. Fig. 29 ist dagegen eine schematische Darstellung eines Querschnittes durch den ganzen Magen. Die im den Schläuchen liegenden Kugeln (s s) halte ich für das Secret der Drüsenzellen.

Um mich zu überzeugen, dass ich es hier nicht wie bei anderen Ascidien mit Falten, sondern mit echten Drüsenschläuchen zu thun habe, führte ich andere Schnitte senkrecht auf der Richtung der ersteren (parallel der Fläche der Darmwand) und erhielt so das genau copirte Bild von Fig. 30. Hier lassen die, auf den verschiedensten Höhen getroffenen Querschnitte der Drüsenschläuche keinen Zweifel zu, dass wir es hiermit einer echten Drüsenbildung zu thun haben. Zwischen den Schläuchen der Drüse finden sich die oben als Einstülpungen des äusseren Epithelbelegs beschriebenen Canäle (Fig. 30 e). Vom Blutgefässsystem fand ich nur einen großen mit a bezeichneten Sinus (29 a).

Beiträge zur Kenntniss des Banes der Ascidien-

99

Während wir bei Cynthia echinata Drüsenschläuche vor uns haben, welche nur wenig sich verzweigen und getrennt in den Darmcanal münden, so sind bei C. microcosmus viele Schläuche zu einer Gruppe vereint, um mit einem gemeinschaftlichen Ausführungsgang zu münden. Ich lasse hier die ausführlichere Beschreibung folgen.

Die gelbe Farbe der Darmwandung von Cynthia microcosmus wird am Magen durch orangefarbene feine Striche unterbrochen oder an vielen Stellen durch dichtere Anordnung dieser Striche ganz verdrüngt. Diese sind in kleinere Gruppen vereint, welche wieder zu grösseren Complexen zusammentreten. Die Mitten der grösseren Gruppen prominiren und geben der Darmwand ein etwas höckeriges Ansehen und erzeugen eine Oberfläche, wie sie die Lobuli einer zusammengesetzten Prüse bilden.

Schneidet man den Magen auf, so vermisst man die bei den meisten Ascidien vorkommenden Längsfalten, wie auch dem Dünndarm die Costa fehit. Dagegen erblickt man auf der inneren Magenfläche die schon von SAVIGNY und MILNE EDWARDS beschriebenen Vertiefungen, ungefähr sechs bis neun an der Zahl (Fig. 32. 1. 1). Sie liegen auf der der Kiemenhöhle zugekehrten Darmwand und flachen sich nach dem Pylorus zu allmählich rinnenförmig ab, während sie nach der Cardia u mit einer scharf vorspringenden, die Vertiefung ein wenig überdeckenden Falte abschliessen. Am Grunde jeder Vertiefung finden sich mehrere kleinere Mündungen. Schneidet man durch die Magenwand auf eine derselben ein, so sieht man, dass das hier einmündende Canälchen sich mehrfach dichotomisch verüstelt (Fig. 33, 34). In der Peripherie ist der Querschnitt von einem Gewirre feinster orangenfarbener Striche (a) durchsetzt, die jedoch in ihrer Masse insofern eine gewisse Anorduung erkennen lassen, als sie Gruppen bilden, welche den durch Dichotomie des gemeinsamen Canälchens entstandenen Aestchen entsprechen. Im Magen findet sich eine orangenfarbene Masse, welche namentlich in den Vertiefungen zu finden ist und so sich als Secret der Drüsenschläuche charakterisirt.

Die Annahme, dass wir es hier mit einer traubenförmigen Drüse zu thun haben, findet durch Querschnitte ihre Bestätigung. Man trifft auf diesen die Drüsenschläuche bald mehr der Länge, bald mehr der Quere nach durchschnitten, unter ihnen auch solche, die sich mehrfach verästeln (Taf. IX. Fig. 35 /). Sie tragen dasselbe Cylinderepithel, welches auch sonst den Darmcanal der Ascidien auskleidet, aber ohne Flimmerbaare. Zwischen den Leberaoini finden sich die Blutgefüsse als dunkle Massen. Die Blutkörperchen waren in Alkohol zu feinen dunkeln

7*

Körperchen geschrumpft, quollen aber in essigsaurem Kali auf und liessen auf Essigsäurezusatz einen Kern erkennen.

Während so bei einem Theile der Ascidien (Cynthia microcosmus, C. echinata etc., überhaupt bei den beiden ersten Tribus von Saviens) die Vergrösserung der secernirenden Epithelfläche des Darms durch echte traubige Drüsenbildung bewirkt wird, tritt dagegen bei den anderen (den beiden letzten Tribus von Saviens) an ihre Stelle blosse Faltenbildung der Darmwand, deren Epithel die Function einer Leber erfüllt, und um so leichter erfüllen kann, als durch die in hohem Grade entwickelte Längsfaltung der Darmwand die secretorische Fläche bedeutend vergrössert wird.

. Alle übrigen, bei den Ascidien als Leber beschriebenen Organe verdienen diesen Namen nicht und werden sich als anderweitige Bildungen erweisen, wie ich es für einen Theil wahrscheinlich gemacht, für einen anderen sicher nachgewiesen zu haben glaube.

Erklärung der Abbildungen.

Tafel VII.

- Fig. 4 Clavellina lepadiformis nach MILNE EDWARDS. Cl Cloake, a' tunica tertia, a ihre Anheftung an den Muskelschlauch, c b a ihre Anheftungen an die Kieme, o Lage des Endostyls und Ventralsinus, g Mündung des Geschlechtsapparats, i After, M Tunica muscularis, T Testa.
- Fig. 2. Phallusia mamillata. Die rechte Seite der Testa und des Muskelschlauchs ist abpräparirt. Ihre Querschnitte sind mit T und M bezeichnet. Der Kiemensack K dadurch bloss gelegt. Bezeichnung sonst wie in der folgenden Figur.
- Fig 3. Phallusia mamillata. Die linke Seite der Testa und der Muskelwand ist abgeschnitten, der Darm hierdurch seiner Länge nach geöffnet (halb schematische Zeichnung; die Ovarien sowie das honiggelbe Organ sind weggelassen).

Cl Cloake, os Oesophagus, g Magen, r Rectum, i' aufsteigende, i'' absteigende Windung des Dünndarms, K Kieme, v Ventralsinus, d Dorsalsinus, beide mit ihren Muskelkiemenlamellen. α die Linie durch die man den Querschnitt führen musste um das Schema Fig. IV zu erhalten, β Linie für das Schema V, γ für VI.

- Fig. 4, 5, 6. Schemata von Phallusia mamillata, welche die Beziebung von Mantel (T), Muskelschlanch (M), Tunica tertia parietalis (Sp), Tunica tertia visceralis (Sv) und Darmkiemenepithelblatt (KD) erläutern, sowie das Zustandekommen einer dorsalen und ventralen Muskelkiemenlamelle (v und d). Ausserlem bedeuten σ Endostyl, ps linker, pd rechter Perithoracalraum, Cl Cloake.
- Fig. 7. Cynthia mytiligera von der Egestionsöffnung aus aufgeschnitten. Der Theil der ventralen Muskelkiemenlamelle, welcher Magen und Oesopha-

gus an die Muscularis befestigt, vom letzteren abgetrennt (v''), rechte und linke Hälfte des Muskelschlauchs mit den anliegenden Organen zu beiden Seiten zurückgeschlagen.

Bezeichnungen wie früher; ausserdem:

v' Der zwischen Magen und Kieme ausgespannte Theil der Muskelkiemenlamelle, *m* die von SAVIGNY für ein Ovarium gehaltene Falte der Tunica tertia, *o* die Wülste, in denen die Geschlechtsorgane liegen.

- Fig. 8. Die Intestinalschlinge von Cynthia mytiligera (J) mit ihrem Mesenterium (Tv) und dem Muskelschlauch M.
- Fig. 9. Schema des Endostyls von Salpa nach LEUCKART. d bedeutet die den Endostyl (E) von der Bauchrinne (B) trennende Lamelle. Im übrigen dienen die Buchstaben, um die verschiedenen Zellen mit denen der Ascidien zu vergleichen.
- Fig. 10. Die Zellen der Höhe der Bauchrinne bei a (von Cynthia canopus).
- Fig. 11. Die Zellen der Bauchrinne bei b, von derselben.
- Fig. 12. Die Spindelzellen wie sie im Stratum d und A vorkommen.
- Fig. 13. Zellen aus c¹ und c² (Fig. 10-13 von Cynthia canopus).
- Fig. 44. Die Stelle d von Phallusia mamillata und die homogene Membran, der die Zellen aufliegen.
- Fig. 15. Die Zellen des Endostylgrundes von C. mytiligera mit ihren Geisseln, c die den Flimmerzellen gemeinsame Cuticula.

Tafel VIII.

- Fig. 16. Querschnitt des Endostyls von Cynthia canopus.
 - v der ventrale Blutsinus, g Blutgefässe, K inneres Kiemenepithel, Säusseres Kiemenepithel.
- Fig. 47. Endostyl von Phallusia mamillata.

Bezeichnungen wie oben, ausserdem Sp das die innere Muskelwand, B das die äussere auskleidende Epithel (B liegt zwischen Muskelschlauch und Testa; Sp und S gehören der Tunica tertia an.

- Fig. 18. Querschnitt durch den Magen von Cynthia canopus. *a* Blutsinus innen an der Basis einer Falte liegend, *m* Mesenterium (Doppellamelle der Tunica tertia).
- Fig. 19. Querschnitt durch den Oesophagus von Cynthia mytiligera.

mo mo Mesenterium, welches gleichzeitig die ventrale Muskelkiemenlamelle ist, aa die Blutsinus, um die sich ein Ring von glatten Muskelfasern lagert.

- Fig. 20 Querschnitt durch den Dünndarm der Cynthia mytiligera.
 - aa Blutsinus, C Costa, c die epitheltragenden Canäle mit ihren ampullenförmigen Brweiterungen (as), deren Bedeutung ich nicht sicher stellen konnte, s die Einstülpungen des Epithels der Tunica tertia, dd anliegende Canäle, deren Epithel dem der Tunica tertia äusserst ähnlich ist und die aussehen, als ob sie Binstülpungen desselben wären.
- Fig. 24. Bine Falte des Magens von Cynthia canopus, quer durchschnitten und stärker vergrössert (Zeiss E. Oc. II).

•

a Blutsinus mit dem spärlichen Zellenbeleg, b die Gefässschlingen, welche in die Darmfalte dringen, c ebensolche auf dem Quer-

Richard Hertwig, Beiträge u. s. w.

schnitt. Sie lassen erkennen wie das Protoplasma der Zellen einen vollkommenen Ring bildet, e Flimmerepithel des Darmeanals, S quadratisches Epithel, das den Darm von aussen umkleidet; beide auf einer homogenen Membran lagernd, A Bindegewebszellen.

Fig. 22. Ein Stück der Wand des Dünndarms von Cynthia canopus.
 Mesenterium, dessen Bpithel direct in das den Darm überzichende sich fortsetzt, g die Canäle mit cylindrischem Bpithel und homogenem Saum (vgl. 20), h Bindegewebskörperchen.

Tafel IX.

Fig. 23. Querschnitt durch den Oesophagus von Phallusia mamillata. e das Flimmerepithel, das auf einer homogenen Lamelle lagert, aber sich in Falten von ihr abhebt. Die Falten bedingen durch die grosse Undurchsichtigkeit der betroffenden Stelle wegen ihrer grösseren Dicke ein marmorirtes Aussehen des Epithels auf der Flächenansicht.

> aa Die grössern Blutgefässe und ihre feinen Endigungen in reiche Schlingenbildung, d die allseitig geschlossenen Follikel des honiggelben Organs mit ihren gelben Concrementen f.

- Fig. 24. 25. Querschnitte durch die Enden von Falten des Magens, um die Schlingen und Ampullen der Gefässverzweigung zu zeigen (a), von Phallusis mamillata.
- Fig. 26. Ein Stück der Wand eines Bläschens.

e die runden (aus Zellen entstandenen?) fettglänzenden Korperchen. d das von einzelnen derselben gebildete Netzwerk gleicher Substant.

- Fig. 27. Magen von Cynthia echinata von der Kiemenseite.
- Fig. 28 Querschnitt durch die von dem Muskelschlauch abgewandte Magenwand von Cynthia echinata.

dd Drüsenschlauch, m Magenepithel, s Secret der Drüsen, b Gerüst von feinen Bindegewebsfasern.

Fig. 29. Schematischer Querschnitt durch den gesammten Magen von Cynthia echinata.

M Muskelschlauch, a Blutsinus.

Fig. 30. Die Magenwand von Cynthia echinata der Länge nach durchschnitten.

d Die Querschnitte des Drüsenschlauchs, ee Einstülpungen des Epithels, welche die canalartigen Bildungen c c erzeugen.

- Fig. 34. Ein solcher durch Einstülpung entstandener Canal (Fig. 30) stärker vergrössert.
- Fig. 32. Magen von Cynthia microcosmus; man sieht auf die von der Musculatur abgewandte Fläche.

I Die Vertiefungen mit den Mündungen der Gallengange am Grunde.

Fig. 33. Schnitt durch die Magenwand von Cynthia microcosmus, welcher eine der Einmündungen getroffen hat.

g Die dichotomisch sich verästelnden Ausführgänge, a die Gruppen der Leberacini (doppelt so gross als in Natur).

- Fig. 34. Die Verzweigung eines Ausführgangs der Leber von Cynthia microcosmus.
- Fig. 85. Querschnitt durch die Wand des Magens von Cynthia microcosmus. *I* Leberschläuche (mit Carmin gefärbt), *a* Blutgefässe.

Zur Kenntniss der Phosphorverbindungen.

Vơn

A. Geuther und A. Michaelis.

I. Ueber ein neues Phosphoroxychlorid, das Pyrophosphorsäurechlorid.

Von den Chloriden der drei Phosphörsäuren hat man bisher nur das der gewöhnlichen Phosphorsäure, das Phosphoroxychlorid: POCI³ gehannt, unbekannt ist das Chlorid der Metaphosphorsäure: PO²Cl und war das Chlorid der Pyrophosphorsäure: P²O³Cl⁴. Es ist uns gelungen, eine Verbindung von der letzteren Zusammensetzung darzustellen, die wir als Pyrophosphorsäurechlorid bezeichnen wollen. Dasselbe entsteht bei der Einwirkung von Salpetrig – Salpetersäureanhydrid (N²O⁴) oder Salpetrigsäureanhydrid (N²O³) auf Phosphorchlortir.

Um es darzüstellen, verfährt man am besten auf die Weise, dass man die Dämpfe von Salpetrig-Salpetersäureanflydrid (sog. Untersilpetersäure), welchen man sich vorher durch Erhitzen von Bleinitrat fossig dargestellt hat, langsam zu stark abgekühltem überschüssigen Phosphorchlorür treten lässt in der Art, dass man das Kölbchen, worin der flüssige Anhydrid sich befindet, in Wasser von 30° setzt, während der Cylinder mit dem Phosphorchlortir durch eine Kältemischung von Eis und Kochsalz umgeben ist. Der letztere ist durch einen doppelt durchbohrten Kork verschlossen, welcher das über dem Chlorür endigende Zuleitungsrohr und ein Ableitungsrohr trägt. Auf 20 Grm. Untersalpetersäure wendet man 100 Grm. Phosphorchlorur an. Die Einwirlung findet sofort statt, es entwickeln sich Gase, von denen ein Theil u einer rothen Flüssigkelt condensirt werden kann, die sich bei gewöhnlicher Temperatur wieder in orangegelben Dampf verwandelt und mit wenig Wasser in Salzsäute und Salpetrigsäure zersetzt wird, also NOCl ist, während ein anderer Theil nicht condensirbar ist und aus Stickstoff mit etwas Stickoxyd besteht. Das Phosphorchlorur wird roth

A. Geuther und A. Nichaelis,

gefärbt, indem ein Theil des Salpetrigsäurechlorids bei ihm verbleibt, während sich gleichzeitig Phosphorsäureanhydrid ausscheidet. Nachdem alle Untersalpetersäure zudestillirt worden ist, wird der Cylinder aus der Kältemischung genommen und mit lauwarmem Wasser umgeben, um das Salpetrigsäurechlorid abzudestilliren. Darauf wird sein Inbalt in ein Destillationsgefüss gebracht und rectificirt. Zuerst destillirt viel unverändertes Phosphorchlorur, darauf zwischen 105° und 110° eine gleichfalls beträchtliche Menge von POCl³, während zuletzt der Siedepunkt rasch bis auf 200° steigt, von wo an bis 230° die neue Verbindung übergeht. Es ist zu empfehlen, sich erst durch wiederholte Darstellungen eine grössere Menge derselben zu bereiten, ehe man # ihrer weiteren Reinigung durch Rectification schreitet. Aus 350 Gro. Phosphorchlorür wurden durch so oft wiederholte Einwirkungen von Untersalpetersäure, bis kein Phosphorchlorür mehr unverändert vorhanden war, erhalten: 232 Grm. gewöhnliches Phosphoroxychlorid und nur 40 Grm. des höher siedenden Productes, d. b. nur 11,4 % der angewandten Phosphorchlorürmenge.

Man kann, wie oben erwähnt, auch an Stelle des Salpetrig-Salpetersäureanhydrids die durch Chlorcalcium getrockneten Dämpfe des Salpetrigsäureanchydrids anwenden, wie man sie mit Kohlensäure gemischt bei der Einwirkung von Salpetersäure auf Stärke erhält. Man wendet am hesten auf 100 Grm. Phosphorchlortir 30 Gr. Stärke und 180 Grm. Salpetersäure an, rectificirt dann das Product und leitet zu dem unter 100° Siedendem die dem angegebenen Verhältniss entsprechende Menge neuer Dämpfe von Salpetrigsäureanhydrid. Wir erhielten auf diese Weise aus 200 Grm. Phosphorchlorur 20 Grm. des höher siedenden Productes, also nur 10% und relativ mehr Phosphor-Da die Einwirkung hierbei nicht so lebhaft ist, offensäureanhydrid. bar weil der Salpetrigsäureanhydrid mit Kohlensäure verdünnt ist, so braucht man nur mit kaltem Wasser zu kühlen.

Das auf eine dieser Weisen dargestellte Product destillirt zwischen 210 und 215° über, es hat die Zusammensetzung: P²O³Cl⁴, wie die folgende Analyse zeigt, und kann also als das Chlorid der Pyrophosphorsäure angeschen werden. Die Analyse desselben wurde so ausgeführt, dass eine im Röhrchen abgewogene Menge in einem Cylinder mit Wasser zersetzt wurde. Es wurde darauf das Chlor in der mit Salpetersäure angesäuerten Flüssigkeit durch Silbernitrat gefällt und nach Entfernung des überflüssigen Silbers mittelst Salzsäure nach dem Einkochen des Filtrats die Phosphorsäure als Ammonium-Magnesium-Phosphat niedergeschlagen.

0,4882 Grm. Substanz lieferten so 1,1128 Grm AgCl², entspre-

chend 56, $1^{\circ}/_{0}$ Chlor und 0, 4372 P²O⁷Mg², entsprechend 25, $0^{\circ}/_{0}$ Phosphor.

ber. gef. $P^2 = 24,60 \cdot 25,0$ $O^3 = 19,05 Cl^4 = 56,35 - 56,4$

Das Pyrophosphorsäurechlorid ist eine farblose Flüssigkeit, deren Siedepunkt bei etwa 245° liegt, welche sich aber nicht völlig unzersett destilliren lässt, indem ein Theil dabei stets in gewöhnliches Phosphoroxychlorid und Phosphorsäureanhydrid zerfällt nach der Gleichung:

 $3 P^{2}O^{3}Cl^{4} = 4 POCl^{3} + P^{2}O^{5}$

Die Dämpfe desselben rauchen an der Luft wie die von Schwefelsiureanhydrid und verkohlen den Kork. Sein spez. Gewicht ist 1,58 bei + 7°. Unter den Umständen, unter welchen gewöhnliches Phosphoroxychlorid krystallisirt 1), bleibt es flüssig. Mit Wasser zersetzt es sich sofort unter Wärmeentwickelung ohne vorher darin, wie das gewihnliche Phosphoroxychlorid, tropfenförmig unterzusinken.

Die Zersetzungsproducte sind Salzsäure und gewöhnliche Phosphorsäure. Letztere kann in reichlicher Menge sofort nach der Zersetzung, auch wenn dabei jede Erwärmung durch Abkühlung und langsamen Zusatz des Chlorids zu viel Wasser vermieden worden ist, durch Silbernitrat und Magnesiumlösung nachgewiesen werden.

Die rationelle Formel dieses Phosphoroxychlorids ist:

$${}^{V}P_{Cl^{2}}^{0} - {}^{V}P_{Cl^{2}}^{0} = {}^{V}POCl^{2} - 0 - {}^{V}POCl^{2}$$

d. h. die zwei monovalenten Gruppen POCl² werden durch ein **Bischungsgewicht Sauerstoff zusammengehalten.** Dies beweisen die **Producte**, welche entstehen, wenn an Stelle des einen Mgt. Sauerstoff, welches diesen Zusammenhang herstellt, indem es von beiden Phosphormischungsgewichten je eine Werthigkeit beschäftigt, monovalente Elemente oder Gruppen treten, wie es bei der Einwirkung auf dasselbe we Phosphorpentachlorid, Phosphorpentabromid und Alkohol geschieht.

1) Wird ein Mgt. P²O³Cl⁴ mit 1 Mgt PCl⁵ in ein Rohr eingeschlossen, scheint in der Kälte keine Einwirkung statt zu finden, wenn aber Wasserbade erhitzt wird, so tritt allmählich Verflüssigung der gan-Hasse ein und nun ist der Röhreninhalt zu reinem gewöhnlichen Phosphoroxychlorid geworden nach der Gleichung:

¹⁾ Siehe weiter unten.

A. Genther und A. Michaelis,

$P^{2}O^{3}Cl^{4} + PCl^{5} = 2 POCl^{3} + POCl^{3}$

2) Wird 4 Mgt. P $^{2}O^{3}Cl^{4}$ (14 Grm.) mit 4 Mgt PBr⁵ (18,8 Grm.) in ein Rohr eingeschlossen und im Wasserbade so lange erhitzt, bis sich beim Erkalten keine gelben Krystalle von Phosphorpentabromid mehr ausscheiden und alles flüssig bleibt, so beginnt bei stärkerem Abkühlen die Bildung von Phosphoroxybromidkrystallen. Die davon abgegossene rothe Flüssigkeit wurde wiederholt fractionirt, um das noch gelöste Phosphoroxybromid zu entfernen. Ausser diesem und einer kleinen Menge von gewöhnlichem Phosphoroxychlorid, welches wohl als ein Product der Wärmewirkung auf das Phosphorsäurechlorid anzusehen ist, konnte ein zwischen 135 und 137° siedendes farbloses Product erhalten werden, das nichts anderes als Phosphoroxybromchlorid POBrCl² war, wie seine Eigenschaften und die damit angestellte Analyse zeigen.

Es ergaben nämlich:

0,6371 Grm. desselben 0,362 Grm. P2O⁷Mg⁴, entspr. 15,9 Proc. Phosphor und 4,3607 Grm. AgCl² + AgBr². Davon verloren 4,0345 Grm. beim Glühen in Chlorgas 0,0933 Grm., woraus sich für die ganze Menge 37,5 $^{0}/_{0}$ Chlor und 39,7 $^{0}/_{0}$ Brom berechnen.

ber. gef.

$$P = 45,6$$
 $15,9$
 $O = 8,4$ -
 $Br = 40,4$ $39,7$
 $Cl^2 = 35,9$ $37,7$
 $100,0$

Die Abweichung der gefundenen von den berechneten Mengen rührt offenbar von einer geringen Verunreinigung der Verbindung durch Phosphoroxychlorid her, welches sich bei nicht sehr grossen Mengen nur sehr schwer ganz vollständig entfernen lässt. Darauf deuten auch das etwas geringere spec. Gewicht unseres Productes, welches zu 2,01 bei + 9° gefunden wurde, während das des reinen Productes bei $0^{\circ} = 2,06$ ist, hin, sowie der etwas geringere Schmelzpunkt. Derselbe wurde zu + 10° gefunden, während der von reinem auf andere Weise bereitetem Phosphoroxybromchlorid von uns zu + 11° bestimmt wurde ¹).

Die Einwirkung des Phosphorpentabromids auf das Pyrophosphorsaurechlorid verläuft also analog der des Phosphorpentachlorids nach der Gleichung:

 $P^2O^3Cl^4 + PBr^5 = 2 POBrCl^2 + POBr^3$.

1) Siehe weiter unten.

3) Die Einwirkung des Alkohols auf das Chlorid wurde so vor gehen gelassen, dass zu 2 Mgtn. absol. Alkohols, der sich in einer umgekchrtem Kühler verbundenen und mit Eiswasser gekühlten orte befand, vermittelst eines Hahntrichters 4 Mgt. P2O3Cl4 tropfense fliessen gelassen wurde. Die Einwirkung ist nicht beftig, die rofen des Chlorids verschwinden in Alkohol sofort ohne Zischen, wie bei der Anwendung von gewöhnlichem Phosphoroxychlorid bemerkt rd. Nach beendigter Reaction wurde die absorbirte Salzsäure durch sleiten von Kohlensäuregas entfernt und dann die dicke Flüssigkeit Kohlensäurestrom destillirt. Es ging unter starkem Schäumen eine blose Flüssigkeit über, während ein durchsichtiger schwach gelbther dicker Rückstand blieb. Die Erstere abermals destillirt ging im upamen Kohlensäurestrom bei 167º über, besass also den Siedemit des Aethylphosphorsäurechlorids PO. OC²H⁵. Cl² und war auch seinen übrigen Eigenschaften, als dieser Körper zu erkennen; der ettere war in Wasser löslich, reagirte sauer und gab mit Bleicarbonat miralisirt ein in Wasser lösliches Bleisalz von den Eigenschaften des Chylphosphorsauren Bleis.

Darnach findet die Zersetzung des Pyrophosphorsäurechlorids durch kohol in einer Weise statt, welche durch folgende 2 Phasen ausgerücht werden kann:

$2 P^{2}O^{3}Cl^{4} + 4 C^{2}H^{6}O = 4 PO \cdot OC^{2}H^{5} \cdot Cl^{2} + 2 OH^{2}$ $2 OH^{2} + PO \cdot OC^{2}H^{5} \cdot Cl^{2} = PO \cdot OC^{2}H^{5} \cdot (OH)^{2} + 2 ClH$

Wenn diese drei angeführten Reactionen also die obige für das prophosphorsäurechlorid aufgestellte Constitutionsformel bestätigen, dem sie zeigen, dass, sobald an die Stelle des den Zusammenhang #stellenden einen Mischungsgewichts Sauerstoff zwei monovalente emente oder Gruppen treten, ein Zerfallen der Verbindung in Abmmlinge der gewöhnlichen Phosphorsäure vor sich geht, wie es jene mul verlangt, so ist immerhin bemerkenswerth, dass dies auch bei # Einwirkung von Wasser zu geschehen scheint. Denn es ist oben geführt worden, dass auch, wenn viel kalt gehaltenes Wasser angeandt und das Oxychlorid langsam eingegossen wird, sofort grosse engen von gewöhnlicher Phosphorsäure nachgewiesen werden können, vielleicht gar keine Pyrophosphorsäure durch Umsetzung gebildet ird. Man muss, um dies zu erklären, annehmen, dass die leichte fänderlichkeit der Pyrophosphorsäure in wässriger Lösung es bedingt, enn man nicht dieser letzteren Säure überhaupt eine andere Constinion zuerkennen will, als sie die Formel:

A. Genther und A. Michaelis,

$$\overset{\bullet}{\overset{\bullet}{\operatorname{P}}} \overset{O}{\underset{OH}{\operatorname{OH}}} \overset{\bullet}{\overset{\bullet}{\operatorname{P}}} \overset{O}{\underset{OH}{\operatorname{OH}}} = \overset{\bullet}{\operatorname{PO}} (OH)^2 - O - \overset{\bullet}{\operatorname{PO}} (OH)^2$$

ausdrückt. Eine solche andere, weniger symmetrische Constitution dieser Säure wird durch die Formel:

wiedergegeben. Darnach ist die Pyrophosphorsäure nicht der Abkömmling einer Trihydroxy-Phosphorsäure, sondern der einer Perhydroxyphosphorsäure, in welcher 2 Mgte. Hydroxylwasserstoff durch die divalente Gruppe PO. OH ersetzt sind oder mit andern Worten es sind nicht in ihr 2 gleiche monovalente Gruppen durch 4 Mgt. Sauerstoff verknüpft, sondern 2 verschiedene divalente Gruppen durch 2 Mgte. Sauerstoff zusammengehalten. Das Chlorid einer solchen Säure müsste natürlich auch eine andere Constitution als das von uns dargestellte habon. Vorläufig liegen noch nicht genügende Anhaltspunkte vor, um diese Frage entscheiden zu können.

Die Darstellung eines dem Pyrophosphorsäurechlorid entsprechenden Bromids durch Einwirkung von N²O⁴ oder N²O³ auf PBr³ gelang nicht: es entstanden nur gewöhnliches Phosphoroxybromid und Phosphorsäureanhydrid.

II. Ueber die Krystallisationsfähigkeit des gewöhnlichen Phosphoroxychlorids und des Phosphoroxybromchlorids.

Einige Versuche, das Pyrophosphorsäurechlorid auf noch andere Weise darzustellen, als es im Vorhergehenden mitgetheilt worden ist, haben, wenngleich sie nicht das gewünschte Resultat ergaben, doch einige neue Eigenschaften des Phosphoroxychlorids kennen gelehrt.

Das Pyrophosphorsäurechlorid konnte auch entstehen aus Phosphorsuperchlorid und Phosphorsäureanhydrid nach der Gleichung:

$$3 P^{2}O^{5} + 4 PCl^{5} = 5 P^{2}O^{3}Cl^{4}$$

Wir haben diese beiden Körper in dem geforderten Verhältniss in Röhren eingeschlossen auf einander einwirken lassen, bei gelinder Wärme sowohl, als bei Winterkälte aber nur gewöhnliches Phosphoroxychlorid neben übrig gebliebenem Phosphorsäureanhydrid erhalten.

Vinterkälte verläuft die Einwirkung sehr langsam und ist erst nach auf mehrerer Tage beendigt. Als darnach das Rohr einer Kälte $12 - 45^{\circ}$ weiter ausgesetzt blieb, hatten sich in demselben grosse lose Krystallblätter gebildet, die wenig unter 0° schmolzen und n längeren Liegen in niederer Temperatur wieder erschienen, ja in che schliesslich die ganze Flüssigkeit sich verwandelte. Diese Krylle sind, wie die Untersuchung ergab, eben nichts anderes, als gebnliches Phosphoroxychlorid. Bei einem andern Versuch wurden che Krystalle gleichfalls beobachtet. Als wir nämlich Selpetrigsäurehydrid auf stark abgekühltes Phosphoroxychlorid einwirken liessen, n zu sehen, ob sich die Gleichung:

 $2 \text{ POCl}^3 + \text{N}^2\text{O}^3 = \text{P}^2\text{O}^3\text{Cl}^4 + 2 \text{ NOCl}^3$

erwirklichen lasse, fand keine oder nur sehr geringe Einwirkung statt, ber das Phosphoroxychlorid war noch ehe die rothen Dämpfe dazu raten vollständig in eine weisse Krystallmasse verwandelt.

Directe Versuche ergaben dann Folgendes :

Kühlt man reines Phosphoroxychlorid einige Zeit auf — 40° ab, **b** bleibt es noch flüssig, meist auch noch, wenn es umgeschüttelt wird, berührt oder reibt man aber mittelst eines spitzen Glasstabes innerhalb der Flüssigkeit die Gefässwand, so erstarrt es sofort krystallinisch. Die ingen, farblosen, blättrigen oder säulenförmigen Krystalle schmelzen sit bei — $4,5^{\circ}$ wieder. Sie sind unter dieser Temperatur sehr betändig und können längere Zeit auf Eis liegen, ohne sich zu zersetzen, je selbst mit der — 40° kalten Kochsalzlösung der Kältemischung zutämmen, verschwinden sie erst nach längerer Zeit. Ein kleiner Krytäll davon vermag eine auf — 2° abgekühlte grössere Menge flüssigen Oxychlorids leicht völlig zum Erstarren zu bringen.

Nach diesen Erfahrungen über das Phosphoroxychlorid war es sehr wahrscheinlich, dass auch das Phosphoroxybromchlorid POBrCl², welche bis jetzt auch nur im flüssigen Zustande bekannt war, krystallitiren würde, da ja auch das Phosphoroxybromid aus erst bei + 46° schmelzenden Krystallen besteht. Der Versuch hat dies bestätigt. Die heim Abkühlen der Verbindung unter 0° erhaltenen grossen, farbkoen, blättrigen Krystalle wurden erst bei + 41° wieder flüssig.

Es sieht so aus, als ob das gewöhnliche Phosphoroxychlorid, das Phosphoroxybromchlorid und das Phosphoroxybromid isomorph wären.

Jena, Univ.-Laboratorium, Marz 1871.

Ueber die Einwirkung von Phosphorchlorür auf Anhydride und Chloride.

į

Von

Dr. A. Michaelis.

Zweite Mittheilung.

Bei der Fortsetzung meiner Versuche üher die Einwirkung von Phosphorchlorür auf Anhydride und Chloride hahe ich im Allgemeinen gefunden, dass meistens dann, wenn in der auf das Phosphorchlorüf einwirkenden Verbindung, ein Körper enthalten ist, der grosse Affinitä zum Chlor hat, viel Phosphorsäure und wenig Phosphoroxychlorid gebildet wird. So bilden z. B. die meisten Metalloxyde Chlormetalphosphorsaures Salz und wenig Phosphoroxychlorid. Direct zu Metareducirt wird nur das Bleioxyd.

Ferner ist hervorzuheben, dass freies Antimon aus Phosphorchlor den Phosphor frei macht unter Bildung von Antimonchlor timon hat also, bei höherer Temperatur wenigstens, die grösste Affinität zum Chlor.

Es folgen nun die einzelnen Versuche.

5. Phosphorchlorür und Schwefligsäureanhydrid.

Da, wie ich früher gezeigt habe, flüssiges Schwefligsäureanhydri selbst in höherer Temperatur nicht von Phosphorchlorür veränder wird, so liess ich schweflige Säure mit Phosphorchlorürdampf zusam men durch ein glühendes Rohr gehen. Es bildete sich dabei Phosphor oxychlorid und Phosphorsulphochlorid, während sich an den kältere Stellen des Rohres Schwefel abschied.

 $SO^2 + 3 PCl^3 = PCl^3S + 2 PCl^3 O.$

6. Phosphorchlorür und Sulphurylhydroxylchlorid.

In der Voraussetzung, dass diese Körper nach der Gleichung

$$PCl^{3} + 3 SO^{2}(OH)Cl = P(OH)^{3} + 3 SO^{2}Cl^{2}$$

aufeinander einwirken, sich also Sulphurylchlorid bilden würde, brachte ich in eine mit einem umgekehrten Linsuc'schen Kühler verbundene Betorte, 4 Mgt. PCl³ und 3 Mgt SO²(OH)Cl. Es erfolgte schon in der Kälte Einwirkung, unter Entwickelung von schwefliger Säure und Salzsäure. Zuletzt wurde, um die Beaction zu vollenden und die absorbirten Gase zu entfernen, einige Zeit erhitzt, wobei trotz guten Kühlens eine Verflüchtigung von Phosphorchlorür nicht vermieden werden konnte, was daraus ersehen werden konnte, dass sich in dem vorgelegten Wasser, von welchem die Gase absorbirt wurden, Schwefel abschied. Durch Destillation der zurückgebliebenen Flüssigkeit wurde S²O⁵Cl², an seinem Siedepunkt und seinem Verhalten zu Wasser und etwas unverändertes SO²(OH)Cl erhalten, während Phosphorsäureanhydrid zurückblieb.

Die Zersetzung war also nach der Gleichung:

 $2 \text{ PCl}^3 + 8 \text{ SO}^2(\text{OH})\text{Cl} = P^2O^5 + 3 \text{ S}^2O^5\text{Cl}^2 + 2 \text{ SO}^2 + 8 \text{ HCl}$ vor sich gegangen.

7. Phosphorchlorür und Pyrosulphurylchlorid.

Eine Mischung von 2 Mgt Phosphorchlorür und 1 Mgt S²O⁵Cl² entwickelt schon in der Külte schweflige Säure, unter Bildung von Phosphoroxychlorid und Phosphorsuperchlorid, welches letztere sich krystallinisch ausscheidet. Die Einwirkung findet also nach der Gleichung

$$S^{2}O^{5}Cl^{2} + 2PCl^{3} = 2SO^{2} + PCl^{3}O + PCl^{5}$$

siati.

Da nun S²O⁵Cl² aus PCl³ und SO²(OH)Cl, dieses aber wieder aus SO⁴H² und PCl³ gebildet werden kann, so lässt sich auch die Schwefelsäure durch Phosphorchlorür völlig in schweflige Säure verwandeln, unter Bildung von PCl⁵ und P²O⁵ resp. PCl³O. Man hat dazu gleiche Mgt. beider Substanzen nöthig:

 $8 \text{ PCl}^3 + 8 \text{ SO}^4\text{H}^2 = 8 \text{ SO}^2 + \text{PCl}^3\text{O} + \text{PCl}^5 + 3 \text{ P}^2\text{O}^5 + 46 \text{ HCl}$ oder

 $3 \text{ PCl}^3 + 3 \text{ SO}^4\text{H}^2 = 3 \text{ SO}^2 + \text{PCl}^3\text{O} + \text{P}^2\text{O}^5 + 6 \text{ HCl}.$

A. Michaelis,

8. Phosphorchlorür und Chromacichlorid.

Da diese Körper sehr heftig auf einander einwirken, wurde das Chromacichlorid vermittelst eines Scheidetrichters langsam zu stark abgekühltem Phosphorchlorür fliessen gelassen, welches sich in einer mit dem umgekehrten LIBBIG'schen Kühler verbundenen Retorte befand.

Jeder Tropfen verursacht lebhaftes Zischen und Feuererscheinung, die jedoch nur zuerst sichtbar ist, indem sich bald die Retorte mit einem undurchsichtigen blaugrünen Anflug beschlägt. Die letzten Tropfen verursachen zuweilen Detonation.

Der halbfeste blaugrüne Rückstand gab bei der Destillation im Kohlensäurestrom ausser überschüssigem Phosphorchlorür viel Phos-. phoroxychlorid und etwas Phosphorsuperchlorid. Die in der Retorte zurückbleibende feste Masse erhitzte sich mit Wasser sehr stark und gab eine grüne Lösung, die viel Metaphosphorsäure enthielt, während violettes Chromchlorid zurückblieb. Chromchlorür hatte sich nicht gebildet. Die Einwirkung verlief demnach nach der Gleichung:

 $4 \text{ CrO}^2\text{Cl}^2 + 6 \text{ PCl}^3 = 4 \text{ CrCl}^3 + \text{PCl}^5 + 3 \text{ POCl}^3 + \text{P}^2\text{O}^5$

oder

 $12 \text{ CrO}^2\text{Cl}^2 + 18 \text{ PCl}^3 = 12 \text{ CrCl}^3 + 14 \text{ POCl}^3 + 2 \text{ P}^2\text{O}^3.$

Die Heftigkeit der Einwirkung zeigt, dass der Sauerstoff im Chromacichlorid nur sehr lose gebunden sein muss.

9. Phosphorchlorür und Kaliumbichromat.

In der Kälte war keine Einwirkung zu bemerken; als aber das Kaliumbichromat mit überschüssigem Phosphorchlorür im zugeschmolzenen Rohr auf 166° erhitzt wurde, nahm das Salz eine sehr dunkle Farbe an Nach zweitägigem Erhitzen wurde die Flüssigkeit im Kohlensäurestrom abdestillirt. Sie enthielt neben überschüssigem Phosphorchlorür Phosphoroxychlorid. Der trockene Rückstand löste sich beim Behandeln mit verdünnter Essigsäure mit rothbrauner Farbe, während braunes Chromoxyd zurückblieb.

Aus der Lösung krystallisirte zuerst viel unverändertes Kaliumbichromat, dann bildeten sich kleinere Krystalle eines anderen Salzes, die beim Erhitzen deutlich Chlor entwickelten. Diese bestanden offenbar aus chlorchromsaurem Kali. Ausserdem war in der wässrigen Ueber die Einwirkung von Phosphorchlorür auf Anhydride und Chloride. 113

Lisung Phosphorsäure enthalten. Wahrscheinlich hatte also folgende Einwirkung stattgefunden:

 $30 \operatorname{Cr}^{2}\operatorname{O}^{7}\operatorname{K}^{2} + 42 \operatorname{PCl}^{3} = 48 \operatorname{Cr}\operatorname{O}^{3} \operatorname{KCl} + 45 \operatorname{PO}^{3}\operatorname{K} + 42 \operatorname{Cr}\operatorname{O}^{2} + 27 \operatorname{KCl} + 27 \operatorname{POCl}^{3}.$

10. Phosphorchlorür und Antimonigsäureanhydrid.

Antimonigsäureanhydrid mit überschüssigem Phosphorchlorür auf 160° im zugeschmolzenen Rohr erhitzt, färbte sich bald roth und es Mideten sich lange weisse Krystalle, die nach zweitägigem Erhitzen des Rohrs drusenförmig wurden. Die Untersuchung der Flüssigkeit reigte, dass sich kein Phosphoroxychlorid gebildet hatte. Die Krystalle erwiesen sich durch ihr Verhalten gegen Wasser als SbCl³, ein weisser morpher Körper, der neben den Krystallen sich ausgeschieden hatte, war Phosphorsäureanhydrid. Das rothe Pulver wurde zuerst mit verdünnter Salzsäure, dann mit Wasser ausgewaschen und über Schwefelsiure getrocknet. Im offenen Rohr erhitzt, entzündete es sich, bei Luftabschluss sublimirte Phosphor. In Salpetersäure war es beim Erwärmen unter Zischen löslich, Antimon nur in geringer Menge darin enthalten. Es war also zweifellos, dass dieses Pulver amorpher Phosphor war. Da bei der Einwirkung von Phosphorchlorür auf Arsenigsureanhydrid sich Phosphorsäureanhydrid, Chlorarsen und freies Arsen gebildet hatten¹), so lag die Vermuthung nahe, dass das auf analoge Weise freigewordene Antimon Phosphor aus dem Chlorür abgeschieden habe.

Es wurde deshalb feingeriebenes Antimon mit Phosphorchlorür im zugeschmolzenen Rohr auf 460° erhitzt. Auch hier schied sich bald ein rothes Pulver aus, unter Bildung von weissen Krystallen. Die Untersuchung dieser Producte zeigte, dass in der That das Antimon aus dem Phosphorchlorür Phosphor frei gemacht und Antimonchlorür sich gebildet hatte.

Daraus folgt zunächst, dass die Einwirkung des Phosphorchlorürs auf antimonige Säure analog der auf arsenige Säure ist, nur dass hier das abgeschiedene Antimon Phosphor frei macht, was das Arsen nicht thut. Die zuerst gebildeten weissen Krystalle waren wohl Antimonosychlorür, welches dann allmählich in Antimonchlorür verwandelt wurde.

Ferner folgt auch daraus, dass das Antimon — wenigstens bei Wherer Temperatur — grössere Affinität zum Chlor hat, als Phosphor

¹⁾ Vergl. d. Zeitschrift. Bd. VI. p. 244. 24. VI. 4.

A. Michaelis,

Arsen und Wismuth, denn Arsen mit Phosphorchlorür eingeschlossen giebt nur Spuren von ausgeschiedenem Phosphor, Wismuth etwas mehr

11. Phosphorchlorür und Antimonsäureanhydrid.

Beide Körper im zugeschmolzenen Rohr zusammen auf 460° erhitzt, wirken leicht auf einander ein, unter Bildung einer grossen Menge weisser Krystalle, welche aus Antimonchlorür bestanden und eines amorphen weissen Körpers der Phosphorsäureanhydrid war. Phosphoroxychlorid hatte sich nur spurenweis gebildet. Danach hatten sich also Sauerstoff und Chlor einfach ausgetauscht.

$$Sb^{2}O^{5} + 2PCl^{3} = 2SbCl^{3} + P^{2}O^{5}$$

Auch hier zeigt sich wieder die grosse Affinität des Chlors zum Ahtimon. Bei Arsensäure tritt, wie ich früher gezeigt habe, gar keine Einwirkung ein, offenbar wegen der geringeren Affinität des Arsens zum Chlor.

Auch kann man nicht annehmen, dass sich zuerst Antimonsäureantimonigsäureanhydrid (Sb²O⁴) und PCl³O gebildet habe und letztere sich dann in Phosphorsäure und Antimonchlorür umsetzten:

 $Sb^2O^5 + PCl^3 = Sb^2O^4 + PCl^3O$

 $Sb^{2}O^{1} + PCl^{3}O = SbCl^{3} + P^{2}O^{5}$,

da Phosphoroxychlorid fast gar nicht auf Sb2O4 einwirkt.

12. Phosphorchlorür und Wismuthoxyd.

Nach dreitägigem Erhitzen beider Körper im zugeschmolzenen Rohr auf 160° war der Röhreninhalt dunkelgelbbraun geworden. Die im Kohlensäurestrom abdestillirte Flüssigkeit bestand aus überschüssigem Phosphorchlorür und Phosphoroxychlorid. Von dem trocknen Rückstand wurde ein Theil im Röhrchen erhitzt; es sublimirte BiCl³, ein anderer Theil wurde mit Schwefelammonium digerirt; das Filtratenthielt Phosphorsäure. Der Rest gab beim Kochen mit Salzsäure ein schwarzes Pulver, das, als es ausgewaschen war, sich als metallisches Wismuth zu erkennen gab. Dies machte es wahrscheinlich, dass neben BiCl³ auch BiCl² sich bildete, letzteres aber beim Kochen mit Salzsäure in BiCl³ und freies Wismuth zerfiel. Danach verlief also die Einwirkung nach der Gleichung:

 $7 \operatorname{Bi}^{2}O^{3} + 7 \operatorname{PCl}^{3} = 2 \operatorname{P}^{3}O^{9}\operatorname{Bi}^{2} + 8 \operatorname{Bi}\operatorname{Cl}^{2} + \operatorname{PCl}^{3}O + 2 \operatorname{Bi}O\operatorname{Cl}^{3}$

Ueber die Einwirkung von Phosphorchlorür auf Anhydride und Chloride. 115

Die Bildung von BiOCl ist desshalb anzunehmen, weil der Rücknd unverändertes Wismuthoxyd enthielt.

13. Phosphorchlorür und Bleioxyd.

Im zugeschmolzenen Rohr auf 460° erhitzt wirken diese Körper cht auf einander ein, befeuchtet man aber Bleioxyd mit Phosphorlorur und erhitzt direct über der Lampe, so erfolgt heftige Einwirang unter Erglühen des Bleioxyds und Flammenerscheinung.

Es wird hierbei viel metallisches Blei reducirt zugleich unter Bilung von Bleichlorid und phosphorsaurem Blei

6 PbO + 2 PCl³ = P^2O^6Pl + 3 PbCl² + 2 Pb.

Da dieser Versuch sich sehr leicht anstellen lässt, so ist er sehr geeignet, die reducirende Wirkung des Phosphorchlorürs zu zeigen.

14. Phosphorchlorür und Bleisuperoxyd.

Trägt man in erwärmtes Phosphorchlorür Bleisuperoxyd nach und nach ein, so sieht man bei jedesmaligem Eintragen Feuererscheinung. Nach stärker ist diese, wenn man umgekehrt Phosphorchlorür zu Bleisuperoxyd tropft. Trägt man Bleisuperoxyd in kaltes Phosphorchlorür, so erfolgt die Einwirkung nur unter Zischen ohne Feuererscheinung. Destillirt man dann die Flüssigkeit von den ausgeschiedenen festen Producten ab, so erhält man ausser überschüssigem Phosphorchlorür -Phosphoroxychlorid. Der Rückstand besteht aus Chlorblei und phosphorsaurem Blei. Demnach geht die Einwirkung so von statten

 $4 PbO^{2} + 4 PCl^{3} = P^{2}O^{6}Pb + 3 PbCl^{2} + 2 PCl^{3}O$

15. Phosphorchlorür und Zinnoxyd.

Zinnoxyd mit überschüssigen Phosphorchlorür auf 460° erhitzt wurde bald dunkelbraun. Nach zweitägiger Einwirkung wurde die Plässigkeit im Kohlensäurestrom abdestillirt. Sie enthält kein Phosphoroxychlorid, aber Vierfachchlorzinn. Von dem trocknen Rückstand wurde ein Theil mit Wasser behandelt, ein Theil mit Natronlauge digerirt. Die wässrige Lösung gab mit Schwefelwasserstoff eine starke Fällung von braunem Schwefelzinn, der alkalische Auszug zeigte nach Entfernung des gelösten Zinns mit Schwefelwasserstoff starke Reaction auf Phosphorsäure. Die Zersetzung verlief also nach der Gleichung:

 $5 \text{ SnO}^2 + 4 \text{ PCl}^3 = 4 \text{ SnCl}^2 + \text{SnCl}^4 + 2 \text{ P}^2\text{O}^5.$

16. Phosphorchlorür und Kupferoxyd.

Beide Körper wurden im zugeschmolzenen Rohr auf 160 ° erhitt, wobei der Röhreninhalt sich bald schwarzblau färbte. Bei der Destillation im Kohlensäurestrom ging neben dem überschüssig angewandten Phosphorchlorür Phosphoroxychlorid über. Der trockne Rückstand wurde mit ausgekochtem Wasser ausgezogen und rasch filtrirt. Im Filtrat erfolgte durch kohlensaures Natron eine grüne Fällung, es war also Kupferchlorid gebildet. Durch Salzsäure liess sich aus dem Rückstand viel, durch Alkalien gelb fällbares Kupferchlorür ausziehen. Ausserdem war noch Phosphorsäure gebildet. Die Einwirkung war also nach der Gleichung

 $17 \text{ CuO} + 5 \text{ PCl}^3 = 2 \text{ P}^2\text{O}^8\text{Cu}^3 + 10 \text{ CuCl} + \text{CuCl}^2 + \text{PCl}^8\text{O}$ verlaufen.

Befeuchtet man Kupferoxyd mit Phosphorchlorür, so tritt bei starkem Erhitzen über der Lampe Erglühen und Flammenerscheinung ein.

17. Phosphorchlorür und Quecksilberoxyd.

Gefälltes Quecksilberoxyd wird. schon in der Kälte von Phosphorchlorur angegriffen, krystallisirtes erst beim Erhitzen im zugeschmolzenen Rohr auf 160°. Es entstehen dabei ähnliche Producte wie bei der Einwirkung auf Kupferoxyd: Calomel, Sublimat (der sich theilweise mit Quecksilberoxyd zu basischem Chlorid vereinigt), phosphorsaures Quecksilberoxyd und wenig Phosphoroxychlorid:

 $\exists 7 \text{ HgO} + 5 \text{ PCl}^3 = 2 \text{ P}^2\text{O}^3\text{Hg}^3 + 10 \text{ HgCl} + \text{HgCl}^2 + \text{PCl}^3\text{O}.$

18. Phosphorchlorür und Molybdänsäure.

Molybdänsäure färbt sich schon in der Kälte mit Phosphorchlorür unter Erwärmen blau. Beim Erhitzen im zugeschmolzenen Rohr auf 460° nimmt dann der Röhrerinhalt allmählich eine dunkelbraune Farbe an. Nach zweitägigem Erhitzen wurde die Flüssigkeit durch Destillation im Kohlensäurestrom von den festen Producten getrennt. Das Destillat bestand aus überschüssig angewandtem Phosphorchlorür und Phosphoroxychlorid. Derselbe Rückstand gab beim Erhitzen ein gelbweisses wolliges Sublimat von MoO²Cl², beim Behandeln mit Wasser erhitzte er sich stark, indem er sich theilweise mit brauner Farbe löste. Aus dem Filtrat fällte Ammoniak einen braunen Niederschlag, der wahrscheinlich aus Mo(OH)² bestand. In dem Filtrat von diesem Niederschlag liess sich viel Phosphorsäure nachweisen. Der in Wasser unlösliche Theil oxydirte sich auf dem Filter zu dunkelbraunem Molybdänsäuremolybdänoxyd, woraus man schliessen kann, dass er MoO² war. Hiernach ist die Einwirkung vielleicht als in zwei Phasen erfolgt anzunehmen :

> $MoO^3 + PCI^3 = MoO^2 + PCI^3O$ 3 $MoO^3 + 2 PCI^3O = MoO^2CI^2 + P^2O^5$

Durch die Phosphorsäure wurde dann wahrscheinlich das braune Filtrat veranlasst.

19. Phosphorchlorür und Wolframsäure.

Wolframsäure mit Phosphorchlorür selbst bis 200⁹ erhitzt färbt sich nur oberflächlich grün, ohne sonst weiter verändert zu werden.

Auch auf Mangansuperoxyd und Eisenoxyd übt das Phospborchlorür keine Einwirkung aus.

Jena, Univ.-Laboratorium, März 1871.

ş

Chemische Mittheilungen.

Von

A. Geuther.

I. Zur Kenntniss des Nitrosodiaethylins.

Auf meine Veranlassung hat Herr Dr. L. SCHIELE einige Versuche mit dem noch wenig gekannten Nitrosodiaethylin vorgenommen, deren Resultate in Folgendem mitgetheilt werden.

1. Gegen starke Basen, wie Kalium- oder Natrium hydroxyd ist das Nitrosodiaethylin sehr beständig, es wird weder von verdünnter noch concentrirter, wässriger oder alkoholischer Lösung bei gewöhnlicher Temperatur noch bei 100° verändert. Erst bei Temperaturen über 100° tritt langsam Zersetzung ein und zwar früher bei Anwendung von alkoholischer als bei wässriger Lösung.

Als wässrige concentrirte Kalilauge mit Nitrosodiaethylin 8 Stunden auf 130° erhitzt worden war, wurde ein schwacher Druck im Innern des Rohrs beim Oeffnen bemerkt und alkalische Reaction der Röhrenluft wahrgenommen. Durch längeres Erhitzen im Wasserbade aber konnte ebensowenig etwas überdestillirt werden, als eine wesentliche Abnahme der angewandten Nitrosodiaethylinmenge zu bemerken war. Als die Erhitzung eines solchen Rohres aber auf 155° während längerer Zeit vorgenommen wurde, fand die Zertrümmerung des Rohrs statt, ehe eine beträchtlichere Menge des Nitrosodiaethylins zersetzt worden war. Dasselbe fand bei einem zweiten und dritten Rohre statt, so dass im Innern derselben offenbar eine beträchtliche Gasentwicklung, vielleicht von Stickgas, stattgefunden haben musste.

Wendet man statt der wässrigen eine concentrirte alkoholische Lösung von Kaliumhydroxyd an, so ist das Verhalten ein ähnliches : heim Erhitzen auf 130° findet unter geringer Spannung im Rohr nur Chemische Mittheilungen.

nge Zersetzung statt, bei 140° war die Zersetzung beträchtlicher, r immer noch nicht schr bedeutend, als dagegen 8 Stunden auf ^o erhitzt worden war, zeigte sich ein grössorer Theil von Nitrosodiaein zersetzt, das beim Oeffnen des Rohrs zuerst entströmende Gas · brennbar, das später folgende nicht. Als das Rohr im Wasserbade rärmt wurde, destillirte stark alkalisch reagirender Alkohol, derselbe rde mit Salzsäure übersättigt und dann auf dem Wasserbade zur ckne gebracht. Der Rückstand wurde in Wasser gelöst und mit tinichlorid versetzt, dabei schied sich sofort eine beträchtliche nge eines wie Platinsalmiak ausschenden Salzes aus. Es wurde shalb mit etwas überschüssigem Platinichlorid zur Trockne vermnft und mit absolutem Alkohol behandelt. Das davon ungelöst leibende war Ammonium-Platini-Chlorid, wie die Analyse zeigte, enn es enthielt 43,8% Platin, während sich dafür 44,0% berechnen. has in Lösung Gegangene wurde über Schwefelsäure gestellt. Dabei chieden sich kleine gelbe blättrige Krystalle aus vom Anschen des Aethylammonium–Platini–Chlorids. Eine Platinbestimmung davon ergab 39,0% Platin; das Aethylammonium-Platini-Chlorid verlangt 39,3%. Diese Resultate zeigen also, dass bei dieser Zersetzung aus dem Nitrosodiaethylin sowohl Aethylamin, als Ammoniak entstanden. Das zurückgebliebene Kaliumhydroxyd enthielt nur Spuren von salperiger Saure, entwickelte aber auf Zusatz von Schwefelsäure eine bewächtliche Menge von Kohlensäure. Darnach ist es sicher, dass die Nitrosylgruppe zerstört und ihr Sauerstoff zur Oxydation von C²ll⁵ verwindt wird unter Entwicklung ihres Stickstoffgehaltes als Stickgas. Vielleicht findet die Zersetzung nach folgender Gleichung statt:

$$\begin{array}{l} 4 \left[(C^{2}H^{5})^{2} \cdot NO \cdot N \right] + 8 \text{ KOH} = 4 \text{ } C^{2}H^{5} \cdot H^{2}N + 2 \text{ } NH^{3} + 2 \text{ } C^{2}H^{4} \\ + 2 \text{ } N + 4 \text{ } CO^{3}K^{2} + 3 \text{ } OH^{2}. \end{array}$$

Ein Weg zur Rückverwandlung des Diaethylamins in Aethylamin oder Ammoniak ist bis jetzt nicht bekannt gewesen, mit Hülfe des Nitrosodiaethylins ist derselbe aber, wie wir gesehen haben, gefunden.

2. Von Reductionsmitteln sind Schwefelwasserstoff, Ammonium hydrosulfid, Ferrosulfat und saures Natriumsulfit bei gewöhnlicher Temperatur oder bei 400° ohn e Einwirkung auf das Nitrosodiaethylin, ja selbst damit im verschlossenen Rohr bis auf 450° längere Zeit erhitzt, ist eine Veränderung kaum zu bemerken. Dagegen wirkt Natriumamalgam bei Gegonwart von Wasser sehr energisch und rasch unter Erwärmung und bedeutender Gasentwicklung. Das sich entwickelnde Gas besitzt die Eigenschaften des Stickoxyduls, es brennt

selbst nicht, bewirkt aber, dass ein brennender Span in ihm lebl als in atmosphärischer Luft verbrennt. Sofort nach der Einwir tritt der Geruch nach einer flüchtigen Base auf. Die vom Qu silber abgegossene Flüssigkeit wurde der Destillation unterwo Das zuerst Uebergehende aus dem Wasserbade rectificirt und das basische Destillat mit Chlorwasserstoffsäure übersättigt und zur Tro verdampft. Der in Wasser gelöste Rückstand gab mit Platinichlor. Ueberschuss versetzt über Schwefelsäure allmählich morgenrothe stalle, deren Platingehalt 35, 4 - 35, 5 % betrug. Darnach ist die bindung also Diaethylammonium-Platini-Chlorid und die durch duction neben Stickoxydul aus dem Nitrosodiaethylin erzeugte Base Diaethylamin, gebildet nach folgender Gleichung:

 $2[(C^{2}H^{5})^{2}.NO.N] + 4H = (C^{2}H^{5})^{2}HN + N^{2}O + OH^{2}.$

3. Es ist bekannt, dass concentrirte Salzsäure (verdünnte S wirkt wenig oder nicht) das Nitrosodiaethylin wieder in Diae ammoniumchlorid verwandelt¹) unter Aufnahme von Wasser und i Bildung von salpetriger Säure. Zu untersuchen war noch, we Wirkung Chlorwasserstoffgas bei Ausschluss von Wat auf diese Verbindung ausübe. Zu dem Ende wurde in die Subbei Ausschluss jeglicher Feuchtigkeit ganz trocknes Chlorwassersto geleitet. Dasselbe wurde absorbirt, die Flüssigkeit trübte sich schwie nach Aussscheidung von farblosen, kleinen Krystallnädelc wurde aber bald darauf wieder klar und hellgelb. Allmählich n sie aber wieder eine dunklere Farbe an, bis sie dunkelorangefa geworden war, zu welcher Zeit sie anfing, gelbrothe Dämpfe zu binden, bis bei fortgesetztem Einleiten von Salzsäure die Flüssi wieder eine hellgelbe Farbe annahm. Zur Austreibung des etwa ü schussig zugeleiteten Chlorwasserstoffgases wurde nun wohl getr netes Kohlensäuregas noch während mehrerer Stunden eingele Dabei verwandelte sich die Flüssigkeit allmählich in eine nur mit w gelblichen Oels durchtränkte Krystallmasse, welche mehrere Male absolutem Aether gewaschen wurde, um das gelbe Oel zu entfer dessen geringe Menge nach dem Abdestilliren des Aethers zurückb Sie wurden darauf in Wasser gelöst und in das Platini-Doppe übergeführt. Die Krystalle des Letzteren hatten ganz das Ansehen Diaethylamin-Doppelsalzes und ergaben einen Platingehalt von 35, während das reine Diaethylammonium-Platini-Chlorid einen sol von 35,3 % enthält. Darnach kann also kein Zweifel sein, dass

⁴⁾ Annal. d. Chem. Bd. 128. p. 154.

us dem Nitrosodiaethylin hervorgegangenen Krystalle Diaethylmmoniumchlorid waren, gebildet wahrscheinlich nach der Gleihung:

$$(C^{2}H^{5})^{2} NO.N + 2 HCl = (C^{2}H^{5})^{2} H^{2}NCl + NOCL$$

Die mitbeobachteten gelbrothen Dämpfe sind dann das Nitrosylchlortür gewesen.

IL. Ueber die Zusammensetzung des Antimonsäurehydrats.

Nach BERZELIUS¹) kommt dem aus Antimon mittelst Königswasser dargestellten, mit Wasser gewaschenen und mehrere Male nach einander wohlgetrockneten (bis es seine Säure und seinen metallischen Geschmack verloren hatte) Antimonsäurehydrat die Formel: SbO3II zu, ist also Monhydroxy-Antimonsäure. Nach FREMY²) ist das aus einer Kaliumantimoniatlösung mittelst Salpetersäure gefällte llydrat, wenn es bei gewöhnlicher Temperatur in einem Luftstrom getrocknet wird nach der Formel: SbO⁵H⁵ zusammengesetzt, also Perhydroxy-Antimonsäure. Da BERZELIUS die Temperatur, bei welcher er die zur Untersuchung verwandte Verbindung getrocknet hat, nicht näher bestimmte, sondern nur sagt, dass er sie »wohlgetrocknet« verwandt babe, und da ausserdem über die zwischen der Monhydroxy- und Perhydroxy-Antimonsäure liegende Trihydroxysäure noch nicht bekannt war, so habe ich einige Versuche zur Vervollständigung dieser Angaben ausführen lassen. Das verwandte Antimonsäurchydrat war aus der Lösung des Kaliumantimoniats durch Salpetersäure abgeschieden und mit kaltem Wasser so lange gewaschen worden, als dasselbe noch saure Reaction zeigte (wobei es zuletzt milchig durchs Filter ging) und darauf bei gewöhnlicher Zimmertemperatur während eines Sommerbalbjahrs an der Luft trocknen gelassen. Die hart gewordenen Stücke wurden zerrieben und zur Analyse verwandt. Diese Letztere ergab oun, wie die nachfolgenden Zahlen zeigen:

l

ï

i

ł

ł

ŧ

1. dass das völlig lufttrockne Hydrat weder Perhydroxy- noch Monhydroxy-Säure, sondern Trihydroxy-Antimonsäure ist.

2. dass aus dieser Säure heim Erhitzen bis auf 175° so viel Wasser weggeht, dass Monhydroxy-Säure übrig bleibt.

⁴⁾ SCHWEIGGER, Journ. f. Chemie und Physik. Bd. XXII, p. 74 und BERZELIUS, Lehrbuch.

³⁾ Annal. d. Chim. et Phys. [8] T. XXIII, p. 405.

A. Geuther,

3. dass beim Erhitzen auf 275° daraus gelber Antimonsäureanhydrid wird, welcher bei 300° aber schon unter Sauerstoffverlust weiss zu werden und in Antimonig-Antimonsäureanhydrid überzugehen anfängt.

I. Versuch.

				Gewicht.		Aus d. gefundenen Gewicht von Sb ² O ⁴ berechnet.			
Lufttrockne Substanz				1,9869 Grm.					
6 Tage über SO4II ² getrocknet				1,9384	-	1,9689 SbO4H3			
		bei 100°	-	1,8670	-				
2	-	- 1100	-	1,8603	_				
7	-	- 1200	-	4,8453	-				
44	_	- 1500	-	1,8175	-				
3		- 1600	_	1,8150	-				
4	_	- 1750	-	1,8007	_				
7	_	- 1800	-	4,7743	_	1,7814 SHO3H			
6	_	- 1900	_	1,7705	_				
6		- 2000		1,7638					
-	-		-	•	-				
Gog	glöht un	d als Sh2O4	gewogen	1,6043	-				
2. Versuch.									
Luf	ttrockne	Substanz		1,8914					
24 :	Stundon	ub. SO4H ²	getrockne	1,8418	-	1,8755 SbO4H3			
7	-	bei 200º	-	1,6736	-	1,6969 SbO3H			
6	-	- 2500	-	1,6459	-				
3	-	- 2600	-	1,6167	-				
4	-	- 2750	-	1,6060	`_	1,6076 Sh2O5			
4	-	- 3000	-	1,5972	-				
2	_	- 3400		1,5888	_				
	glüht un	d als Sb ² O ⁴	gewogen	1,5282	-				

III. Ueber die Zersetzung des Phosphorchlorürs durch Wasser.

Vor einiger Zeit hat KRAUT¹) angegeben, dass, wenn man frisch destillirtes und vom überschüssigen Phosphor freies Chlorür in siedendes Wasser tropfen lässt, jeder Tropfen ausser lebhaftem Zischen »Feuererscheinung, sowie eine dicke Abscheidung von amorphem Phosphor

¹⁾ Annal. d. Chem. u. Pharm. Bd. 158. S. 388.

bervorbringe«, bei Anwendung von mässig warmen Wassers lasse sich die Feuererscheinung vermeiden und doch eine erhebliche Ausscheidung von Phosphor bei Temperaturen erhalten, bei welchen die phosphorige Säure sich noch nicht zersetzt«.

Beim Lescn dieser Mittheilung ist es vielleicht manchem, welcher schon öfters Phosphorchlortir mit Wasser zersetzt hat, so gegangen, wie mir, dass er sich nicht erinnern konnte, eine Abscheidung von Phosphor dabei bemerkt zu haben. Ich habe mich dadurch aufgefordert gefühlt, die angegebenen Versuche KRAUT's zu wiederholen. Dabei wurde zweierlei Phosphorchlorür verwandt, erstens solches, welches ursprünglich etwas Phosphorchlorid enthielt und welches durch fünfmalige vorsichtige Rectification, wobei immer ein beträchtlicher Rückstand gelassen und nur das zwischen 75 und 76º (uncorr.) Destillirende gesammelt wurde, gereinigt worden war und zweitens solches, in welchem vorher überschüssiger Phosphor gelöst wurde und das darauf einmal auf dem Wasserbade rectificirt worden war in der Art, dass das heisse Wasser nur mit dem Boden der Kochflasche in Berührung kam. Dabei war ein Rückstand von Phosphor und Phosphorchlorür geblieben und auch nur das zwischen 75 und 76º Uebergegangene gesammelt worden. Beide Arten von Phosphorchlorür verhielten sich bei den mit ihnen vorgenommenen folgenden Versuchen ganz gleich.

Als von diesem Phosphorchlorür zu Wasser von gewöhnlicher Zimmertemperatur, welches in einem weiten Proberöhrchen sich befand, sexossen und unter Umschütteln zersetzt wurde, fand eine Ausscheidung von Phosphor nicht statt. Als darauf das Wasser im Proberöhrchen bis auf 60° erwärmt worden war und gleich verfahren wurde, konnte ebensowenig eine Abscheidung von Phosphor bemerkt werden; dasselbe war der Fall als Wasser von 80° und nahe zum Kochen erhitztes Wasser verwandt wurde. Die Versuche wurden mit demselben Resultat wiederholt. Dabei wurde einmal bei Anwendung von Wasser, welches im Proberöhrchen kurz vorher gekocht hatte, aber nicht mehr kochte, eine Feuererscheinung beobachtet, dieselbe ging aber nicht vom Wasser im Röhrchen, sondern von der Oeffnung des Proberöhrchens aus, von da wo die Dämpfe mit der Luft in Berührung kamen und noch ein Stück in das Röhrchen hinein. Die Feuererscheinung selbst hatte den Chankter eines starken Phosphorescirens d. h. das Ansehen einer verdünnten fahlen, wenig glänzenden gewöhnlichen Phosphorflamme. Auch dabei wurde kein Phosphor abgeschieden. Ich schloss daraus, desse die beobachtete Feuererscheinung an die Gegenwart von Luft resp. Souerstoff bei der Zersetzung gebunden sei und habe daraufhin folgende 3 Versuche unternommen, welche dies durchaus bestätigen.

1. Versuch: Ein weites Proberöhrchen wird in der Art inwendig feucht gemacht und mit einem Tröpfehen Wasser versehen, dass man dasselbe mit einer grösseren Menge von Wasser völlig benetzt und letzteres dann ausfliessen lässt, darauf wird er bis zur Hälfte in stark siedendes Wasser gestellt, 15-20 Minuten, je nach der Dicke des Glases, aus welchem das Proberöhrehen besteht, gewartet und nun eine Menge von 8-10 Tropfen Phosphorchlorür auf einmal zugegossen. Nicht sofort, aber ganz kurze Zeit darnach tritt die oben beschriebene Feuererscheinung auf, welche, da sie sehr wenig glänzend ist, natürlich bei geringer Zimmerhelle am besten zu sehen ist. Die Sache geht dabei offenhar so zu: das Phosphorchlorur wird im Röhrchen zum Theil dampfförmig, dieser Dampf zersetzt sich mit Wasserdampf in Chlorwasserstoff und phosphorige Säure und diese letztere im fein vertheilten und wahrscheinlich beträchtlich heissem Zustand verbrennt durch den Sauerstoff der im Röhrchen gegenwärtigen Luft zu Phosphorsäure. In manchen Fällen, aber durchaus nicht immer, bemerkt man nach Vollendung der Reaction eine sehr geringe Menge fein zertheilten rothen Phosphors. Derselbe verdankt seine Entstehung jedenfalls einer bei der Verbrennung des grössten Theils der phosphorigen Säure durch den Sauerstoff entstehenden höhern Temperatur, welche, bei nicht überschüssigem Sauerstoff, eine geringe Menge der phosphorigen Säure nach bekannter Art in Phosphorsäure und Phosphorwasserstoff resp. in die Zersetzungsproducte des Letzteren in der Hitze, Wasserstoff und Phosphor, zerfallen macht. Der Inhalt des Röhrchens enthält eine ziemliche Menge gewöhnlicher Phosphorsäure und stets beträchtlich mehr als das angewandte Phosphorchlorür liefern kann, wenn es mit kaltem Wasser zersetzt worden ist. Jedes an der Luft destillirte Phosphorchlorür nämlich kann in Folge eines geringen Gehaltes an Phosphoroxychlorid¹) diese erzeugen.

2. Versuch. Bringt man in einem Kochfläschchen Wasser zum lebhaften Sieden und wartet so lange mit dem Zusatz von Phosphorchlorür, bis alle Luft durch den Wasserdampf daraus verdrängt ist und letzterer beständig lebhaft daraus entströmt, so tritt natürlich explosionsartige Zersetzung des zugetropften Phosphorchlorürs. aber weder eine Feuererscheinung noch eine Abscheidung von Phosphor ein. Dies bestätigt die im Vorhergehenden gegebene Erklärung.

3. Versuch. Wird in einem mittelgrossen offenen Becherglas nicht zuviel Wasser zum Sieden erhitzt, wohei eine beständige Mischung von Wasserdampf und Luft von selbst vor sich geht, und darauf Phos-

¹⁾ Vergl. d. Zeitschrift. Bd. VI, p. 95.

pborchlorür in Mengen von 12-20 Tropfen zugezogen, so tritt die Feuererscheinung in der ganzen Breite des Becherglases und darüber binaus als grosse Flamme auf, ohne dass auch hier Phosphorabscheidung erfolgte.

Diese Versuche zeigen also, dass reines Phosphorchlorür durch warmes oder siedendes Wasser ohne Phosphorabscheidung in phosphorige Säure und Chlorwasserstoff zersetzt wird und dass die Angaben Kutt's, es finde dabei eine »erhebliche« oder »dicke Abscheidung von Morphen Phosphor« statt, nicht richtig sind.

KRAUT sagt weiter: »Eine Abscheidung von Phosphor in rothgelben Tropfen erfolgt ferner, wenn man Phosphorchlorür mit wenig Wasser, oder was offenbar gleichbedeutend ist, mit etwas phosphoriger Säure destillirt. Dabei bleibt ein Rückstand, welcher nach dem Austreiben alles Phosphorchlorürs durch trockene Kohlensäure in Wasser gelöst, das Verhalten der Orthophosphorsäure zeigt. Seine wässrige oder essigsaure Lösung fällt Eiweisslösung nicht. «

Ich habe den Versuch wiederholt, indem ich das mit wenig Wasser versetzte Phosphorchlortir aus dem Wasserbade destillirte und kann die Abscheidung von fein zertheiltem rothgelben amorphen Phosphor bestätigen, welcher nach dem Auflösen des Rückstandes abfiltrirt und getrocknet werden kann. Der Ausdruck »rothgelbe Tropfen« kann die Vorstellung erzeugen, als wäre der abgeschiedene Phosphor zum Theil wenigstens gewöhnlicher Phosphor, weil der amorphe bekanntlich nicht scamilzt, das ist aber nicht der Fall. Der nach dem Verjagen alles Phosphorchlorürs durch trockne Kohlensäure im Wasserbade verbleibende Rückstand besteht, wenn man die Destillation auch im Wasserbade vorgenommen hat, hauptsächlich aus phosphoriger Säure und nur ver-Minissmässig wenig davon ist gewöhnliche Phosphorsäure. Die Letztere asst sich in der Lösung mittelst Magnesiumsalz leicht entdecken und lie erstere durch Reduction von Ilydrargyrichlorid, von ammoniakalicher Argentinitratlösung oder von schwefeliger Säure leicht unmittelbar der nach dem Ausfällen der Phosphorsäure als in grosser Menge vorunden nachweisen. Wird dagegen Phosphorchlorür auf phosphorige ure längere Zeit in der Hitze einwirken gelassen in der Art, dass man as Kölbchen mit einem umgekehrten Kühler verbindet, so findet nach and nach eine grössere Abscheidung von pulvrigem rothen Phosphor statt und zwar vorzüglich dann, wenn man das Wasserbad mit einem Sandbad vertauscht, also den Boden des Gefässes auf dem die phosphorige Saure unmittelbar auflagert und dadurch auch diese heisser werden lassen kann, als es im Wasserbade möglich ist. Nach dreistundiger Einwirkung von 1? Grm. Phosphorchlorur auf die mittelst 3 Grm. Chlorür und 1,2 Grm. Wasser erzeugte phosphorige Säure, während welcher das Phosphorchlorür beständig kochte, entwich viel Chlorwasserstoff und wurden 0,14 Grm. rother Phosphor abgeschieden. Das übrig gebliebene Phosphorchlorür wurde nach dem Abgiessen für sich rectificirt; es erwies sich seiner ganzen Menge nach als rein und frei von Phosphoroxychlorid, welches möglicherweise nach der Gleichung:

$$4 \text{ PCl}^3 + P(\text{OH})^3 = 3 \text{ POCl}^3 + 3 \text{ ClH} + 2 P$$

hätte entstanden sein können. Der in Wasser lösliche Theil des Rückstandes bestand jetzt fast ganz aus gewöhnlicher Phosphorsäure.

Die von KRAUT für diese Zersetzung aufgestellte Gleichung :

$$P(OH)^{3} + PCI^{3} = 3PO^{4}H^{3} + 3CH + 2P$$

welche jedenfalls richtig ist, lässt sich in die beiden bekannten Gleichungen zerlegen:

$$4 P(OH)^3 = 3 PO^4 H^3 + PH^3$$

PH³ + PCl³ = $3 Cl H + 2 P$

Die phosphorige Säure, welche nach einem Versuche, zu welchem krystallinische Substanz verwandt wurde, für sich erst gegen 250⁰ ¹} anfängt unter Phosphorwasserstoff-Entwicklung zersetzt zu werden, erleidet also in der That langsame Zersetzung durch Phosphorchlorür schon beim Sicdepunkt desselben.

IV. Ueber die Einwirkung von Natriumalkoholat auf Benzoesäureäther.

Aus früheren Versuchen²) ist bekannt, dass alkoholfreies Natriumalkoholat auf Benzoesäureäther bei 420° nicht einwirkt, bis 460° damit aber längere Zeit erhitzt hauptsächlich Natriumbenzoat und gewöhnlichen Aether nach der Gleichung:

$$C^{7}H^{5}(C^{2}H^{5})O^{2} + C^{2}H^{5}NaO = C^{7}H^{5}NaO^{2} + (C^{2}H^{5})^{2}O$$

bildet. In geringer Menge entstehen dabei aber noch drei andere Producte, von denen zwei den nach der Behandlung mit überschüssiger Natronlauge verbleibenden öligen neutralen Rückstand bilden. dessen Menge etwa 9 Proc. von der des angewandten Aethers beträgt, während das dritte saurer Natur ist und in die wässrige Lösung des Natrium-

⁴⁾ Es ist dies dieselbe Temperatur, bei welcher sich nach RAMMELSBERG (POGG. Annal. Bd. 182, p. 493 u. 498) das saure Kaliumsalz und ein saures Baryumsalz der phosphorigen Säure das sog. anderthalbfachsaure Salz, auch unter Phosphorwasserstoff-Entwicklung, zersetzt.

²⁾ Diese Zeitschrift. Bd. IV. p. 260.

Chemische Mittheilungen.

benzoats mit übergeht. Von den beiden ersteren, welche ihrer früher erhaltenen geringen Menge halber nicht völlig rein erhalten werden konnten, waren vorläufige Analysen gemacht worden. Das eine zwischen 200 und 210° Destillirende hatte 77,3 Proc. Kohlenstoff und 8,9 Proc. Wasserstoff, das andere, welches bei 360° noch nicht überging, hatte 84,4 Proc. Kohlenstoff und 7,9 Proc. Wasserstoff ergeben, über die saure Substanz, welche nur aus den um etwa 1 Proc. grösseren Natriumgehalt, den das Natriumbenzoat bei der Analyse gegeben hatte, erschlossen wurde, konnte noch gar keine Vermuthung geäussert werden.

Auf meine Veranlassung hat Herr Dr. SCHIELE diese drei Nebenproducte einer genaueren Prüfung unterzogen. Benzoesäureäther wurde mit dem Natriumalkoholat in Röhren während mehrerer Tage auf 160° erhitzt, der Inhalt darauf mit Wasser behandelt, die wässrige Lösung vom abgeschiedenen Oel hefreit und mit Aether ausgeschüttelt. Das was der Aether gelöst hatte und nach dem Abdestilliren desselben zurückblieb, wurde zum Oel gegeben und dieses so lange wiederholt mit neuen Mengen Natronlauge im zugeschmolzenen Rohr auf 110° erhitzt, bis keine Abnahme desselben mehr stattfand und aller noch vorhandene Benzoësäureäther zersetzt war. Die ursprüngliche wässrige Lösung, welche ausser Natriumbenzoat noch das Natriumsalz der mitentstandenen Säure erhalten musste, wurde mit Schwefelsäure in geringem Ueberschuss versetzt, von der ausgeschiedenen Benzoësaure abfiltrirt, das Filtrat mit Natriumcarbonat schwach übersättigt, durch Eindampfen concentrirt, nach dem Erkalten mittelst erneuten Zusatz von Schwefelsäure wieder Bonzoësäure gefällt und so mehrere Male fortgefahren. Dann wurde nach der Neutralisation mit Natriumcarbonat zur Trockne verdampft, mit Alkohol der Rückstand ausgekocht und das im Alkohol gelöste zur Entfernung aller Benzoesäure in derschben Weise behandelt, was wiederholt geschehen musste. Da die auch bis zuletzt ausgeschiedene Benzoësäure den richtigen Schmelzpunkt besass und der nach dem Ausziehen von Alkohol verbleibende Salzrückstand sich beim Erhitzen nicht schwärzte, so musste die Säure in Wasser leicht löslich und ihr Natriumsalz in Alkohol löslich sein. Zuletzt wurde ein rhombisch trystallisirendes in Wasser leicht lösliches Salz erhalten, welches nach Zusatz von mässig conc. Schwefelsäure den stechenden Geruch der Ameisensäure entwickelte und dessen Lösung die für die Ameisensäure charakteristischen Reactionen zeigte: mit Baryumchlorid und Calciumchlorid gab sie keinen Niederschlag; mit Sublimatlösung vermischt entstand gleichfalls keine Fällung, beim Erwärmen wurde aber Kalomel

A. Geuther,

abgeschieden; mit Hydrargyronitratlösung vermischt bildete sich ein weisser Niederschlag, der beim Kochen unter Kohlensäureentwicklung zu met. Quecksilber wurde; mit Argentinitratlösung entstand eine weisse Fällung, welche beim Erwärmen unter Kohlensäureentwicklung starke Reduction erfuhr.

0,3792 Grm. desselben hinterliessen beim Glühen 0,2968 Grm. Natriumcarbonat, welches 0,1288 Grm. oder 34,0 Proc. Natrium entspricht. Das Natriumformiat verlangt 33,9 Proc. Natrium.

Daraus ergiebt sich also, dass die Säure in der That Ameisensäure ist.

Bei der Destillation des ölförmigen Productes zeigte sich wie früher, dass von 200-280° unter stetem Steigen des Thermometers eine wasserhelle aromatisch riechende Flüssigkeit überging, während dann bei weiterem Erwärmen das Quecksilber ganz rasch auf 360° stieg und ein beim Erkalten zähflüssiger Rückstand blieb. Das Uebergegangene wurde wieder destillirt. Da bei 200° und bei 230° der Siedepunkt constant zu sein schien, so wurde das bei diesen Temperaturen Uebergehende für sich gesammelt und analysirt.

Das bei 200° erhaltene Destillat enthielt 78,9 Proc. Kohlenstoff und 9,2 Proc. Wasserstoff; das bei 230° erhaltene 78,3 Proc. Kohlenstoff und 9,2 Wasserstoff. Da diese Resultate fast ganz übereinstimmten, so wurden beide Theile wieder vereinigt und bei der nochmaligen Rectification das bei 217° Uebergehende für sich gesammelt. Bei der Analyse ergab dies 78,8 Proc. Kohlenstoff und 9,4 Proc. Wasserstoff. Aus diesen Resultaten leitet sich die Formel: C²⁶ H³⁶ O³ oder vielleicht die Formel: C²⁶ H³⁴ O³ ab.

ber.	gef.			ber.
$C^{26} = 78,9$	78,9	78,8	78,3	$C^{26} = 79,3$
$H^{36} = 9,0$	9,2	9,1	9,2	$H^{34} = 8,6$
$0^3 = 12,1$				$0^3 = 12,1$
100,0				100,0

Das bei 360° noch nicht Uebergegangene liess sich, wie ein Versuch zeigte, gleichfalls destilliren. Es ging in gelben, beim Erkalten zähflüssigen Tropfen über, welche 88,9 Proc. Kohlenstoff und 7,5 Proc. Wasserstoff enthielten. Da das Destillat nicht ganz homogen erschien, so wurde es nochmals rectificirt und die zuerst übergehende und die zuletzt übergehende Portion je für sich gesammelt und analysirt. Die erstere ergab 89,3 Proc. Kohlenstoff und 7,8 Proc. Wasserstoff, die letztere 89,4 Proc. Kohlenstoff und 7,6 Proc. Wasserstoff. Aus diesen sehr nahe übereinstimmenden Resultaten folgt, dass das Product ein

chemisches Individuum war und die Formel: C³⁷H³⁶O demselben zukommt.

ber. gef.

$$C^{37} = 89,5$$
 (88,9) 89,3 89,4
 $H^{35} = 7,3$ (7,5) 7,8 7,6
 $O = 3,2$
 $100,0$

Was nun die Bildung der Ameisensäure und der beiden destillirbaren neutralen ölförmigen Körper aus dem Benzoësäureäther anlangt, so lässt sich von ihnen auf folgende Weise Rechenschaft geben:

> $3 C^{7} H^{5} (C^{2} H^{5}) O^{2} = C^{26} H^{36} O^{3} + C + O^{3} - H^{6}$ $4 C^{7} H^{5} (C^{2} H^{5}) O^{2} = C^{37} H^{36} O - C + O^{7} + H^{4}$

oder beide Gleichungen zusammengezogen :

 $7 C^{7} H^{5} (C^{2} H^{5}) O^{2} = C^{26} H^{36} O^{3} + C^{37} H^{36} O + O^{10} - H^{2}$

Wäre die Formel für die bei 217⁰ destillirende Substanz nicht C²⁶H³⁷O³ sondern C²⁶H³⁴O³ so würde die Gleichung sein:

 $7 C^7 H^5 (C^2 H^5) O^2 = C^{26} H^{34} O^3 + C^{37} H^{36} O + 10 O$

Man sieht hieraus, wie unter Austritt von 10 Mgtn. Sauerstoff aus 7 Mgtn. Benzoësäureäther die Bildung der beiden ölförmigen Producte vor sich gehen kann. Diese 10 Mgtn. Sauerstoff werden nun offenbar verwandt zur Bildung von Ameisensäure, welche wahrscheinlich aus dem Aethyl des Benzoësäureäthers hervorgeht unter gleichzeitiger Bildung von Benzoësäure nach der Gleichung:

 $5 C^{7} H^{5} (C^{2} H^{5}) O^{2} + 20 O = 5 C^{7} H^{6} O^{2} + 40 CH^{2} O^{2}$

Benzoësäure und Ameisensäure aber werden weiter durch das Natriumalkoholat zu den Natriumsalzen unter Erzeugung von Alkohol.

Jena, Ende October 1871.

. ~ . .

. *.*

Ueber das Archipterygium.

Von

C. Gegenbaur.

Mit Tafel X.

Als ich vor bald zwei Jahren die Ergebnisse meiner letzten Untersuchungen über das Gliedmaassenskelet der Wirbelthiere in dieser Zeitschrift¹) veröffentlichte, war ich damit »zu einem gewissen Abschlusse« gekommen, der in der Aufstellung einer »Grundform« des Gliedmaassenskeletes der Wirbelthiere seinen Ausdruck fand. Die meist stufenweis verfolgbare Ableitbarkeit aller bis dahin bekannten Formzustände dieses Skeletes rechtfertigte die Bedeutung jener Grundform, die ich als Archipterygium bezeichnet hatte.

Dieses Archipterygium erschien als ein dem Schultergürtel angefügter, in einzelne hinter einander liegende Stücke gegliederter Knorpelstab, Stamm, an dem einseitig eine Reihe von kleinen, ungegliederten oder gegliederten Knorpelstäbchen, Radien, aufgereiht sind. Für eine Fiederung oder zweizeilige Anordnung von Radien am Stamme des Archipterygiums hatten meine Untersuchungen am Brustflossenskelete der Selachier zwar einige Spuren ergeben, allein sie schienen mir einerseits so unbedeutend, dass ich sie anfänglich (Untersuchungen zur Vergl. Anatomie II. 1865) nicht beachtete, und erst später (diese Zeitschrift Bd. V. S. 432 Anmerk.) sie mit Beziehung auf jene Frage zu prüfen versuchte, andererseits lagen alle bis zu jener Zeit bekannten Thatsachen auf Seite des einzeiligen Archipterygium, so dass für die Construction der zweizeiligen Grundform ausser jenem, auch in anderer Weise erklärbaren, und von mir auch so beurtheilten Rudimente, kein triftiger Grund sich ergab.

4) Bd. V. S. 397. Bd. VII. 2.

ŀ

i

i

C. Gegenbaur,

Anders liegt gegenwärtig die Frage, ob jenes Archipterygium seiner ursprünglichsten Form die Radien in einer Reihe oder in zu Reihen besass, nachdem neuerdings Untersuchungen an dem zunäc den Dipnor verwandten Ceratodus das Bestehen eines Gliedmaasse skeletes in der Form des zweizeiligen Archipterygiums erwiesen hab Aus den hieher bezüglichen Mittheilungen von Dr. A. Günthen¹) g hervor, dass bei Ceratodus im Skelet der Brustflosse ein Stamm (A: GÜNTHER) besteht, den eine Reihe distal an Umfang abnehmender Kn pelstücke bildet, denen an beiden Seiten wiederum aus mehrfac Gliedern gebildete Radien angefügt sind. Feine Fäden, welche als Fl senstrahlen (Fin-rays) den Knorpelreihen angefügt sind, ergänzen Flosse in ähnlicher Weise wie bei Protopterus. Güntube verglei diesen Befund mit dem Brustflossenskelete von Acipenser, und un scheidet dort ganz richtig die Stammreihe von den Radien, die in it einzeiligen Aufreihung eine ganz bedeutende Verschiedenheit des Ty ergeben. Ob wie bei Acipenser ein Theil der Radien von dem Star abgerückt ist und direct mit dem Schultergürtel articulirt, ist mir zw felhaft. Es würde der Fall sein, wenn das von Güntner als »Carp bezeichnete Stück a in der Figur von Ceratodus dem Schultergü angehört, ebenso wie es sicher in der daneben stehenden Figur Acipenser ein Theil des Schultergürtels ist, wie ich in älteren Unt suchungen (Schultergürtel und Brustflosse der Fische) festgestellt haben glaube. Immerhin wäre die Ablösung von Radien vom Stau und ihre Verbindung mit dem Schultergürtel zwar bemerkenswe aber dem Verhalten des übrigen Flossenskelets gegenüber von un geordneter Bedeutung. Bei der Beachtung jenes Typus des Floss skeletes von Ceratodus dürfte es sich nun vor Allem fragen, wie : dazu die einzeilige Form des Archipterygium verhält, und in die Beziehung ist Folgendes in nähere Prüfung zu nehmen.

1) Sind beiderlei Zustände des Archipterygiums selbständige Gru formen, von denen jede für sich entstand, und jede in einer gewis Reihe von Wirbelthieren eine eigene Diffenzirung einschlug? oder

2) ist die doppelzeilige Form aus der einzeiligen hervorgegang oder endlich

3) entstand die einzeilige Form aus der doppelzeiligen? Die e Frage wird offen zu lassen sein, bis die Untersuchung eine der bei letzten beantwortet hat. In dieser Beziehung wird vor Allem zu prü sein, ob an dem aus dem einzeiligen Archipterygium hervorgegangen

⁴⁾ Proceed. Roy. Soc. 1871. S. 878. und ausführlicher mit Abbildung Flossenskelets in Ann. and Mag. of Nat. hist. March, 1871.

No. of Lot of Lo

wei davon ableitbaren Flossenskelete der Selachier Andeutungen der sweizeiligen Grundform zu erkennen sind, denn es besteht kein Anbeltepunkt für die Annahme der Entstchung der zweizeiligen Form aus der einzeiligen. Letztere Frage hat daher gar nicht in Betracht zu kommen.

Andeutungen der Abstammung der einzeiligen Form von der zweizeiligen werden in Radien oder hiervon ableitbaren Gebilden gesucht werden müssen, welche auf der medialen Seite des Flossenstammes zitzen, während die laterale von der Hauptmasse der Radien eingenommen wird. Solche die andere Seite des Flossenstammes besetzende Gebilde finden sich bei den Notidaniden und Dornhaien vor.

Bereits in meiner zweiten Arbeit über die Brustflosse habe ich Darstellungen dieser Verhältnisse gegeben, jedoch ohne eine nähere Erklärung. Bei Heptanchus lagert dem in der differenzirteren Skeletform als Stamm des Metapterygium erscheinenden Flossenstamme ein langgestrecktes Knorpelstück an. Auf Taf. IX der erwähnten Arbeit habe ich an der in Fig. 2 dargestellten Flosse jenes Knorpelstück abgebildet.

An dem Knorpelstreif kann ausser seiner Lagerung ausserhalb des thrigen Skeletcomplexes nichts Auffallendes gefunden werden. Es war mir daher sehr werthvoll, bei Embryonen von Heptanchus andere Verhältnisse anzutreffen. Das Flossenskelet eines solchen von 12 Cm. Länge habe ich in Fig. 2 vergrössert dargestellt. Ausser Verschiedenbeiten in der Gliederung der Radien ¹), zeigt jenes Flossenskelet das fragliche Knorpelstück durch drei (Fig. 2r, r'r'') dargestellt, von denen das terminale das Bedeutendste ist. An der Stelle des einfachen Knorpelstreifens besteht also hier ein gegliedertes, auch durch grössere Breite ausgezeichnetes Stück, welches viel bestimmter als Radius gedeutet werden kann²). Zwei andere Embryonen boten an derselben Stelle

S) Nobenbei möchte ich noch die Möglichkeit hervorheben, dass die drei als breite Platten erscheinenden Stücke durch Concrescenz einer Anzahl von Basalgliedern von Radien entstanden sein können, so dass sie nicht Einen Radius, son-

⁴⁾ Auf die bezüglich der Gliederung der Radien sowie der Verbindung einzelner, neben einander gelegener Radienglieder zu grösseren plattenförmigen Stäcken habe ich in meiner letzten Arbeit über das Gliedmaassenskelet, Jenaische Zeitschrift, Bd. V, S. 435 aufmerksam gemacht. Vergleicht man die gegenwärtig von mir gegebene Abbildung des genannten Skeletes eines Heptanchus-Embryo, mit den früher veröffentlichten eines erwachsenen Thieres — beides nach genauen Zeichnungen — so wird man den hohen Grad der die Zahl und Gliederung der Radien, sowie die Plattenbildung betreffenden Variation alsbald wahrnehmen, und hierin eine wichtige Eigenthümlichkeit der Selachier erkennen gegenüber der Beständigkeit der homologen Skelettheile höherer Organismen.

C. Gegenbaur,

nur zwei Stücke, die zusammen die gleiche Anreihung hatten, wie die drei des ersterwähnten. In allen Fällen reichten diese Stücke weiter gegen die Flossenbasis empor, als beim erwachsenen Thiere das einzige Stück. Aus der Vergleichung des Befundes an Embryonen mit dem der erwachsenen Thiere geht hervor, dass erstlich ein Knorpelstrahl an der medialen Seite des Flossenskeletrandes besteht, und dass zweitens derselbe bei Embryonen gegliedert und viel umfänglicher ist, als beim Erwachsenen. Daraus muss eine im Laufe der individuellen Entwickelung vor sich gehende Reduction gefolgert werden, die wieder auf eine bedeutendere Entfaltung des sich rückbildenden Theiles in einem palaeontologisch frühen Stadium schliessen lässt.

Hexanchus besitzt in der ausgebildeten Form des Flossenskelets die Andeutung einer zweizeiligen Aufreihung knorpeliger Radien noch deutlicher. Der Stammreihe des Metapterygiums sind nämlich zwei Rodien medial angefügt. In Fig. 3 habe ich den kritischen Abschnitt der von mir früher abgebildeten Flossenskeletes dargestellt. Die beiden Radien (r' r'') verbinden sich mit verschiedenen Theilen des Flossenstammes (B.).

Reicher als bei den Notidaniden sind bei Centrophorus Theile, einer medialen Knorpelstrahlenreihe erhalten. Bei Centrophorus celceus war mir bereits bei der ersten Untersuchung das Eigenthümliche des Verhaltens aufgefallen, aber ich glaubte der Vorstellung, das hier auf eine zweite Radienreihe beziehbare Einrichtungen vorliegen, keinen Raum geben zu dürfen, und habe aus der Vergleichung des Befundes mit dem Brustflossenskelete von Chimära geschlossen, das der mediale Theil der Knorpelstücke bei Centrophorus, der, wenn auf Radien bezogen, ein »gefiedertes« Archipterygium voraussetzen liesse, durch eine Modification von Stücken des Flossenstammes enstanden sei¹). Während ich die Deutung der eigenthümlichen medialen Krümmung des Brustflossenskeletes von Chimära auch gegenwärtig festhalte wie ich sie damals gab, sie durch terminale Verbreiterung der nur einer Seite des Stammes zukommenden Radien entstanden erklärend, nehme ich für Centrophorus meine frühere Annahme zurück und

dern eine Summe von Radien repräsentiren. Die Vergleichung mit Centrophorus, wo solche ähnliche Längsplatten vorkommen, die bestimmter auf eine Mehrzahl von Radien bezogen werden können, ist dieser Auffassung günstig, allein dennoch halte ich sie nicht für sicher begründet, und muss die Beziehung der Plattenstücke auf einen Radius vorziehen, denn die näher liegende Vergleichung mit Hexanchus weist vielmehr auf einen einzigen Radius hin.

⁴⁾ Diese Zeitschrift. Bd. V, S. 482.

Ueber das Archipterygium.

chte den gesammten an b anliegenden Theil des Flossenskeletes¹) b" und die kurzen Stücke) als eine aus medial der Stammreihe angegen Radien hervorgegangene Bildung erachten. Fig. 5 giebt auf beigebener Tafel eine Darstellung dieser Auffassung, wobei R eine porpelplatte vorstellt, die aus ebensoviel Radiengliedern gebildet wurde, s discreto Radienreste ihr ansitzen. Die mir erst in neuerer Zeit welch gewordene Untersuchung des Flossenskeletes von Centrophorus mulosus bestärkt mich in dieser Anschauung. Der Stamm des Flossenkeletes (Fig. 1) besteht aus drei Stücken; der erste, sehr grosse und besonders in seiner Mitte verbreiterte (Fig. 4 B) trägt 13 lateral genchtete Radien, das zweite b desgleichen, die sämmtlich ungegliedert sind, und zum Theil in der Längsaxe der Flosse liegen. Endlich besteht noch ein letztes Stück am Stamme, welches radienartig gestaltet ist (b'). Vor dem Basalstücke der Stammreihe lagert ein anderes schwaches Basale (P), welches ich entsprechend meiner früheren Darkgung als ein zum Schultergürtel getretenes Basalstück eines Radius ansehe, wie ihnen denn noch mehrere Radienglieder (e) folgen. Was die medial gelagerten Radientheile angeht, so finde ich zunächst eine grössere Platte (Fig. 4 r'), die drei kleinere, wie Endglieder von Radien sich darstellende Stücke trägt, auf diese folgt eine zweite kleinere (R''). Beide zusammen entsprechen der bei Centrophorus calceus einzigen Platte, die ich zuerst mit b' bezeichnet und als ein ausnehmend verbreitertes Stück der Stammreihe gedeutet hatte. Wie an der ersten Platte Radiengliedstücke sitzen, so sind solche, aber viel unanschnicher auch an der zweiten vorhanden. Nimmt man die Plattenstücke Aund R' bei Centrophorus granulosus als Theile verschmolzener Radien, 🍁 mit einander verbundene Gliedstücke von Radien, die ihre kurzen, Ndimentären Endglieder frei, und den verschmolzenen Stücken angefügt malten haben, so kommt man zu der Anschauung einer »Fiederung« des Endabschnittes des Flossenskeletes, oder einer zweizeiligen Anordnung von Radien an demselben Stücke. In dem auf die Zeichnung 🔄 Flossenskeletes gelegten Liniensysteme habe ich diese Anschauung bildlich dargestellt.

Geringer sind die Reste von medialen Radien, welche von mir bei Acanthias vulgaris wahrgenommen sind. Am ausgewachsenen Thiere besteht nur ein einziges hieher beziehbares Knorpelstückchen. Ich habe es in meinen Untersuchungen (zweites Heft auf Taf. IX. in Fig. 4) mit dem gesammten Skelete der Brustflosse abgebildet, ohne ihm eine besondere Bezeichnung gegeben zu haben. In ganz anderer

⁴⁾ lbid. Taf. XVI, Fig 25.

C. Gegenbaur,

136

Weise verhalten sich die Brustflossenskelete von Embryonen, die übe aus deutliche Reste einer zweiten medialen Serie von Badien erkennen geben. Ich finde das zweite Gliedstück des Flossenstamm (in meiner früher gegebenen Figur [Fig. 4] mit mt' bezeichnet) later mit 3-4 Radion besetzt, welche, zum Theil ungegliedert, den hu tersten Vorsprung der Flosse bilden (Fig. 6). Der vorletzte und lets Strahl ist kurzer, und daran reiht sich ein radienartiges Knorpe stück, welches dem Ende der Stammglieder ansitzt. Ich deute es nic als Radius, sondern als Terminalglied der Stammreihe (B), denn trägt medial in einem Ausschnitte ein Radienrudiment. Aufwärts fol an der medialen Seite des zweiten Stammgliedes ein discreter zwe gliedriger Strahl, an welchen dann noch zwei Radien sich anschliesse die aber mittels eines gemeinsamen Plattenstückes (R) an dem genannt Stammglied sitzen. Auf das Plattenstück folgt noch ein kleines Kno pelchen, das vielleicht ein Rudiment eines fünften medialen Radi repräsentirt. So wären also mindestens vier der medialen Seite d Flossenstammes aufgereihte Knorpelstrahlen vorhanden, die am ausg bildeten Flossenskelete nicht mehr unterscheidbar sind, indem sie thei weise unter einander verschmelzen, theilweise sich rückbilden. I bei Acanthias klare und zweifellose Beziehung der medial dem Flosse stamme ansitzenden Stücke auf Radien dient auch zur Erläuterung d Einrichtungen bei Centrophorus. Die bei Acanthias zwei Radien # gende Knorpelplatte nämlich, welche unbedenklich aus zwei ve schmolzenen Basalgliedern von Radien entstanden zu deuten i erscheint bei Controphorus granulosus in viel umfänglicher Form u wird gemäss der Anzahl der ihr ansitzenden Rudimente von Radien 8 den Basalstücken von drei solchen entstanden sein. Aehnliches (auch von dem folgenden Stücke (Fig. 4 R'). Wie sich nun von Aca thias aus das Verhalten des Centrophorus granulosus erklären lässt, so von diesem her Centrophorus calceus zu verstehen, und das ob Aufgestellte erweist sich durch die Vergleichung sicher begründb Damit fällt auch meine frühere Deutung des grossen Plattenstücl (Fig. 5 R'), welches medial dem Flossenstamme ansitzt, und nunme als durch Concrescenz einer Anzahl von Basalgliedern von Radien ei standen beurtheilt werden muss. Es tritt also auch an diesem The des Flossenskeletes eine Erscheinung auf, deren verbreitetes Ve kommen für die lateralen Radien von mir nachgewiesen worden und zwar gleichfalls am häufigsten an den Basen der Radien, also denselben Theilen, welche an den medialen Radien durch den gleict Vorgang in Anspruch genommen sind.

Somit bestehen am letzten Abschnitte des Met

Ueber das Archipteryginm.

terygiums der Brustflosse bei manchen Haien Reste iner medial dem Flossenstamme ansitzenden Reihe norpeliger Flossenstrahlen, die in den Jugendzuständen usgebildeter sind, als bei erwachsenen Thieren, und demnach noch merhalb der individuellen Entwickelung einen Rückbildungsprocess lurchmachen. Hieraus ergiebt sich eine theilweise Uebereinstimmung nit dem Flossenskelete von Ceratodus, so dass eine Vergleichung beider zerücksichtigt werden kann.

Der gefiederte Endabschnitt des Flossenskeletes von Haien zeigt in allen zur Untersuchung genommenen Fällen eine Ungleichheit der Ausbildung der beiderseitigen Radien. Die medialen sind bedeutend türzer als die lateralen, von denen ein Theil durch überwiegende Längenausdehnung den hinteren Winkel des Flossenskeletes vorstellt. Das Ende des Flossenstammes ist dadurch in eine untergeordnete Beziehung gebracht, indem er aus der ihm gebührenden terminalen Stellung in eine laterale getreten ist. Das dieses Verhältniss bedingende Moment ist schr leicht einzuschen, da es in der Vergrösserung, namentlich in der terminalen Verbreiterung des Basalstückes des Flossenstammes, bei Acanthias und den Notidaniden auch noch in Veränderungen der Basis um Schultergürtel gelangter lateraler Radien, die hier durch Conrescenz grosse Plattenstücke, die Basalia des Pro- und Metapterygiums, formirt haben.

Das terminale Verhalten des Brustflossenskeletes ist in Bezug auf las Ende des Flossenstammes bei den einzelnen Formen ziemlich verrehieden. Bei Heptanchus bildet der Flossenstamm das hintere Ende les Flossenskeletes, deutlicher zwar bei Embryonen, aber auch noch wim ausgebildeten Thiore. Hexanchus hat den Flossenstamm terminal under entwickelt, und die lateralen Radien ragen über den letzteren for, darin einen Uebergang zu Acanthias darbietend, dessen Flossenkelet in noch höherem Maasse mit lateralen Radien abschliesst. Bei lentrophorus endlich ist die erwähnte Umwandlung durch Veringerung der das hintere Ende vorstellenden Radien weiter gehildet. Veben der Entwickelung der lateralen Radien ist es die Rückbildung lar medialen, welche für die Lageveränderung des Flossenstammes mitwirkt, und darin wohl als ebenso bedeutungsvoll wird erkannt Werden dürfen.

Aus dem Nachweise eines gefiederten Abschnittes am Brustflossenskelete der Haie, ergiebt sich nothwendig die Voraussetzung einer anderen Grundform, als die von mir früher angenommene, ^{an} welcher der Flossenstamm nur laterale Strahlen trug. Die GrundC. Gegenbaur,

form wird vielmehr zwei Reihen von Radien, laterale und mediale, am Flossenstamme tragen, das Archypterygium wird also ein gefiedertes sein müssen, und darin mit der Form übereinstimmen, die bei Ceratodus sich erhalten hat. Aus dem verschiedenen Grade der Reduction der medialen Radienreibe ergiebt sich eine Reihe von Uebergangsformen vom einzeiligen zum gefiederten Archipterygium. Ich nehme daher das einzeilige Archipterygium nur als einen secundären, aus dem doppelzeiligen oder geficderten Archipterygium entstandenen Zustand an, bei dem die mediale Reihe der Knorpelradien sich rückbildete, entweder vollständig oder bis auf einige Reste von Radien, die ich vorhin bei mehreren Haien als Zeugniss für die Fiederung aufdeckte. Bei diesen Haien hat sich also vom primären Archipterygium mehr erhalten als bei den übrigen Haien und allen Rochen, ferner den Chimären und Dipnor, bei denen nur die umgewandelte, einzeilige Form besteht, die auch dem Skelete der Hintergliedmaasse ausschliesslich zukommt.

Wenn nun das primäre oder gefiederte Archipterygium, von dem ich in Fig. 1 eine schematische Darstellung gab, noch in Flossenskelete einiger Selachier erkannt werden kann, so werden sich die Selachier in dieser Beziehung tiefer stellen als die übrigen Fische, deren Flossenskelet von der Fiederung keinerlei Spuren mehr aufweist, also von der primitiven Form noch weiter entfernt ist als jenes der Selachier.

Was noch die Beziehungen des primären Archipterygiums zu den verschiedenen Flossenskeleten der Fische, sowie zum Skelet der Gliedmaassen der höheren Wirbelthiere betrifft, so ist meine früher gegebene Darstellung dieser Verhältnisse dadurch nur sehr wenig berührt, und ich muss sie selbst nach der Kenntniss der älteren Grundform vollständig aufrecht erhalten, eben weil der überwiegenden Mehrzahl der Abtheilungen nur die secundäre, aus der ersten entstandene Archipterygiumform zu Grunde liegt. Ausser den Selachiern, bei denen die zweizeilige Form des Archipterygium in die einzeilige übergeht, besitzt vielleicht nur noch Polypterus unter den lebenden Ganoïden das primäre Archipterygium im Flossenskelete, und würde sich dadurch sehr scharf von den übrigen Verwandten abtrennen, welchem Verhältnisse, IluxLEV¹) in Vereinigung dieser Gattung mit fossilen Ganoïden zur Abtheilung der Grossopterygidae auf Grund der gewiss auch mit dem Skelete zusammenhängenden äusseren

¹⁾ Memoirs of the Geological Survey of the united Kingdom. Figurs and descriptions Dec. X. London 1861. S. 24.

Ueber das Archipterygium.

Gestaltung der paarigen Flossen Ausdruck gab. Ich halte es nun für nicht gerade unmöglich, dass das Brustflossenskelet von Polypterus von ciem gefiederten Archipterygium abgeleitet werden könnte. Eine nach dieser Richtung vorgenommene Vergleichung ergäbe Folgendes. Die im ersten Abschnitt des Brustflossenskeletes befindliche grosse, zum Theil knorpelige Platte würde dem an Länge sehr reducirten und auch der Gliederung entbehronden Flossenstamme entsprechen, an dem der ursprünglich an beiden Seiten mit Radien besetzte Rand durch den binteren im Bogen geschweiften Rand repräsentirt wäre. Die beiden, den platten Mittelstücke (ms in Fig. 6 auf Taf. VIII meiner Untersuchungen II) angefügten cylindrischen Knochen (p und mt in derselben Figur), wären selbständig dem Schultergürtel articulirende Radien, und erschienen dadurch den am verkürzten Flossenstamm befindlichen Radien gleichwerthig. Sie entsprächen dabei zweien jener Radien, die bei Ceratodus in grösserer Zahl dem Schultergürtel anzusitzen scheinen. Bei dieser Deutung bestände das Auffallende, dass gerade die den Flossenstamm (ms) repräsentirende Platte keine directe Verbindung mit dem Schultergürtel besitzt, dass sie durch Radien daraus verdrängt wäre. Ich sehe darin jedoch keinen belangreichen Grund gegen die versuchte Deutung, denn auch bei Haien trifft sich nicht selten eine Verdrängung des Flossenstammes vom Schultergürtel. Ich zeigte dieses bei Cestracion, wo das aus verschmolzenen Radien entstandene Basale des Mesopterygiums jene Articulation bildet, dann hei Acanthias, wo auch noch das Propterygium mit einem Basalstücke in Schultergelenke articulirt, während das dem Flossenstamme angehörige Basalstück des Metapterygiums in beiden Fällen davon ausgeschlossen ist. Einen Grund gegen die directe Ableitung des Brustfossenskeletes von Polypterus aus einem gefiederten Archipterygium möchte ich vielmehr aus dem Verhalten der Bauchflosse nehmen, deren Skelet aus vier lateralwärts an Grösse abnehmenden Knochenstücken hesteht, welche in ihrer Anordnung auch gar nichts auf die primäre Archiptervgiumform beziehbares erkennen lassen. Sie erscheinen vielmehr, ähnlich wie bei anderen lebenden Ganoïden, nur von der einzeiligen Grundform ableitbar.

Wäre also die obenerwähnte Deutung des Brustflossenskeletes richtig, so würde dieser Theil ein vollständiges, wenn auch in seinem Stamme sehr verändertes primäres Archipterygium vorstellen, während die Bauchflosse gar nichts davon darbietet, da sie nur Skelettheile enthält, die, wie bei andern Ganoïden und Teleostiern, ausserordentliche Reductionen der einzeiligen Grundform erkennen lassen. Die bei jener Voraussetzung so grossartige Verschiedenheit des Typus im Skelete von beiderlei Gliedmaassen bestimmt mich, meine frühere Auffassung des Brustflossenskeletes von Polypterus nicht aufzugeben, jedenfalls so lange nicht, als der Nachweis, dass die koorpelige Mittelplatte des Brustflossenskeletes den reducirten Flossenstamm vorstellt, noch nicht geliefert ist. Demnach kann ich das genannte Skelet von Polypterus nicht unmittelbar auf das primäre Archipterygium beziehen, sondern leite es, wie jenes der anderen lebenden Ganoïden von der secundären, nur Eine Reihe von Radien besitzenden Form ab.

Wenn ich so das Flossenskelet von Polypterus von dem von Geratodus für verschieden halte, will ich daraus keineswegs die Nothwendigkeit einer Verschiedenheit vom bis jetzt noch unbekannten Flossenskelet der anderen Familien der Crossopterygier gefolgert sehen, und möchte auch hier den Thatsachen ihr Recht vorbehalten wissen, wie sie auch immer sich einmal herausstellen mögen.

Das Fortbestehen des Archipterygiums im Flossenskelet von Ceratodus, sowie in einem Theil des Skeletes der Brustflosse einiger Haie spricht für ein ursprünglich weit verbreitetes Vorkommen dieser Form, und wenn, wie ich aus dem Verhalten der Selachier jetzt für unzweifelhaft halten darf, die einzeilige Form von der gefiederten sich ableitet, so wird die letztere gewiss bei vielerlei Abtheilungen untergegangener Fische geherrscht haben, ohne dass jedoch ausschliesslich aus der Erhaltung einer einzigen, ursprünglich allen gemeinsamen Einrichtung auf eine engere Verwandtschaft geschlossen werden dürfte. Denn gerade dadurch unterscheidet sich der indifferente Zustand einer Organisation (wie im gegebenen Falle das primäre Archipterygium es ist) vom differenzirten, dass er nach vielerlei Richtungen sich fortvererben kann, während der letztere, auf immer neuen Wegen schreitend, innerhalb engerer Abtheilungen seine Grenzen findet, die um so schärfer gezogen sind, je grösser die Mannigfaltigkeit in den einzelnen Formen der Differenzirung war.

Jena, im Mai 1871.

Erklärung der Abbildungen.

Tafel X.

- Fig. 1. Schematische Darstellung des zweizeiligen (gefiederten) Archipterygiums, vorzüglich nach Maassgabe der von Günther bei Ceratodus nachgewiesenen Form des Gliedmaassenskeletes.
- Fig. 2. Skelet der Brustflosse eines 42 Cm. langen Embryo von Heptanchus cinereus. 46 Mal vergrössert. Zur Vergleichung diene die Darstellung desselben Skelets, die ich von einem erwachsenen Thiere auf Taf. 1X, Fig. 2 meiner Untersuchungen Heft II, gegeben habe.
- Fig. 3. Hinterende des Brustflossenskeletes von Hexanchus griseus. Copie eines Theiles der Fig. 4 auf Taf. IX der Untersuchungen Heft II.
- Fig. 4. Brustflossenskelet von Centrophorus granulosus.
- Fig. 5. Hinterende und Innenrand des Brustflossenskeletes von Centrophorus calceus. (C. crepidalbus.) Copie eines Theils von Fig.~25 auf Taf. XVI des V. Bandes der Jenaischen Zeitschrift.
- Fig. 6. Brustflossenskelet eines 34 Cm. langen Embryo von Acanthias vulgaris. 4 Mal vergrössert. Vergl. hiermit die Darstellung eines Erwachsenen in Fig. 4, Taf. IX meiner Untersuchungen II.

Von den rothen Linien bezeichnet die stärkere, durch das Metapterygium geiegte, den Stamm des primären Flossenskeletes (Archipterygium), die feinen von der Stärkeren ausgehenden Linien bezeichnen die an beiden Seiten des Flossenstammes befindlichen Radien.

B, B, B.... Stücke des Flossenstammes.

rrr. Radien.

ms Basale des Mesopterygiums.

P Basale des Propterygiums.

e Modificirte Radienglieder.

k Aus Verschmelzung von Radiengliedern entstandene Platteu.

Von

C. Bruch.

Mit Tafel XI.

Als ich vor vier Jahren meine Untersuchungen über die Entstehung der Doppelbildungen¹) zum Abschluss brachte und die Ergebnisse derselben übersichtlich zusammenstellte, schien mir die Sache in den Hauptpunkten soweit erledigt, dass ich nicht glaubte, bald wieder das Wort ergreifen und neue Gesichtspunkte aufstellen zu können. Nicht nur ist es mir hier in Offenbach ergangen, wie früher in Rödelheim, dass die Brutplätze der Batrachier und insbesondere des für Missbildungen so ergiebigen Pelobates fuscus, zwar nicht durch ausdrückliches Verbot, sondern durch die wechselnden Bedürfnisse der Feld- und Wiesencultur, für mich unbenutzbar wurden, sondern es zeigte sich auch in den noch ferner gemachten Beobachtungen Nichts nicht schon Beobachtetes mehr. Inshesondere musste ich die schon von Andern gemachte Bemerkung bestätigen, dass Missbildungen am vorderen Leibesende bei Batrachiern zu den grössten Seltenheiten gehören, Verdoppelungen der Achsengebilde am Kopfende sogar noch nicht beobachtet sind²). Ohne vorläufig hierauf weiter einzugehen und etwa erörtern zu wollen, ob vielleicht derartige Missbildungen geringere Aussicht auf eine längere Lebensdauer haben, als Verdoppelungen des Schwanzes oder der Extremitäten, worüber nur die Beobachtung der frühesten Entwicklungsstufen von Mehrfachbildungen Aufschluss geben könnte, will ich nur

¹⁾ Würzburger medicinische Zeitschrift. VII. S. 257.

²⁾ Ein weiterer Fall von überzähliger Vorderextremität und zwar diesmal bei R. temporaria ist indessen in der Zeitschrift von GIEBEL und HEINTZ, 4867. S. 504, mitgetheilt worden.

nzeigen, dass auch meine neueren Versuche, durch mechanische Einriffe, Einschneiden, Einkneipen oder Binreissen des Schwanzes von roschlarven künstliche Doppelschwänze zu erzeugen, vergeblich ewesen sind, sowie es mir auch nicht vorgekommen ist, dass ein erstümmelter Schwanz überhaupt sich als Doppelschwanz regenerirt ätte, obgleich solche Fälle, ja sogar dreifache Schwänze bei Eidechsen viederholt von Andern und von mir selbst beobachtet worden sind ¹). ch habe daher alle Ursache, an der früher aufgestellten Unterscheidung von Fehlern der ersten und der zweiten Bildung bei Froschlarven lestzuhalten, und hoffe, dass die nunmehr mitzutheilende Wahrnehmung einer Verdreifachung der Chorda dorsalis ein erhöhtes Interesse verdient²).

Die Beobachtung, welche ich gegenwärtig mitzutheilen habe, ist schon ziemlich alt, sie wurde von mir schon gemacht, che die Separatabdrücke meiner letzten Abhandlung in meinen Händen waren, doch unterliess ich es damals, derselben etwa noch einen Anhang beizufügen, einestheils, weil ich hoffte, vielleicht noch weitere ähnliche Fälle zufzeigen zu können, anderntheils aber, weil ich Angesichts der ersten und einzigen Triplicität, die mir bis jetzt zur Anschauung gekommen ist, wirklich nicht sofort über die theoretische Auffassung und Beurtbeilung derselben mit mir einig war. Eine songfältige Durchsicht und Prüfung der mir zugänglichen Literatur in Verbindung mit den fragmentarischen Aufzeichnungen aus dem in

2) Ich habe seitdem Gelegenheit gehabt, die citirte Mittheilung von A. VCLPIAN iber künstlich erzeugte Doppelbildungen bei Froschlarven (Gazette med. 1862, p. 188) im Originale nachzuschen, wo sich denn ein sehr massiges Resultat benasstellte. Spaltung des Kopfes bei ganz jungen Larveu führte entweder zu baldiger Wiederverheilung oder zu einfacher Vernarbung. Spaltung des Schwanzes in eine obere und untere Hälfte (eine seitliche misslang immer), womöglich in der Nitte der Wirbelsegmente, führte entweder zum Abfallen der einen Hälfte und rollständiger Ausbildung der anderen Hälfte, oder beide Schenkel fielen ab und des Organ regenerirte sich in seiner Totalität. Bei einem einzelnen Exemplare bieben beide Hälften in situ und verheilten wieder zu einem einfachen Schwanze, und bei einem anderen entstand an der Stelle der abgefallenen Hälfte rive neue Achse mit Muskeln und Flosse, demnach ein ganz neuer Schwanz, uf der alten Achse aufsitzend, während die obere Hälfte sich ebenfalls ergänzte. Verman hält demnach selbst weitere Untersuchungen für nöthig.

Regeneration des Schwanzes der Froschlarven und selbst der Extremitäten bei sehr jungen Larven ist auch von A. GÜNTHER (S. R. OWEN, anatomy of vertebrates. Vol. I. 4866, p. 567) beobachtet worden, wobei von künstlich erzeugten Doppelbildungen Nichts erwähnt wird.

^{4;} S. J. GEOFFROT ST. HILAIRE I. p. 520. OTTO, monstrorum sexcentorum dektiplic. p. 445 u. a. m.

144

.

C. Bruch,

Sammlungen zum Theil vor sehr langer Zeit Gesehenen, hat inzwische mein Urtheil gereift und giebt mir, wie ich hoffe, die Berechtigung, auch diese letzte noch übrige Frage aus dem Gebiet der Mehrfachbildungen einer näheren Besprechung zu unterziehen. Ich glaube dies um so eher verantworten zu können, als mir in der That kein Schriftsteller bekannt ist, welcher sich seit J. GROFFROV ST. HILAIRE mehr die ganz beiläufig und in den allgemeinsten Ausdrücken über die Enstehung und Gesetzmässigkeiten der Triplicitäten ausgesprochen hätte während Andre sie entweder ganz unerwähnt liessen oder höchsten im System als Titelrubrik der Vollständigkeit wegen aufführten.

J. GEOFFROY ST. HILAIRE widmet den »Monstres triples et prétendu monstres plus que triples« nicht nur einen besonderen Abschnitt in de Lehre von den »zusammengesetzten Missbildungen« (Livre II. Chap. XII) sondern er giebt auch eine bis ins Einzelne fertige und vollständig Theorie derselben, welche sich begreiflicherweise aufs Engste an sein bekannte Theorie der Doppelbildungen anschliesst, aber um so meh geeignet ist, die Kritik herauszufordern, als das Material hier so unver hältnissmässig viel spärlicher vorliegt und er selbst sich nur auf ein einzige eigene Beobachtung stützen kann. Bei der ausgezeichnete logischen Anordnung und Consequenz in GEOFFROY's Systeme ergebe sich keine wesentlich anderen Einwürfe, als diejenigen, welche scho von Andern und auch von mir gegen seine Theorie der Doppefbildunge geltend gemacht worden sind, Einwürfe übrigens, welche gerade i Gebiete der Dreifachbildungen bedeutend an Gewicht gewinnen und wie ich glaube, dazu beitragen werden, die Grundfrage zum völlige Austrage zu bringen.

Dem schon früher befolgten Verfahren gemäss stelle ich auch bie zunächst die gemachte Beobachtung voraus, welche, wie die früherer den Schwanz der Froschlarven und zwar bei Pelobates fuscus, un worauf ich ein besonderes Gewicht lege, die einzige Missbildung be trifft, welche in einer durch Körpergrösse ausgezeichneten, wob genährten, im Ganzen aber nicht sehr zahlreichen Brut dieser Speci vorkam. Ich begegnete derselben das erstemal am 21. Juli 1867 einem Orte, den ich früher schon besucht hatte, ohne auf die Bewo Auch war es mein Soh nerschaft aufmerksam geworden zu sein. welcher mich zuerst auf die letztere aufmerksam machte, und es b durfte eines mit der Hand aus dem mit Wassergewächsen stark ve wachsenen Graben herausgegriffenen Exemplars, um mich von ihr Gegenwart zu überzeugen. Das von den gewohnten Erscheinung Abweichende lag einestheils in der ungewöhnlichen. Alles bisher G sehene übersteigenden Grösse der Larven, anderntheils in ihrer ebei ngewöhnlich dunkeln, bräunlichen, ja dunkelbraunen Hautfarbe, ugleich aber auch in der bei der vorgerückten Jahreszeit sehr forteschrittenen Entwicklung der Larven, die zum Theil schon mit vier, rösstentheils aber mit zwei Beinen versehen waren. Ich hatte daher lie starken Bewegungen, welche diese Geschöpfe im Wasser bei der unäherung machten, nicht auf Froschlarven, sondern auf ausgewachsene der mindestens einjährige Frösche bezogen.

Dieser Wassergraben lag an einem ziemlich hohen Rain unter chattigen Bäumen, war etwa anderthalb Fuss tief, der Boden stark wachsen, die Bewohner daher sehr geschützt und geeignet sich zu æbergen, eben deshalb ausserordentlich gut genährt. Bei näherer latersuchung des Darminhalts stellte sich heraus, dass derselbe aus rossen Schlammmassen bestand, welche gleich dem Schlamme, welter den Boden des Grabens bildete, zahlreiche mikroskopische Pflanmgebilde (aber durchaus keine abgenagte Pflanzentheile) enthielt¹). Nese Larven waren daher fast reine Pflanzenfresser, woraus sich vieleicht, bei dem relativen Ueberfluss an Nahrung, ihre ungewöhnliche Gisse erklärt. Bei der diesjährigen Kälte und dem fast beständig herrzbenden Regen war die sonst vorherrschende mikroskopische Fauna ast ganz ausgeblieben. Eine andere Brut von Pelobates fuscus, welche ich in einem benachbarten, ganz flachen und offenen Graben ohne le Vegetation und mit reinem Sandboden entwickelt hatte, war in der intwicklung lange nicht so weit vorgerückt und zeigte die gewöhniche blass-olivenartige Färbung und eine viel geringere Grösse, so dass in Ungeübter beiderlei Larven schwerlich für derselben Species angebrige gehalten haben würde. Zweifelte ich doch selbst anfangs, ob d es hier mit Pelobates fuscus und nicht etwa mit einer irgend wie iether verschlagenen Brut des südlichen Pelobates cultripes zu thun nbe, bis die Beobachtung der weiteren Entwicklungsstufen, der Memorphose und der damit bei allen Individuen deutlich werdende eschlechtsunterschied in der Grösse und Farbung, meine Zweifel seitigte. Dabei muss ich hervorheben, dass diese Unterschiede bei Riesenbrut ungewöhnlich früh eintraten und die charakteristische ^{thoung} der erwachsenen Thiere, braun und weiss mit rothen Punkten *i den Weibchen, olivenfarbig mit schmutzigerem Weiss bei den linnchen, bei beiden dunkler als beim ausgewachsenen Thier, schon wirat, ehe die jungen Fröschchen die Schwänze völlig verloren und As Wasser verliessen. Noch ist zu bemerken, dass sich in demselben Graben Larven von Rana esculenta befanden, welche ebenfalls durch

¹⁾ S. meine früheren Mittheilungen darüber. Zoolog. Garten. V. 4864. S. 855.

besondere Grösse und dunklere Färbung ausgezeichnet waren an dem Einflusse der Localität auf diese Verhältnisse nicht zweifeln war.

Vom 21. Juli bis Anfang August sammelte ich bei tägli suche in diesem Graben etwa 60 Larven von Pelobates von denen Entwicklungsstufen, alle der grossen Brut angehörig ut weg 9,5 bis 10,5 Centim. in der Länge ¹}. Nach diesem Z wurde keine mehr wahrgenommen, auch hatten die let Entwicklung beinahe vollendet. Es ist zwar möglich, dass entgangen sind und das Wasser schon früher verlassen habe allen Bruten einzelne Individuen den andern in der En voraus sind, allein es ist mir doch nicht wahrscheinlich, das diesem Falle waren, da fast alle von mir aufgefundenen r ständige Schwänze hatten und diese Art das Wasser nicht bevor die Metamorphose vollendet ist. Andererseits spricht viel weniger vorgeschrittene Entwicklung der benachbarte die kühlere Lage des betreffenden Grabens und die herrschei Witterung gegen eine vorschnelle Metamorphose, welche um e reszeit sonst normal eintritt²).

Interessant war es auch zu sehen, wie die in Gefangenschaft reifen Larven von Pelobates fuscus sich einzugraben anfingen, sobs trockene Erde gebracht wurden (s. Bd. III. S. 487), ehe noch die A phose vollendet war, obgleich sie dies im Naturzustande freiwillig Anfangs sassen sie zwar ganz ruhig und platt auf der Erde und machte wegungen, welche auf Unbehagen oder auf eine bestimmte Absicht, sie gewohnten Lage zu entziehen, hinwies. Nur suchten sie allzugreller I stets auszuweichen. Tippte ich sie auf den Kopf, so duckten sie sich ein und drückten sich fester auf die Erde. Tippte ich von neuem, so bega: Scharrbewegungen mit den Hinterbeinen, um sich in den Erdboden

146

¢

⁴⁾ Die grössten Larven von Rana esculenta, welche mir vorgekon massen nicht über 7,5, einige Larven von Cultripes provincialis, welc Güte des Herrn Prof. Kölliker verdanke, nicht über 8 Ctm.

²⁾ Eine Anzahl der der Metamorphose nahen Larven behielt ich lzum Eintritt des Winters und hatte dabei Gelegenheit zu beobachten, fangs runde Pupille allmählich in die senkrecht gespaltene Forn welche Pelobates eigen ist. Dies geschieht nicht plötzlich, sondern allm dem die runde Pupille erst zur Zeit, wo die vorderen Extremitäten anfunter der Haut zu bewegen und durch das Athemloch durchzubrechen, bische Gestalt annimmt, welche dann beim Eingehen des Schwanzes i förmige übergeht, so dass Pelobates bei der Gestaltung seine Formen durchläuft, welche bei anderen einheimisc trachiern permanent vorkommen und früher von mir beschriel sind. (S. Würzb, naturwissensch. Zeitschrift. IV. S. 92 ff., 97, 128; Ill

Am 23. Juli 1867 erhielt ich aus dem beschriebenen Wassergraben lie Taf. XI Fig. 1 in natürliche Grösse mittelst der geometrischen Ichode abgebildete, der Metamorphose schon sehr nahe Larve von Ichobates fuscus, welche mir schon im Wasser durch die Breite ihres ichwanzes auffiel und beim Herausnehmen aus dem Schöpfer sofort als Dreif ach bild ung erkannt wurde. Ihre ungewöhnliche Grösse fällt us Auge, wenn man sie mit den früher 1) abgebildeten Larven verleicht, nähert sich im Längsdurchmesser der ebenfalls schon früher 2) ibgebildeten Larve mit »absolut zu langem Schwanz«, in der Art, dass Ier Schwanz unserer Dreifachbildung jenen immer noch übertrifft, aber

neben, was auch in der bekannten spiralig sich drehenden Bewegung des Hintereibes erfolgte. Wir haben hier einen weiteren Beweis zu den unzähligen anderen, hass die sogenannten «Instincte» der Thiere mit der Organisation angeboren, nicht lurch Erfahrung und Unterricht erworben sind, obgleich man den Einfluss der etzteren nicht unterschätzen darf und es gefehlt wäre. den Thieren die Benutzung der Erfahrung Anderer und der eignen abzusprechen. Den sprechendsten Beweis der letzteren liefert die schon früher besprochene Scheuheit der Froschlarven in solchen Wasserbehältern, welche zum Wasserschöpfen benutzt werden oder sonst öfferen Besuchen ausgesetzt sind.

In Bezug auf das Eingehen des Schwanzes beobachtete ich in diesen Fällen tinen etwas abweichenden Process. Bekanntlich erfolgt dasselbe nicht durch »Abrefer des Schwanzes, was man hie und da noch wohl zu lesen bekömmt, sonien durch eine von der Spitze des Schwanzes gegen dessen Wurzel fortschreitende Mophie, welche mehrere Tage in Anspruch nimmt und die Thiere sehr angreift, aber sie in dieser Zeit weder fressen noch zunehmen. Bei meinen auf dem Trock-Ragehaltenen Fröschchen von Pelobates fuscus bildete sich, als der Schwanz noch 🗤 🗤 lang war, am Steiss eine deutliche Demarcationslinie; der Schwanz milarbte sich, wurde weich und zerreisslich, die Oberhaut ging leichter herunter bonders nach kurzem Verweilen in verdünntem Weingeist), ja selbst die Pigmentwhicht, welche innig mit der Oberhaut zusammenhängt, aus ramificirten Zellen mit lemanschwellungen besteht und über der ziemlich einfarbigen Lederhaut liegt, ging reforen. So nutzte sich der Schwanzstumpf förmlich ab und die Ursprungsstelle marbte zuletzt wie ein offenes Geschwür. In dieser mechanischen Weise habe ich den Schwanz sonst bei keiner Froschlarve sich zurückbilden sehen, welche sich ^{in ihrem} naturlichen Elemente befand, obgleich die Laubfrösche, wie ebenfalls ^{ichon} früher bemerkt, das Wasser verlassen um am Glase sich anzusetzen, ehe de Metamorphose vollendet ist.

Bemerkt sei hier ferner, dass diese grossen Larven schon deutlich eine Stimme vernehmen liessen, welche, ähnlich der der jungen Tritonen, quäkend, Bicht quikend war, wie bei den Kröten.

Endlich begegnete mir auch eine noch ziemlich junge Larve vor dem Durchhuch der vorderen Extremitäten, welche das Athemloch auf der rechten Seite hute. Es war dies eine der Colossalformen.

Würzb. med. Zeitschr. VII. Taf. VI, Fig. 4-8.
 A. a. O. V. Taf. I. Fig. 5.
 VII. 9.

durch die Länge des noch nicht metamorphosirten Kieferapparats be jener viel jüngeren Larve compensirt wird. Eine Vergleichung der Dimensionen der Extremitäten wird am besten auch ohne genauere Prifung mit dem Maassstabe und Zirkel geeignet sein, den Unterschied de Körpergrösse darzuthun, wobei nicht zu übersehen ist, dass unsen Missbildung ein völlig ausgewachsenes, der Metamorphose nahestehende Individuum darstellt. Die Färbung war noch die, welche den Larve von Pelobates vor Beginn der Metamorphose eigen ist, nämlich ei dunkles Olivenbraun mit zahlreichen zerstreuten kleinen, dunkeb Flecken. Insbesondere hatten die inselartigen braunen Flecken, mi trennender weisser Bänderung (welche in der Nacken- oder Steissgegend zuerst aufzutreten pflegt 1) noch nirgends begonnen. Die Invo lution des Schwanzes hatte noch nicht begonnen, wohl aber verriet die Gestalt des Kopfes, namentlich die stumpfe Schnauze und die Halb kreisform des Kieferrandes, dass die Umbildung und Reduction de Kiefergerüstes, welche der Involution des Schwanzes vorausgeht, bereit vollbracht war. Die Durchbruchstelle der äusseren Haut auf der rechte Seite war bereits vernarbt und hatte sich, gleich dem Athemloch auf de linken Seite, um den Oberarm fest angelegt, wie ein Hemd ohne Aerm mit engem Armloch, dessen Ränder überall scharf und deutlich wahr nehmbar waren. In Folge des bereits mehrtägigen Fastens hatte sic der Darmcanal schon sehr beträchtlich entleert und der Unterleib a Dimensionen reducirt, welche dem Typus des erwachsenen Froschentsprachen, wie es in dieser Entwicklungsperiode Regel ist. Eini Tage früher, vor Beginn der Metamorphose der Kiefer, hetrug der Un fang des Leibes gewiss die doppelte Breite des Kopfes. Die Lar bewegte sich im Wasser noch immer, gleich allen geschwänzten Frosc larven, ganz fischartig, ohne die Extremitäten zu benutzen, vermoch aber auf dem Lande ganz gut zu hüpfen und zu rutschen, gleich jung Auch Scharrbewegungen würde bei der vollständig Fröschchen. Ausbildung der Messerschwiele die Organisation nicht hinderlich sei wenn nicht der lange, fleischige Schwanz dem Eingraben wide stünde.

An dem letzteren fiel sogleich die beträchtliche Breite der Schwan flosse, besonders in der hinteren Hälfte ins Auge, welche am ober Rande einen starken Bogen bildete und dann rasch gegen die Schwan spitze hin abfiel, während der untere Rand hier mehrfach ausgeschnitt erschien. An den Achsengebilden war eine solche Unregelmässigk

⁴⁾ S. a. a. O. II. Bd. S. 197.

nicht wahrnehmbar, dieselben verliefen vielmehr in gewöhnlicher Form mdAusbildung, sich gegen die Schwanzspitze hin allmählich verjüngend, bis gegen das letzte Fünftheil der Gesammtlänge des Schwanzes. Hier angekommen theilte sich die Chorda in der früher beschriebenen Weise in zwei fast gleich starke Schenkel, welche beide in der Medianebene lagen und von welchen der obere und stärkere in der Flucht der ungetheilten Chorda grade fortging, der untere schwächere aber etwas gewunden erst eine kurze Strecke parallel mit dem oberen nach rückwärts, dann aber schräg nach abwärts und hinten gerichtet war und am unteren Flossenrande mit verjungter, etwas nach vorn gekrümmter Spitze endete (Fig. 2). Die Musculatur des Achsentheils, welche bis zur Theilungsstelle etwa 24-25 Segmente aufwies, war in dieser Strecke von volltommener Regelmässigkeit und endete an dieser Stelle nicht, sondern erstreckte sich, mit weiteren deutlichen Muskelabtheilungen noch eine Strecke weit über beide Schenkel, besonders am oberen Schenkel, war iber auf der äusseren Seite derselben viel merklicher ausgesprochen, als auf den inneren zugekehrten Seiten. Auch die Blutgefässe, welche die Chorda begleiteten, setzten sich in normaler Weise auf die äusseren Seiten beider Schenkel fort, während sich ein einfaches starkes Gesäss wischen beiden Schenkeln im weiteren Verlauf dem oberen Schenkel anachloss.

Erst in einer Entfernung von 5 Millim. von der Schwanzspitze theilte sich der obere Schenkel der Chorda zum zweitenmale und zwar ganz in derselben Weise, wie die Chorda selbst, nämlich in einen oberen Schenkel, welcher die unmittel-^{ba}re Fortsetzung und das normale Ende der Gesammtchorda repräsentirte, aber durch seinen gewundenen ^{Verl}auf (Fig. 2) an die Form der »allzulangen« Chorda ^{erinner}te, und in einen unteren, schwächeren und kürteren Schenkel, welcher in schräger Richtung nach ^{hinten} und abwärts verlaufend so ziemlich auf dem kür-^{zesten} Wege den Flossenrand erreichte. Zwischen der ersten und zweiten Theilungsstelle hatte der untere Flossenrand eine lappige Ausbuchtung, von zwei seichten Einschnitten begrenzt, welche nicht Folge von Verletzungen waren, sondern den natürlichen Rand der Schwanzflosse zeigten. In der Pigmentirung, so wie im sonsigen Ansehen war weder an den Achsengebilden noch an der Schwanzflosse ^{jener} Unterschied zwischen dem ungetheilten und getheilten Schwanzabschnitte zu entdecken, wie man ihn bei regenerirten Schwänzen nicht vermisst, und welchen auch A. GÜNTHER¹) erwähnt. Die Missbildung fällt demnach unter die Kategorie des Dichordus medialis und musste etwa als Dichordus medialis triplex bezeichnet werden, wenn man nicht geradezu einen Trichordus medialis aufstellen will. Sie kann nur dadurch entstanden sein, dass die Chorda dorsalis sich bei ihrer ersten Entwicklung nicht einmal, sondern zweinal, d. h. an zwei verschiedenen Stellen verzweigt hat, so dass im Ganzen drei wirkliche Chordaenden, wenn auch von verschiedener Dignität, entstanden sind.

Man wird nicht verkennen, dass schon das Vorkommen einer solchen zweimaligen Theilung der Chorda dem Einwande, dass es sich in diesem Falle um einen Fehler der zweiten Bildung, ein Regenerationsphänomen handele, in viel stärkerem Grade widerstrebt, als der einfache Dichordus. Es ware gewiss ein sehr besonderer Zufall, wenn sich ein solcher Vorgang bei einer und derselben Froschlarve ganz in derselben Weise kurz nach einander wiederholte, und wenn dieses Individuum das einzige einer ganzen Brut bliebe, welches von einer Regeneration betroffen wird! Hierzu kommt, dass es gerade dieser Brut, wie aus ihrer Körpergrösse hervorgeht, am wenigsten an Nahrung, dem Cannibalismus also der zureichende Grund gefehlt hat. Ich glaube daher vollkommen im Rechte zu sein, wenn ich diesen Fall als eine Missbildung aus inneren Gründen dem echten Dichordus anreihe, in seiner Seltenheit, als Unicum während einer siebenjährigen Beobachtungszeit und unter vielen Tausenden von Froschlarven, als echte Dreifachbildung der Chorda dorsalis anspreche und, insofern es sich um ein Achsengebilde handelt, an die Doppelbildungen der Achsenorgane anschliesse. Ich thue dies um so lieber, als leicht ersichtlich ist, dass auf dem bezeichneten Wege auch eine Vier- und Mehrfachbildung der Chorda dorsalis nicht zu den Unmöglichkeiten gehören und alle Fälle von Mehrfachbildungen unter eine Kategorie und unter ein und dasselbe Gesetz der Entstehung fallen würden.

· So ansprechend und einleuchtend übrigens eine solche Ansicht sein mag, so wenig kann ihr die specielle Durchführung mit Bezug auf die bekannten Fälle von Triplicitäten erlassen werden. Ausser J. GEOF-FROY ST. HILAIBE ist mir kein Schriftsteller bekannt, der diesen Versuch wirklich gemacht hätte, und es ist daher unerlässlich, auf seine Darstellungsweise hier näher einzugehen.

J. GEOFFROY²), von der Voraussetzung ausgehend, dass alle höhern

⁴⁾ A. a. O.

²⁾ A. a. O. p. 6, 222.

Grade von Doppelbildungen durch Verschmelzung zweier vorher getrennter Individuen entstanden sind, und dass demnach » die Dreifachbildungen nur ein Corollar zur Geschichte der Doppelbildungen« bilden können, nimmt sofort an, dass eine Triplicität höheren Grades (mit dreifacher Achsenbildung) durch Verschmelzung dreier Individuen entstehe, eine Vierfachbildung durch vier Individuen u. s. f. Diese fundamentale Bedingung unterscheidet nach ihm die »zusammengeseuten Missbildungen« von den »Hemiterien«, welche letztere in dreiacher Weise, entweder 1) durch Spaltung oder 2) durch übermässige Aushildung rudimentarer Organe oder 3) durch Bildung überzähliger Organe in einem einfachen Individuum entstehen und meistens von geringerer Bedeutung sind. Das Wesentliche der »zusammengesetzten Monstraw ist nach ihm die Bildung von Organen, welche »nicht in der Organisation des Wesens begründet sind und daher keine überzählige Theile, sondern ein besonderes Individuum bilden«.

Man würde schwerlich begreifen, wie G. zu einer so willkürlichen Interscheidung kommen konnte, die obendrein eine ungelöste Principienfrage, den Begriff des Individuums, einschliesst, wenn man sich nicht des Entwicklungsganges der französischen Teratologie erinnerte. h den bertihmten Streite zwischen Lenery und Winslow, welcher in der ersten Hälfte des vorigen Jahrhunderts vor der französischen Akademie spielte, bekämpfte LEMERY, welcher seines Zeichens nicht Zoologe, sondem Chemiker war, in glänzendster Weise die schon seit Ritgis Zeit bestehende Lehre von der Bildung abnormer Keime, welche die Lehre ^{von} den Missbildungen auf ein transcendentales, ja selbst theologisches Gebiet hinuberschob, aber er konnte nicht verfehlen, seinem Gegner eine schwache Seite darzubieten, als er eine rein mechanische Verwachsung von Zwillingsfrüchten zur Grundlage der Erklärung machen wollte. Die von WINSLOW entgegengehaltene Gesetzmässigkeit in der Verbindung homologer Organe, welche sich durch die sorgfältigsten anatomischen Untersuchungen bisher als eine ausnahmslose herausgestellt hat, ist der wissenschaftliche Kern der Lehre geworden, trotz der von ihm, keineswegs mit Entschiedenheit, behaupteten originären Entstehung abnormer Keime. Es ist vollkommen begreiflich, dass die Damhastesten Physiologen jener Zeit, A. von HALLER an der Spitze, Winslow's Argumente zu stützen suchten und um diesen Preis selbst vor einer Transaction mit der aller Wissenschaft Hohn sprechenden Evolutionstheorie nicht zurückscheuten. Ebenso begreiflich ist auch, dass eine anscheinend so einfache Lehre, wie die LEMERR'sche so viele Anhänger herbeizog, welche, ohne sich auf die Kritik der einzelnen Fälle einzulassen, mit einem Worte die Sache zu entscheiden

C. Bruch,

wünschten. Man begreift vollkommen, wie erwünscht einem grossen Theile des ärztlichen und Laienpublicums die spätere Aufstellung des Affinitätsgesetzes durch den älteren Georfrov St. Hilaine sein musste, welches, ohne LEMERY's Ansicht aufzugeben, die WINSLOW'schen Einwürfe, so weit sie von der Anatomie der Doppelbildungen hergenommen waren, anerkannte und in eine theoretische Form brachte, die ohne Berufung auf ein anerkanntes Naturgesetz, einfach den Thatsachen Rechnung trug. In Frankreich scheint man sich in der That allgemein mit LEMERY'S Lehre in Verbindung mit dem Geoffroy'schen Affinitätsgesetz beruhigt zu haben und hatte dabei den doppelten Vortheil, der mechanischen Naturansicht zu huldigen und zugleich der Kirche die Doppeltaufe der Dicephalen zu ermöglichen, die unter gewissen Umständen nicht zu umgehen war und auch stets unbedenklich vollzogen worden ist. Selbst Bonner, der Begründer der Evolutionstheorie, für welchen also die Lehre von der originären Entstehung abnormer Keimeein Glaubenssatz sein musste, huldigte, nach dem Zeugnisse von J. GROFFIOT ST. HILAIRE, für die Doppelbildungen ausnahmsweise der LEMERI'schen Theorie und betrachtet sie als verwachsene Zwillinge.

Einem solchen Missbrauch der Autorität gegenüber ist es ausserordentlich wohlthuend, aus der Geschichte der Wissenschaft zu erfahren, dass alle Forscher im Gebiete der Embryologie sich mit einer ausnahuslosen Einstimmigkeit für eine andere Entstehungsweise der Monstren überhaupt und der Doppelbildungen insbesondere bemüht und ausgesprochen haben. Die Spuren dieser Erklärungsversuche gehen viel weiter zurück, als der Streit in der französischen Akademie und d^{ie} ganze Evolutionstheorie. Klingt es doch wie ein Ausspruch des 19. Jahrhunderts, wenn wir lesen: Morbosas constitutiones, quas natur# ludentis, vel vi morbi aberrantis frequenter in animalium corporib excitatas miramur, plurimum lucis pro rimanda ejusdem genuina op 🗲 randi norma et methodo conferre perpetuo credidi, quandam enim m 🖛 🕯 teriae necessitatem et determinatam inclinationem demonstrant, quae compingenda animalium mole elucescit, ita ut monstra ceteriq 🛹 errores facilius et tutius nostram erudiunt insipientia🖛 📭 quam mirabiles et perpolitae naturae machinae 1). Dæ 4 j. schon HARVEY, später HALLER und C. F. WOLFF die von J. F. MECKEL grösster Ausdehnung formulirte Lehre von den Bildungshemmung geahnt und mehr oder weniger bestimmt sich dazu bekannt haben, 🛤 J. GEOFFROY bereits hervorgehoben. In der deutschen Wissenschaft

⁴⁾ Marcelli Malpighi op. omnia. Lugd. Bat. 4687. Il. p. 811.

uberbaupt die Evolutionstheorie trotz HALLER's Hinneigung wenig Glück gehabt und C. F. WOLFF's »Theorie von der Generation« kam zu fruh, als dass jener ein namhafter Vertreter hätte aufkommen können. Wenn own auch J. F. MECKEL als solchen aufgeführt hat, so braucht man doch nur die lapidarische Definition der Doppelbildungen in seinem Handbuche¹), ein Jahr nach dem Erscheinen seines grossen Specialwerkes, u lesen, um überzeugt zu sein, dass ein so gründlicher Beobachter und so scharfer Denker, wie MECKEL, mit völliger Klarheit und Gewissbeit die Wahrheit erfasst hatte. »Das Mehrfachwerden ist Vermehrung der Zahl der Theile, wolche den organischen Körper bilden, mit regelwidrig vermehrter Masse. Der kiztere Zusatz ist nothwendig, um das Mehrfachwerden von der blossen Spaltung zu unterscheiden. « Die gradweisen Verschiedenheiten des Hehrfachwerdens sind nach MECKEL beträchtlich und bilden mehrere Reihen, welche mit der Vermehrung einzelner Theile, z. B. der Finger und Zehen, anfangen und mit der gänzlichen Duplicität des Körpers auhören. »Diese höheren Grade des Doppeltwerdens kann man als die Vereinigung der Vervielfältigung mehrerer Organe in demschen Körper ansehen, statt dass sich bei den niedrigeren nur einzelne Organe betheiligen. « Höchst selten sei die Zahl einzelner Theile oder drs ganzen Körpers, mehr als verdoppelt, und doch sei Alles Mehrschwerden, auch das höchste, nur Annäherung an diesen Zustand. Es folgt dann die Aufzählung der einzelnen verdoppelt gefundenen Orsme unter 8 Rubriken, an welche sich dann »das Mchrfachwerden des ganzen Körpers« ohne eigene Rubrik unmittelbår anschliesst 2).

Diese Aussprüche von J. F. MECKEL werden für alle Zeiten Geltung behalten und nur darin sind sie nicht ganz auf der Höhe unserer Zeit, dass er, dem damaligen Standpunkte der Entwicklungsgeschichte entsprechend, zu sehr auf das einzelne Organ sah, und die Abhängigkeit der meisten Organe des thierischen Körpers in ihrer Entwicklung von den primären oder Fundamentalorganen des Embryo und der Keimhaut, welche namentlich für die Verdoppelung der Achsengebilde entscheidend ist, nicht näher ins Auge fasste.

MECKEL'S Verdienst leuchtet um so heller, als er in einer Zeit, wo die Zeugung des Menschen noch vielfach als ein Vorgang sui generis, ja fast als ein Wunder angestaunt wurde und selbst an Universitäten die aura seminalis, der psychische Einfluss der Zeugenden, ja selbst die Parthenogenesis des Menschen eine Rolle spielte, keinen Unterschied

⁴⁾ Handbuch der pathologischen Anatomie. Leipzig 1816. II. S. 11.

² A. a. O. S. 38.

zwischen menschlichen und thierischen Missbildungen machte und seine Lehre für den Menschen speciell aufgestellt hat.

Erst im Jahre 1827, in demselben Jahre, in welchem E. GEOFROT ST. HILAIRE sein Affinitätsgesetz aufstellte, wurde von C. E. v. BAR das wahre thierische und menschliche Ei entdeckt, und so begreifen wir denn auch, weshalb von da an die Lehre von den angeborenen Missbildungen in Deutschland vorzugsweise eine Frage der anatomischen Technik geblieben ist, während sie anderwärts noch immer eine rein theoretische, selbst speculative Seite behalten hat. So ist es denn auch nur consequent, wenn J. GROFFROY¹) die Entstehung der Tripelmonstren gleich der der Doppelbildungen durch eine Statistik der Zwillingsund Drillingsgeburten zu stützen suchte. Es standen ihm dam die Zahlen zu Gebote, welche Duges den Registern der Maternité in Paris entnommen hat. Dort waren unter 37,444 Geburten, die während etwa 20 Jahren vorkamen, 36,992 einfache, 444 Zwillings- und nur 3 Drillingsgeburten, unter 108,000 Geburten aber keine weitere Mehrgeburt. GEOFFROY benutzt diese Zahlen, um die Seltenheit der Doppelund Dreifachbildungen erklärlich zu machen, obgleich ein solches Verhältniss, wenn man darin eine Prädisposition für Missbildungen sehen wollte, immer noch ein ganz unverhältnissmässiges sein würde. Uebereinstimmend damit und nur in Bezug auf die Häufigkeit der Drillingsgeburten abweichend, sind neuere Angaben. So verzeichnet H. MECKEL³ unter 11,922,645 Geburten, welche von 1826 bis 1848 in Preussen vorkamen, 141,715 Zwillings-, 1588 Drillings- und 35 Vierlingsgeburten, demnach unter 84 Geburten eine Zwillings-, unter 7514 eine Drillings-, unter 340,607 eine Vierlingsgeburt. Leider sind die Zahlen für die etwa vorgekommenen Mehrfachbildungen nicht mit angegeben, aber wenn man erwägt, dass notorische Fälle von Duplicitäten in jedem Lande nicht nach den Jahrgängen, sondern nach Jahrzehnten und Jahrhunderten gezählt werden müssen, so fällt jeder Grund hinweg, aus der immer noch unverhältnissmässigen Häufigkeit der Mehrgeburten einen Schluss auf die enorme Seltenheit der Mehrfachbildungen ziehen zu wollen. Nimmt man hierzu die schon in meiner früheren Abhandlung³) betonte Häufigkeit von ächten Doppelbildungen, namentlich Doppelköpfen, bei niederen Wirbelthieren, welche eine äussere Befruchtung und freie Entwicklung bei völliger Isolirtheit der gleichzeitig gelegten Eier haben, und dass die Zahl der Monstren bei künst-

¹⁾ A. a. O. p. 288.

²⁾ J. MÜLLER'S Archiv 1850. S. 265.

⁸⁾ Würzb. med. Zeitschr. V. S. 4.

:her Befruchtung, so wie bei manchen Species, welche sich durch hr zarte Eihäute auszeichnen, wie der Hecht, am grössten ist, so wird in eher geneigt sein, in Zwillings- und Drillingsgeburten bei höheren hieren mit getrennten, mehrfachen Eihüllen und complicirten Entncklungsvorgängen ein Hinderniss, als ein Beförderungsmittel von khrfachbildungen zu sehen. In der That ist die Zahl von 497 Doppelidungen, welche Groffroy mit dem erstaunlichsten Fleisse für die sammte Abtheilung der Wirbelthiere gesammelt hat und wovon 198 🖬 den Menschen kommen, eine erstaunlich geringe, wenn man erwägt, dass dabei die Literatur der ganzen Erde, sowohl wissenschaftliche als hienhafte, für mindestens ander thalb Jahrhunder te benutzt worden ist, wenn gleich die älteren Angaben, so weit sie über das 17. Jahrhundert zurtückgehen, ihrer Ungenauigkeit und offenbaren Willkürlichkeit nicht mitgezählt werden konnten. Auch die ältere Literatur stimmt in sofern mit der neueron überein, als die Zahl der aufgeführten Fälle, so ungenau dieselben auch beschrieben und bestimmbar sind, im Ginten keineswegs grösser ist, als heutzutage, während das Aufsehen, welches solche Vorkommnisse machten, damals eher noch grösser war.

Ein weiterer Gegengrund liegt darin, dass, wie G.¹) bemerkt, Doppelbildungen bei multiparen Säugethieren keineswegs häufiger sind, als bei uniparen, ja dass das Rind, welches selten Zwillinge bringt, fast eben so viel Doppelmonstren zur Welt bringt, als die Katze und beträchtlich mehr als der Hund. Endlich bemerkt GEOFFROV²), dass ein lache Monstren schr häufig als Zwillinge geboren werden, auch können lie Individuen einer Mehrgeburt oder auch nur einzelne in gleichem der verschiedenem Grade verbildet sein. Das Verhältniss der Doppelunstren, welche als Zwillinge geboren werden, zu den einfachen Dopelmonstren sei sogar grösser, als das der Drillings- zu den Zwillingssburten.

Alles Weitere, was J. GEOFFROY nach der Erledigung der statistischen age noch über die Bildungsgesetze der Monstres doubles und triples iführt, passt so vollständig auf unsere neuere Theorie, dass man nirgends ranlasst wird, sich der Verschmelzungstheorie zu erinnern, und dielbe sich fast wie ein sehr allgemein gehaltener Prolog ausnimmt, den an unbeschadet der Vollständigkeit und Verständlichkeit des ganzen erkes hinweglassen könnte. Die Lehre von der symmetrischen Biling der Doppelmonstren, von der Richtung der Achsen und ihrer Eineilung in Vereinigungs- und Vertebralachsen, die Eintheilung der

¹⁾ A. a. O. p. 251.

²⁾ A. a. O. p. 262.

C. Bruch.

einzelnen Fälle nach dem Grade der Verdoppelung in verschiedene Reihen, welche Uebergänge in allen Abstufungen bilden, so wie die Gesetzmässigkeit in der Lagerung der verdoppelten Organe, insbesondere auch der Eingeweide, und in ihren Boziehungen zu den Achsengebilden, sind Thatsachen, welche die opigenetische oder Entwicklungstheorie eben so nöthig, wenn nicht noch nöthiger braucht, als die LEMERY'sche in Verbindung mit dem GEOFFROY'schen Affinitätsgesetz. Selbst die Veränderungen, welche man in der Georraovschen Classification vorzunehmen veranlasst war, beruhen weniger auf theoretischen Voraussetzungen, als auf einer genaueren anatomischen Kenntniss, insbesondere der parasitischen und mancher für blosse Vermehrung einzelner Theile gehaltener, in Wirklichkeit auf ursprünglicher Achsenverdoppelung beruhender Fälle, wie z. B. mancher Polymelien und Polygnathen.

Nicht ebenso günstig gestaltet sich dieses Verhältniss bei den »monstres triples et plus que triples«. Hier bereitet das Affinitätsgesets wirkliche Schwierigkeiten, welche der Entwicklungstheorie nicht zur Last fallen. Es handelt sich vor Allem um die Frage, ob das Gesets der bilateralen Symmetrie auch durchführbar ist, wenn ein Individuum aus drei Körpern (oder wescntlichen Körpertheilen) zusammengesetzt ist. Wäre die Zahl der beobachteten Fälle eine einigermassen zureichende, so würde man auch hier Anhaltspunkte haben, bei der extremen Seltenheit zuverlässiger Beobachtungen finden wir uns aber hier fast in der Lage, wie die Anatomen zu Lenery's Zeit.

J. GEOFFROY 1) zweifelt nicht, dass das Affinitätsgesetz auch für Dreifachbildungen Geltung habe, allein er nimmt zwei mögliche Fälle Entweder verbinden sich drei Individuen durch einen gemeinan. samen Mittelpunkt, oder zwei unter einander verbundene Individuen verbinden sich mit einem dritten, d. h. »ein erstes Individuum verbindet sich mit einem zweiten, und das zweite, mittlere, verbindet sich wieder mit einem dritten«. Ein Fall der ersten Art ist GROFFROY nicht bekannt geworden, der zweite Fall stelle eigentlich eine an zwei Punkten wiederholte Doppelbildung dar, »lasse sich also auf die einfachste Weise auf zwei Doppelbildungen zurückführen«. Da die Eatwicklung der beiden äussersten Individuen verschieden sein könne, müsse nothwendig in manchen Fällen ein unsymmetrisches Monstrum entstehen; aber es könne sich auch treffen, dass die Entwicklung eine gleichmässige sei und in diesem Falle sei das »monstre triple«

mbar symmetrisch gebildet und durch eine Medianchene in zwei iche Hälften zerlegbar.

Einen Fall der letzten Art hat GBOFFROV 1), um nicht von älteren reifelhaften Fällen zu reden, selbst beobachtet. Ein lebender Hammel igte jederseits eines wohlgebildeten Kopfes neben und vor dem Ohr ne unvollkommene, sehr kurze und blos aus einem kleinen Mund und istern bestehende Gesichtsbildung. Nur die accidentellen Unterkiefer nren daran deutlich ausgebildet und mit dem Hauptunterkiefer vermanden, dessen Bewegungen sie folgten. Die beiden seitlichen undöffnungen waren sehr klein und in jeder nur ein einziger Zahn mahrnehmbar. Da G. das Thier nur lebend sah, konnte er keine mauere anatomische Untersuchung vornehmen, welche namentlich Mik gewesen wäre, um das Verhältniss der Achsenorgane festzustellen. Der Name »paragnathe«, welchen G. dieser Missbildung beilegt, m sie von den übrigen »polygnathes« zu unterscheiden, präjudicirt um weniger, als G.²) diese ganze Abtheilung nicht zu den eigentlichen smonstres composés« rechnet, sondern als einfache Individuen mit marfachem Unterkiefer betrachtet. Jedenfalls werden wir G. für die Mitheilung eines Falles von symmetrischer Tripelbildung, der his dahin der einzige geblichen ist, sehr dankbar sein müssen.

Alle andere bekannte Fälle von Dreifachbildung sind entschieden unsymmetrisch. So namentlich der berühmte Fall NO REINA und GALVAGNI, welcher zugleich den einzigen unzweifelhaften All von menschlicher Triplicität bildet. Hier sassen drei wohlwildete Köpfe an einem einzigen, sehr breiten Rumpf mit 3 Brustwirzen und den vier gewöhnlichen Extremitäten, zu welchem noch ein heter, überzähliger Rückenarm mit doppelter Hand hinzutrat, wie er bi den GROFFROV'schen Derodymes vorkommt. Die 3 Köpfe sassen auf w 2 Halsen, oder vielmehr die beiden rechten Köpfe hatten einen meinsamen Hals. Luftröhre und Speiseröhre waren nur am Anfange dreifsch, weiterhin doppelt; Magen, Leber und Zwölffingerdarm einheh, der Dünndarm doppelt, der Dickdarm, Mastdarm und Geschlechtswerkzeuge einfach, die Niere desgleichen, hufeisenförmig. Es waren 2 Brusthöhlen, 2 Herzen und 2 Lungenpaare vorhanden, die Wirbelsäule bis zum Becken doppelt, das Becken einfach mit Spuren überzähliger But beine nach hinten. Offenbar fand hier eine zweifache Spaltung der Wirbelsäule, an zwei verschiedenen Stellen, nämlich

¹⁾ A. a. O. p. 240.

³) A. a. O. p. 47. An einer späteren Stelle (p. 485) spricht er sich entschiedener aus.

C. Bruch,

in der Lendengegend des gemeinsamen Rumpfes und in der Halsgeg der rechten Seite statt. HENLE¹) hat daher diesen Fall eine »scheinbe Triplicität genannt, » da hier weder eine gleichmässige Verschmelzt von 3 Keimen, noch eine gleichmässige Spaltung des einfachen Keiz in 3 stattfand, sondern nur eine fortschreitende Duplicität, indem rechte obere Hälfte erst nach ihrer Trennung von der linken wie doppelt zu werden begann«. Diese Bemerkung bezeichnet sehr rich das sachliche Verhältniss, nichtsdestoweniger ist dieser Fall eine äc Triplicität und zwar, wie Förster²) ihn aufführt, mit Verdreifacht des oberen Körperendes.

J. GEOFFROY und FÖRSTER reihen ihm den länger bekannten l von BETTOLI und FATTORI³) an, wo ein sieben monatlicher Fötus in sei Bauchhöhle einen sehr unvollständigen Embryo und in einer am Mitt fleisch befindlichen Geschwulst Reste eines zweiten, ebenso unw kommen entwickelten Fötus trug, welcher letztere sogar ein Darmst besass. GEOFFROY⁴) betrachtet diesen merkwürdigen aber schwieri Fall als »monstre par inclusion«, Förster⁵) wohl richtiger als Ve bindung von Sternopage mit Pygopage. Er würde sich d nach dem REINA- und GALVAGNI'schen Falle als Parasitenform anschlies und ebenfalls als ächte Triplicität zu betrachten sein.

Als einziges bisher bekanntes Beispiel einer Verdreifachung Achsengebilde am hinteren Leibesende wurde unsere Froschla mit zweimal getheilter Chorda dorsalis anzureihen sein, welche in einfachsten Form die Bildung eines Tripelmonstrums versinnlicht zugleich anschaulich macht, warum ein solches wohl in den meit Fällen ein asymmetrisches sein wird.

Noch anschaulicher sind die Beobachtungen, welche von LEREBO LET⁶) in der Classe der Fische gemacht worden sind, da sie über Entwicklungsgeschichte der Doppel- und Dreifachbildungen A schlüsse geben.

LEREBOULLET, dessen Beobachtungen ich schon früher⁷) gedacht he hebt hervor, dass alle diese Monstren aus gewöhnlichen, einfac Hechteiern hervorgingen, welche weder grösser waren, als and

⁴⁾ Jahresbericht in J. MÜLLER'S Archiv. 4838. VIII.

²⁾ Die Missbildungen des Menschen. Jena 1865. S. 41. Tafelerklärung. Tef. Fig. 41, 42.

⁸⁾ Schon bei J. FR. MECKEL a. a. O. S. 78 erwähnt.

⁴⁾ A. a. O. p. 292.

⁵⁾ A. a. O. S. 44.

⁶⁾ Comptes rendus. 4855.

⁷⁾ A. a. O. VII. S. 289.

nteier, noch ein doppeltes Keimbläschen besassen; er glaubt vielr dass die kunstliche Befruchtung und die veränderten Bedingungen Entwicklung einen wesentlichen Einfluss haben, und bezieht sich seine eigene desfallsige Versuche¹), welche an 20 missgebildete is, darunter Doppelköpfe, Doppelleiber, Doppelschwänze und selbst sitenformen in Gestalt eines normalen Leibes mit rudimentärem, form eines Tuberkels anbängendem Doppelkörper ergaben. Die erste tstehung datirte von dem Schlusse des Keimhautwulstes und dem mchwinden des sogenannten Dotterpfropfes (du bourrelet marginal, i limite le sac blastodermique, lorsque celui-ci a envahi la presque tstehung det rei-

Die erste Beobachtung LEREBOULLET'S³) ist vom 19. April 1852. Auf imm seit 48 Stunden befruchteten Hechteie mit einfachem Dotter von wöhnlicher Grösse und Form, welcher ganz von der Keimhaut uminchsen war und kein Dotterloch mehr erkennen liess, befanden sich Embryonen, die am Schwanzende in dem vierten Theil ihrer linge vereinigt waren. Der unpaare Schwanz hatte die Länge von Hällen. und Hufeisenform, mit der Primitivrinne in der Mitte. Die umrigen Hälften des Vorderleibes gingen in diametraler Richtung ausinander und brückenartig in den hinteren unpaaren Theil über. Am

9) Von diesem Punkte geht bekanntlich bei Fischen und Amphibien die Bildung Primitivrinne aus und zwar entspricht das hintere Ende derselben enstant der Schlussstelle der Keimhaut, wie ich durch systematisch uchgeführte Beobachtungsreihen in zahlreichen Fällen bei Triton taeniatus, Pelotes fuscus, Bombinator igneus, Hyla arborea, Rana esculenta, Bufo calamita und windis mich überzeugt habe. Wer sich im Frühjahre die Mühe nimmt, eine Quanfischgelegten Frosch- oder Krötenlaichs eine Nacht hindurch unter der Loupe 🖬 dem einfachen Mikroskop zu beobachten und einzelne Eier im Auge zu beinten, wird sich leicht davon überzeugen, dass der Primitivwulst (bourrelet maral, wie LEREBOULLET ihn nennt) vom Umkreis der Keimhautnarbe ausgeht, wo ichliesslich nach Verwachsung des weissen Dotters die bildende Thätigkeit Generater und nun zu Bildungen aus und in der Keimhaut genöthigt ist. Gewhalich sieht man bald zwei Längswülste, wie Cometenschweife, von dem Mnitivwulst aus sich in der Keimhaut ausbreiten und darin verlieren, welche nie parallel sind und nicht selten unter einem starken Winkel divergiren, sich der schliesslich stets am Kopfende wieder vereinigen und so die verhältnissmässig shr breite, besouders am Kopfende stark ausgebuchtete Primitivrinne einschliessen. Häufig gewahrt man am hinteren Ende noch die nicht ganz geschlossene Keimhautnarbe, die einige Schriftsteller zu der Annahme geführt hat, als bilde sich After des Thieres zuerst, der erst lange nachher, nach dem vollständigen Schlusse der Primitivrinne, wenn auch in der Nähe jener Stelle, entsteht.

3) A. a. O. p. 854.

⁴⁾ A. a. O. p. 946.

C. Bruch,

folgenden Tag waren die Wirbelabtheilungen der paarigen Theile be merklich. Nach 404 Stunden (21. April) hatten sich die Doppelkörpt einander genähert und so weit vereinigt, dass sie nun die gleich Länge hatten, wie der unpaare Schwanztheil, und einen spitzen Winkunter einander bildeten. Die Vereinigung war unter Verkürzung un Fusion der Wirbelabtheilungen zwischen beiden Körpern erfolgt. Bei hörte die Annäherung auf, jede Hälfte entwickelte sich vollständig unt Bildung zweier Herzen; am 9. Tag verliess der Doppelembryo des H und lebte noch 4 Tage.

Im Jahre 1853 sah L. wieder mehrere Monstra in Hechteiern, darunt auch Doppelköpfe und Parasitenbildungen. In allen Fällen war Chorda dorsalis doppelt vorhanden und nahm an der Verein gungsebene keinen Antheil.

LEREBOULLET¹) beobachtete ferner, dass in manchen Fällen st eines einfachen Primitivwulstes ein doppelter oder getheilter Wulst vo handen war, von welchen jeder einen Primitivstreifen aussendete m demnach zweiPrimitivrinnen gebildet wurden. Dann entstande zwei völlig getrennte Embryonen, welche höchstens am Schwanzend In anderen Fällen entstand ein einfacher, brei zusammenhingen. Primitivstreifen, der sich vorn in zwei rundliche, gleiche oder ungleich Lappen endete und zwei parallele Primitivrinnen enthielt, deren jed Wirbelabtheilungen bildete. Jeder vordere Lappen erzeugte zwe Augenblasen, die einem Doppelkopfe angehörten, der aber durei nachträgliche Annäherung und Vereinigung zu eine einfachen werden kann (15 Mal beobachtet). In noch anderet Fällen bildete sich ein kurzer Wulst, der einen Kopf erzeugte, sich de Länge nach in Wirbelabtheilungen sonderte und die Form eines ball offenen Knopflochs hatte. Jede Hälfte enthielt eine Chorda dorsalis, ன Medullarrohr und Wirbelabtheilungen. Der Rest bildete den Schwanz-War der Kopf kurz, so entstanden auf jeder Körperhälfte zwei Obra bläschen, 2 Brustflossen und ein Herz; war er länger, so entstand ein einfacher Körper mit zwei Augen, zwei Ohrbläschen und einfachen Herz; die hinteren, getrennten Körperhälften waren im Oval gestellt mit einfachem oder Doppelschwanz.

Bei Parasitenbildungen trug der Embryo auf der einen Seite (der rechten) einen kleinen nach hinten gerichteten Wulst, der ein Ohrbläschen und ein pulsirendes Herz hatte, während die übrigen Körpertheile sich in der Entwicklung aufgelöst hatten. Bei vielen durch su niedrige Temperatur in der Entwicklung gestörten Eiern entstand keise

⁴⁾ A. a. O. p. 4028.

im, der Keimwulst verdickte sich, wurde ein höckeriger Tuberkel, r sich erhob und verlängerte, Wirbelabtheilungen bildete, aber eder eine Chorda dorsalis, noch Sinnesorgane, noch ein Herz besass.

In einer zweiten Versuchsreihe⁴/₁ bildete der Keimhügel, der geöhnlich eine dreieckige Form hat, zwei benachbarte Primitivstreifen, der derselben eine besondere Primitivrinne und am andern Morgen nd sich ein Embryo mit zwei Köpfen. Bei einem zweiten Eie entand aus einem einfachen Primitivstreifen mit Doppelfurchen ein abryo mit zwei ungleichen Köpfen. In einem dritten fand sich neben en gewöhnlichen dreieckigen Primitivwulst ein kleiner unregelmäsiger Höcker, woraus ein Embryo mit normalem Körper und einem uberkel zur Seite entstand. Ein viertes Ei bildete im Keimhugel selbst wei Embryonalkörper mit einfachem Kopf und zwei Schwänzen. indlich fand LERBBOULLET auch ein Monstrum mit 3 Köpfen, L b. ein doppelter Embryo war am Hinterleibe verbunden, vorn aber panz frei; der eine Körper war einfach und normal, der undere hatte 2 Köpfe. Der linke dieser Köpfe war normal gebildet md hatte zwei Augen, der rechte aber hatte nur ein rechtes Auge, während das linke (an der Stelle, wo die beiden Köpfe verbunden waren) fehlte. Das Monstrum befand sich noch am 43. Tage nach der lefruchtung im Ei und hatte zwei Herzen, von denen eines dem Dopskörper gemeinsam war und an der Theilungsstelle lag, das andere n der Verbindungsstelle der beiden Köpfe. Alle fünf Augen waren ignentirt. Die weitere Entwicklung ist nicht beschrieben, aber offenw lag hier REINA und GALVAGNI'S Missgeburt in einem Hechtei vor, wr war hier die Asymetrie dadurch vermehrt, dass die beiden Theiingsstellen der Achsenorgane weiter von einander entfernt lagen, die beiden Hauptkörper stärkor gespalten und die Doppelköpfe stärker vernigt waren, was sich bei weiterer Entwicklung vielleicht mehr aus-Exlichen hätte.

Ich habe diese noch immer nicht genügend gewürdigten Wahrnehmungen von LERREBOULLET hier ausführlich angeführt, nicht nur weil nie das spärliche Material, was in Bezug auf Dreifachbildungen vorliegt, erheblich vervollständigen, sondern auch, weil sie recht einleuchtend darthun, wie weit von Verschmelzungen und von Wiederuntergang bereits gebildeter Organe bei Mehrfachbildungen überhaupt die Rede win kann. Die Affinitätstheorie setzt schon fertig gebildete Individuen, beim Menschen also wenigstens Embryonen vom 4.—5. Monate der Schwangerschaft voraus. Alle Beobachtungen weisen aber darauf hin,

4) A. a. O. p. 4068.

C. Bruch,

dass die Entstehung der Doppelbildungen in eine viel frühere Zeit füh wo eine Körperform noch nicht entfernt ausgeprägt, Extremitäten noch gar nicht vorhanden und nur die Primitivorgane der Keimhaut theilweise angelegt sind. Weiter zurückzugreifen, als bis zum Zeitpunkt der Befruchtung, ist zur Erklärung keines einzigen Falles nöthig, Ebenso wenig aber kann die Entstehung der Mehrfachbildungen in ein spätere Periode verlegt werden, als in den Moment der erstet Organanlage selbst. Wenn LEREBOULLET in nicht seltenen Fäller eine theilweise Wiedervereinigung von Doppelkörpern und Doppel köpfen und somit auch ein theilweises Wiederuntergehen bereits be stehender Körpertheile wahrnahm, so fand eine solche »Verschmelzung immer nur in sehr beschränkter Ausdehnung statt, sie ging stets vo den vereinigten, unpaaren Theilen aus und hatte demnach etwa ein ähnliche Bedeutung, wie die Verheilung von Hautwunden, welche vo den Wundwinkeln ausgehend, sich nach und nach auf die Wundrände erstreckt. In allen Fällen war bei Mehrfachbildungen die theilwei Doppelung das Ursprüngliche und sie wurde durch die nachträglich Verschmelzung zwar streckenweise aufgehoben und ausgeglichen, nic aber dadurch hervorgerufen.

Damit die Gesetzmässigkeit der Dreifachbildungen vollständ werde, fehlt nur noch ein Fall, welcher die vollständige Trennun der drei Vertebralachsen aufweist, und auch dieser Fall, obwo von GROFFROY für unmöglich gehalten, existirt und zwar in der ausge prägtesten Weise. Es ist das von Georgroy¹/ kurz crwähnte, ne GURLT'S Angaben citirte, FRORIBP'sche, jetzt im pathologischen Museu zu Giessen befindliche Tripelmonstrum vom Schaf. Die Körp von drei ausgetragenen Lämmern sind in der Weise mit einander ver einigt, dass zwei derselben einen gemeinschaftlichen Januskopf habe und mit dem dritten in der Thoraxgegend verbunden sind, so dass ei gemeinsamer Brustkorb, zwei Köpfe, drei Hinterleiber und im Ganu zwölf vollständige Extremitäten vorhanden sind. Dass allen drei Kö pern der Nabel gemeinsam war, ist zwar an dem Skelete nicht nach zuweisen, aber der ganzen Lagerung und Gliederung der Theile na nicht zu bezweifeln. Sollte eine Vereinigung zweier Chorden an ihre vorderen Ende im Januskopf stattgefunden haben, so kann diese nur d äusserste Ende derselben betroffen haben, da drei vollständige Wirbe säulen vorhanden und am Doppelkopfe ein vollständiges und ein unvol ständiges Gesicht vorhanden sind. Zwei Achsen sind daher fast paralle die dritte unter einem sehr spitzen Winkel zugeneigt, was eben d

4) A. a. O. p. 244.

öldung des Doppelkopfes zur Folge hatte. Offenbar hatten sich auf einer gemeinsamen Keimhaut in einem und demselben Fruchthof drei Chorden und wahrscheinlich auch drei Primitivrinnen gebildet, welche bei weiterer Distanz und vollkommener Parallelität zur Bildung von normalen Drillingen auf einem einzigen Dotter hätten führen können.

In allen diesen Fällen liegt nichts, was den Gesetzen des Wirbelthiertypus widerspräche und zu der Annahme nöthigte, dass Dreifachbildungen und Mehrfachbildungen aus dem Typus ihrer Abtheilung berausträten und sich einem anderen Typus anschlössen, wie man mmentlich in früherer Zeit von vielen Doppelbildungen angenommen ht. Auch das Gesetz der bilateralen Symmetrie findet sich modificirt nd complicirt, nicht aufgehoben, so wenig als es durch einen asymmetrischen Schädel, ein Becken oder überzählige Extremitäten der Art nigehoben wird. Jedermann begreift, dass Asymmetrien in dem kasse häufiger auftreten werden, als die Achsentheilungen sich vervielfältigen und einseitig auftreten. Ein Stück Vereinigungsachse aber asst sich auch bei Dreifachbildungen so gut nachweisen, als bei Doppelbildungen, so weit nämlich die Achsenorgane einfach sind. Jeder Unterast eines Achsenschenkels hat seine axe d'union für sich, welche dann mit der Vertebralachse desselben zusammenfällt. Diese letztere aber kann sich wieder in zwei Vertebralachsen spalten. Findet die Spaltung auf beiden Seiten, paarig-symmetrisch statt, so lann ein bilateral-symmetrisches Monstrum, etwa eine Vierfachbilung, entstehen, aber auch wenn man nicht an Parasitenbildungen deakt, begreift man, dass die Symmetrie desto weniger gewahrt sein wird, je weiter sich die Unterspaltungen von der primären Vereinigungswhere entfernen. Sind gar drei völlig getrennte Achsenorgane vorhanden, wie in dem FRORIBP'schen Falle, so wird die definitive Form alkin von dem Parallelismus und der Entfernung derselben von eineinander abhängen, wie bei den Doppelbildungen erörtert worden ist.

Es ist auch nicht nöthig, mit J. GEOFFROY ST. HILAIRE¹) eine mehrische Vereinigungsachse anzunehmen, von welchen jede zwei Individuen gemeinsam sei, die zusammen ein Doppelmonstrum bilden, denn da sich vom Doppelmonstrum zu Zwillingen auf dem Dotter alle Uebergänge finden und man bei letzteren doch nicht wohl von einer Vereinigungslinie sprechen kann, wird man auch an Dreifach- oder Drillingsbildungen der Art nicht eine Anforderung stellen dürfen, die auf der irrigen Voraussetzung heruht, dass sie aus der Verschmelzung

⁴⁾ A. a. U. S. 245.

M. VII. 8.

C. Bruch,

vorher getrennter Individuen entstünden. Die ursprüngliche Stellun der Achsen zu einander, die mögliche Selbstständigkeit aller drei Achser und die verschiedenen Entwicklungsgrade, welche die Dependenzet der verschiedenen Fundamentalorgane erreichen können, müssen die Mittel zur Erklärung aller etwa vorkommenden Mehrfachbildungen liefern. Man wird dabei nicht übersehen dürfen, dass, wie die Lm-BOULLET'schen Beobachtungen lehren, eine gewisse Neigung in der Entwicklung der thierischen Organe vorhanden ist, vorhandene Störungen auszugleichen und somit aus missbildeten Organanlagen ein relativ normales Wesen herauszubilden, so dass selbst anfängliche höbere Grade später zu niederen Graden herabsinken und selbst vorhandene Verdoppelungen wieder zur Einfachbildung führen können. Aber man würde sehr irren, wenn man in allen Fällen ein planmässiges Streben des Organismus erkennen wollte, die Integrität des Individuums # retten. Durch jenen schwankenden Entwicklungsgang, welchen wir so oft schon bei der ersten Anlage der organischen Wesen gewahrt und welcher sich bei den Doppelbildungen in so frappanter Weise auf spricht, insbesondere durch den Wiederuntergang bereits gebildet Theile, die Auflösung und das völlige Verschwinden unpaarer und d nachträgliche Vereinigung paarig angelegter Organe, wird keineswa in allen Fällen der Erhaltung des Gattungscharakters und am wenigst dem Wohle des Individuums gefröhnt, sondern in allen Fällen ein Zar bild geliefert, welches, bei aller Gesetzmässigkeit in seinem anatomische Baue, bekanntlich desto weniger lebensfähig ist, je vollständiger die Vereinigung der beiderseitigen homologe Organe durchgeführt und ausgedehnt ist, ja wir wissen dass gerade die asymmetrischen Bildungen in diese Gebiete die grösste Lebensfähigkeit besitzen.

C. B. REICHERT¹) und F. W. DÖNITZ, in drei unter REICHERT'S Ver anlassung geschriebenen Abhandlungen²), sind vor einigen Jahr gelegentlich der genauen Beschreibung mehrerer höchst interessant Doppelbildungen von Menschen und Thieren, auch der Theorie der selben näher getreten und dabei zu Resultaten gekommen, welche hin nicht unerwähnt bleiben können. Insbesondere hat REICHERT bei de Beschreibung dreier Fälle von vollständiger Achsentrennung aus de ersten Tagen der Bebrütung, eines von der Gans und zweier von Hühr

⁴⁾ Dessen and Dubois Reymond's Archiv. 4864. S. 754.

²⁾ Ebenda, 1865 und 1866. Beschreibung eines Sternopage und eines Krank^e page vom Menschen, eines Diprosopus vom Kalbe und einer beginnenden Jan^{er} bildung vom Hühnchen.

165

en, ausgeführt, dass man nicht nur, nach J. Fr. MRCKEL's Vorgange, ler bilateralen Hälfte des Wirbelthierleibes das Vermögen zuschreiben isse, unter Umständen, d. h. bei eintretender Keimspaltung in sehr ther Zeit, zwei vollständige Individuen (und daher bei unvollständiger altung eine Doppelmissgeburt) hervorzubringen, sondern der Wirbelierleib selbst sei aus der Vereinigung zweier Individuen entstanden I denken, »welche die ihnen fehlenden Hälften bei der Vereinigung m Opfer gebracht haben«. Darnach stellt REICHERT zwei Kategorien n Doppelmissgeburten auf: 1) solche, die dadurch entstehen, dass i einem befrachteten Eie durch zufällig veranlasste Keimspaltung die alagen zweier Individuen auftreten, welche später bei der Entwicklung d mehr oder weniger vereinigen und in der Berührunglinie gewisse keile oder Hälften opfern; 2) solche, bei welchen zwei normal in dem lateralen Wirbelthierkörper sich vereinigende Individuen oder deren usgen ihre bei der normalen Vereinigung ausfallenden Hälften mehr er weniger vollständig ausbilden und dadurch die Entstehung eines melembryo bedingen. Im ersten Falle wurde die Vereinigung, im miten Falle die Trennung eine unvollständige sein. Mit Rücksicht auf jenigen Doppelbildungen, welche in diametral entgegengesetzter Richwerbunden sind, die Geoffnov'schen Cephalopagen, wovon Reichert en schönen Fall beim Hühnchen beobachtet hat, müssten demgemäss r virtuelle Individuen angenommen werden, welche REICHERT durch erspaltung des Keimes vor Bildung der ersten Keinhautorgane stehen lassen und von den durch Längsspaltung, nach der ten Anlage der Achsentheile, ontstandenen bilateralen Doppeldungen unterschieden haben will.

Es ist nicht in Abrede zu stellen, dass diese scharfsinnige Anauungsweise, insofern sie die Entstehung aller Doppelbildung aus em einfachen Dotter und auf einer Keimhaut zu Grunde legt, den ishrungen der Entwicklungsgeschichte gebührende Rechnung trägt I daher in viel höherem Grade geeignet wäre, zwischen den sich einler entgegenstehenden Theorien zu vermitteln, als die GBOFFROY'sche initätstheorie, welcher kein anderes anatomisches oder embryoisches Gesetz zur Seite steht. Die Gründe, aus welchen ich REICHERT's nicht nicht beitreten kann, sind jedoch folgende:

1) Ausser der Chorda dorsalis, welche von Anfang an stets als naares Organ auftritt, und von welcher sich Reste selbst bei den hsten Thieren zeitlebens erhalten, giebt es kein primitives Organ, ches bei der bilateral-symmetrischen Entwicklung der Wirbelthiere hweislich zum Opfer gebracht werden könnte. Es liegt daher in der zu einem ausserordentlichen Grad der Genauigkeit gediebenen Beob-

44 *

C. Bruch,

achtung der ersten Entwicklungsvorgänge kein nöthigender Grund um Annahme einer ursprünglichen Duplicität des Wirbelthierorganismus.

2) Müssten wohl bei einer solchen Annahme, auch wenn sie nur die Tendenz des Organismus zur Herstellung eines Doppelindividuums ausspräche, das Vorkommen von Doppelbildungen viel häufiger sein, als alle Berichte angeben.

3) Wenn schon J. GEOFFROY ST. HILAIRE¹) in nothwendiger Consequenz der Verschmelzungstheorie zu der widerstrebenden Annahme geführt wurde, dass alle Doppelbildungen, mit Rücksicht auf den Mangel der in die Vereinigungsebene fallenden Organtheile als Defecte aufzufassen seien, so widerstrebt es noch mehr, eine ähnliche Auffassung auf den normalen Wirbelthierleib ausgedehnt zu sehen, dessen bilaterale Symmetrie in so vielen anatomischen Systemen ein viel innigeres Verhältniss voraussetzt, als das zweier verschmolzener Individuen.

4) Der Mangel der beiden Ohrbläschen auf den einander zugekehrten Seiten des von REICHERT beobachteten Dicephalus von der Gana, während die beiden Ohrbläschen der beiden äusseren Seiten deutlich ausgebildet waren, spricht vielmehr für Nichtentwicklung, als für einen bereits eingetretenen Wiederuntergang.

Wenn ich somit bei der gangbaren und auch von A. Förster zulet wieder vertretenen Ansicht stehen bleibe, welche die Doppelbildungen als Bildungsexcesse und zwar durch Störung des normalen Wachsthums der primitiven Organe, zunächst als das Maass überschreitende Zellenbildung, auffasst, so glaube ich keineswegs, ei∎e bessere Erklärung der eigentlichen Ursachen zu besitzen, sondern mich nur am nächsten an die bisherigen Resultate der Beobachtung ansuschliessen. Und dies gilt namentlich auch von den bisher beobachteter Dreifach bildungen, welche durch die Reichent'sche Vorstellungeweise in keiner Weise verständlicher werden. Der Werth der letzteres scheint mir wesentlich darin zu beruhen, dass sie in jeder Keimhau das Material zur Bildung zweier vollständiger Individuen als vorhandes erkennt und somit den Begriff der Doppelbildung noch unter den der Wirbelthieres fallen lässt. Ich stehe jedoch nicht an, meine Ueberzeugung dahin auszusprechen, dass ich auch eine Drei- und Mehrfachbildung auf demselben Boden, ja selbst die Bildung von drei völlig getrenntet Achsen, obgleich A. Förster²) diese Möglichkeit nicht annimmt, fü thatsächlich erwiesen halte.

Ich habe schon in meinen beiden ersten Abhandlungen 3) betont

⁴⁾ A. a. O. p. 7.

²⁾ A. a. O. S. 48.

⁸⁾ A. a. O. V. S. 80. VII. S. 849.

ass ich nicht die Chorda dorsalis, sondern die Primitivrinne als rstes Fundamentalorgan der Keimhaut betrachte, welches Verdoppeungen unterliegen kann, und ich bin, mit Rücksicht auf die Wahruchmungen von LEREBOULLET, gern bereit, die frühesten Anfänge von lehrfachbildungen auf eine doppelte oder mehrfache Sonderung des Embryonalfleckes (Primitivwulstes, bourrelet marginal nach LEREBOULLET) urückzuführen, von welchem aus die Bildung der Primitivrinne oder, w ein solcher vorausgeht, des Primitivstreifens ihren Anfang nimmt. In könnte dann noch genauer zwischen Mehrfachbildungen der Chorda insalis und solchen der Primitivrinne unterscheiden und letzterer mmentlich die vollständigen Verdoppelungen der Achsenorgane nweisen; allein in den einzelnen Fällen würde es schwer sein, diese Colerscheidung streng durchzuführen. Die Entstehung dieser verschiedenen Primitivorgane liegt in der Zeit zu nahe beisammen, als dass man diese Epochen genau abgränzen könnte, und als scharf abgegrenztes Organ des Embryo ist die Chorda dorsalis in der That das erste, dessen Schicksal ausserdem von dem der Primitivrinne unzertrennlich ist. Sie bedingt den Begriff »Wirbelthier« und die Verdoppelung der Wirbelaller macht doch das wesentlichste Merkmal aller höheren Grade von Mehrfachbildung aus.

Diese Anschauungsweise führt mich nicht zur Annahme einer Querspaltung des Keimes bei denjenigen höchsten Graden von Verdoppelung, welche sich durch diametral entgegengesetzte Achsenbildung auszeichnen. Von diesen höchsten Graden des Gephalopage zu Winkelstellungen und von diesen zu den Janusbildungen und den Doppelleibern aller Art giebt es alle Uebergänge, zwischen denen es unmöglich ist, ine scharfe Gränze zu ziehen. Der eine der REICHERT'schen Fälle vom Buhnchen 1) versinnlicht durch die beinahe rechtwinklige Stellung der Imperachsen diesen Uebergang in der wünschenswerthesten Weise und man darf nicht überschen, dass die ursprüngliche Lagerung derselben keineswegs entscheidend für die Stellung der ausgebildeten Doppelkiber ist, sondern, wie die Beobachtungen an Hechteiern lehren, mancher Abänderungen fähig ist, welche die Winkelstellung derselben sowohl vergrössern als verkleinern kann. Die Entwicklung der Exrmitäten sowohl als die der Schädelknochen. letztere namentlich bei kn Cephalopages, ubt hier, worauf ich²) schon früher hingewicsen ube, einen merkbaren Einfluss, der auch in einem der von Dönitz 3)

⁴⁾ A. a O. Taf. VIII, Fig. 5, 6.

^{2;} A. a. O. Bd. VII, S. 296, 307.

³⁾ A. a. O. 1866. S 84.

C. Bruch,

mitgetheilten Fälle unverkennbar ist. Dass sich endlich auch, hei anscheinend einfachen oder streckenweise einfachen Achsenorganen bei manchen Doppelbildungen ein vollkommener Parallelismus oder wenigstens Spuren von vollständiger Verdoppelung der Achsenorgane an der Wirbelsäule nachweisen lassen, ist von B. SCHULTZE 1) bei Säugethieren nachgewiesen und von LEREBOULLET wiederholt beobachtet worden. Auch der von Reichent beschriebene Dicephalus der Gans beson eine doppelte Primitivrinne und doppelte Chorda dorsalis in ihrem ganze Verlaufe. Dönnz²) geht deber zu weit, wenn er annimmt, dass durch die Querspaltung des Keimes allein zwei vollständige Individuen mit doppelten Primitivorganen entstehen können, und ich kann es nicht billigen, wenn er³) zu der Geoffrov'schen Eintheilung der Doppelmonstren in Monstres composés und Hemiterien oder, wie sich Dömm ausdrückt, in eigentliche, durch Keimspaltung entstandene, Deppelmonstra und in solche, welche durch abnormes Wachsthum einzelner Organe entstehen, zurückkehrt 4).

Die Bezeichnung »Keimspaltung« dürfte, meiner Ansicht nach überhaupt zu Missverständnissen führen können, da sie leicht auf eine mechanischen Vorgang in der Keimhaut bezogen werden kann. habe mich früher⁵) darüber geäussert, wie man sich den concrete Vorgang wohl vorstellen könne, und mich gegen die Annahme grober, rein mechanischer äusserer Einwirkungen auf den Keim ausgesprochen, welche in den meisten Fällen wohl eher eine Zerstörung als eine blosse Entwicklungsstörung des Keimes herbeiführen würden. Die vos J. GEOFFROY⁶) angeführten ärztlichen Erfahrungen über die Ursachen missbildeter menschlicher Früchte sind damit ebenso sehr im Einklange als die vielfältigen Versuche der beiden GEOFFROY⁷) und Neuerer über die künstliche Erzeugung missbildeter Embryonen beim Hühnchen. In keinem dieser Versuche wurde eine Doppelbildu^{ng} erzeugt. Ebensowenig kann der berühmte VALENTIN'sche Fall auf Vorgänge im Innern eines geschlossenen Hühnereies Anwendung finden.

3) Ebenda, S. 92, 11.

7) Ebenda, S. 358.

⁴⁾ VIRCHOW'S Archiv. VII. S. 510.

²⁾ A. a. O. S. 91.

⁴⁾ Dass eine Längsspaltung des Keimes nicht nothwendig einen einfachen Nabel bedingt, ist bereits durch den bekannten Fall der Helena-Judith widerlegt, und dass auch Zwillinge auf dem Dotter durch Längsspaltung möglich sind, haben die Fälle von C. F. Wolff und PANUM dargethan (S. Bd. VII, S. 285-6).

⁵⁾ A. a. O. Bd. V, S. 27.

⁶⁾ A. a. O. p. 383.

Offenbar müssen hier Ursachen angenommen werden, welche ihre Wirksamkeit im Bereiche der normalen Entwicklungsvorgänge entfalten können und denselben, statt sie in feindseliger Weise plötzlich zu unterbrechen, vielmehr eine in abnormer Weise verstärkte und localisirte Anregung verleihen. Eine stellenweise vermehrte Zellenanhäufung, ja eine einzige, sich allzurasch theilende Elementarzelle, rine geringe Abweichung in der Vertheilung der primitiven Gefässbahnen, kann hier von viel grösserer Tragweite werden, als die heftigsten Insulte, welche den mütterlichen Körper treffen.

Ich habe schon oben auf eine gewisse Unregelmässigkeit hingwiesen, in welcher die Anlage der ersten Organe der Keimhaut bei muchen Thieren, namentlich bei den Batrachiern, erfolgt. Die Primivfurche ist bald breiter, bald schmäler, der Dotterpfropf kann bei der Bildung der Primitivwülste vollständig verschwunden oder noch schlbar sein. Man muss also auch hier, wie ich 1) bei einer anderen Gelegenheit bemerkt habe, »den organischen Gesetzen der Entwicklung ine gewisse Breite der Manifestation« zugestehen, innerhalb derer sie sch der Norm genügen und welche ohne scharfe Gränze in die Abwmität hinüberführt. Nach meinen Erfahrungen bei Batrachiern beindet sich das hintere Ende der Primitivrinne constant der Schlussstelle der Keimhaut, dem Dotterpfropf gegenüber und ebenso verhält sich die Sache bei den Fischen. Nach den Wahrnehmungen von LEBEmulter scheint es aber auch vorzukommen, dass das Kopfende dem Keinwulste zunächst liegt und in der That wird die Entstehung eines Cephalopage schwer anders zu erklären sein, als E. D'ALTON²) annimmt und schematisch gezeichnet hat. Im Hühnereie steht der Embryo bekantlich mit seinem Längsdurchmesser vom Anfange der Entwicklung an im Querdurchmesser des Eies (und ebenso in dem ähnlich gestalteten Hundeeie) und doch kann eine Doppelbildung nur zu Stande kommen, wenn eine oder beide Körperachsen von diesem Grundgesetze abweichen. In der That bat C. E. v. BARR 3) beobachtet, dass sich wenigstens die Pole der Embryonalachse umkehren können.

Man kann sich leicht vorstellen, dass eine Abweichung von der normalen Stellung der Embryonalachse gerade im Momente der ersten Anlage, vielleicht sogar eine solche, die durch äussere Ursachen herbeigeführt ist, zur Bildung von Doppelbildungen disponirt. Allein man

¹⁾ Untersuchungen über die Entwicklung der Gewebe bei den warmblütigen Thieren. Frankfurt a. M. 1863. S. 5.

³⁾ De monstrorum duplicium origine atque evolutione. Halis 1840. p. 43, Fig. 4, 5.

^{3;} Ueber Entwicklungsgeschichte der Thiere. I. Theil. S. 13.

C. Bruch,

wird annehmen müssen, dass sich unter gewissen sehr seltenen Umständen, Embryonalachsen auch in anderen Richtungen, radiär¹) um den Embryonalfleck herumgestellt, entwickeln können, von deren gegenseitiger Lagerung und Entfernung die Bildung eines Doppelmonstrums oder auch von »Zwillingen auf dem Dottera resultirt. Vielleicht giebt gerade der Vorgang einer an beschränkter Stelle verstärkten Zellenwucherung, wie sie bei der Bildung des Embryonalfleckes nach völliger Umwachsung des Dotters eintritt, ein begünstigendes Moment ab.

Solche Vorstellungen setzen keineswegs die Annahme eines primär, d. h. schon vor der Befruchtung abnormen Keimes voraus. Sie lassen sich sogar sehr wohl mit der Annahme einer relativ äusseren Ursache vereinbaren. Die notorische Häufigkeit der Doppelbildungen bei künstlich befruchteten Fischeiern, die Beschränkung von Doppelbildungen bei Froschlarven auf einzelne Bruten, verlangt nicht eine grobmechanische Erklärung, sie dürfte vielmehr in viel feineren moleculären Vorgängen, vielleicht unter Betheiligung des männlichen Zeugungsstoffes, begründet sein. Zwar weisen die von J. GEOFFROY²) gesammelten Erfahrungen über die Erblichkeit der Missbildungen, sowie das Beispiel von Chang und Eng, welche beide eine zahlreiche, normal gebildete Familie erzeugt haben, in der erfreulichsten Weise nach, dass die Neigung dazu keinesfalls eine absolute ist, doch ist eine gewisse Disposition in einzelnen Fällen, wie z. B. bei überzähligen Fingern und Fingergliedern³), so wie besonders bei Extremitätenmangel⁴) unzweifelhaft erwiesen.

Das Verhältniss der Fehler erster Bildung zu den Fehlern zweiter Bildung kann hier zu manchen Irrungen, sowohl in der Beobachtung als in der Schlussfolgerung führen, und beiderlei Vorgänge müssen desto schärfer auseinander gehalten und unterschieden werden. Alle bisberigen Beobachtungen, insbesondere die von C. E. v. BABR und H. Müller, über regenerirte Eidechsenschwänze haben dargethan, dass wenigstens in dieser Classe Regenerationsphänomene niemals die anatomische und histologische Ausbildung der Organe der

⁴⁾ Bei keinem Wirbelthier liegt die Primitivrinne vom Anfang, so viel mir bekannt ist, diametral, sondern stets radiär, d. h. sie erstreckt sich nicht über die Mitte des Fruchthofes, sondern von dem Mittelpunkte desselben nach der Peripherie. Ob das Kopf- oder Schwanzende dem Mittelpunkt näher liegt, ist dann noch nicht zu unterscheiden.

²⁾ A. a. O. p. 972.

⁸⁾ Ebenda, I. p. 495.

⁴⁾ Ebenda, II. p. 170, I. p. 480.

Ueber Dreifachbildungen.

tildung darbieten. Dasselbe bestätigen meine Beobachtungen regenerirten Schwänzen von Froschlarven, wie ich in meiner Abhandlung¹) erörtert habe, und die oben angeführte Angabe Güntnen. Dass sich bei niederen Thieren die Sache überall so i, ist weder wahrscheinlich noch erfahrungsgemäss, vielmehr als ein bereits feststehendes Gesetz angesprochen werden, dass eneration eine desto leichtere und vollkommnere sein wird, je ir das Gewebe einerseits und je niedriger stehend das bele Thier andererseits ist. An älteren Beobachtungen über Po-Würmer und selbst über Weichthiere fehlt es nicht, es wäre der Zeit, dass diese Versuche mit den Hülfsmitteln der neueren nsbesondere in histologischer Beziehung, wieder aufgenommen i. Eine reiche Ausbeute von folgenreichen Wahrnehmungen nicht ausbleiben. Ja selbst die Botaniker haben hier noch eine e, da die sogenannte Regeneration im Pflanzenreiche, obgleich

nend so ausgiebig, doch in den meisten Fällen nach anderen ien vor sich zu gehen und mehr ein Nachersatz als Wiederu sein scheint.

hr auffallend und interessant sind besonders die Nachrichten von rationserscheinungen bei Kindern und erwachsenen Menschen, kürzlich CH. DARWIN²) in seinem grossen Werke gegeben hat. führt eine Reihe von Fällen auf, in welchen überzählige Finger, amputirt worden waren, nicht nur einmal, sondern dreimal erzeugt wurden und ebenso oft von neuem operirt werden n, ein Vorkommen, was etwas Erschreckendes hat und an die liche Operation bösartiger Geschwülste erinnert. In einzelnen vererbte die Missbildung auf die Nachkommen und es liegen Beispiele vor, wo sie sich durch Uebertragung verstärkte. Bei angel eigener Erfahrungen und dem völligen Schweigen der tcher über derartige Erfahrungen, kann ich mir kein Urtheil n, halte aber DARWIN's Vermuthung, dass manche Organe einen nalen Charakter dauernd bewahren und damit auch ein ungeches Reproductionsvermögen behalten, für eine sehr beachtens-, welche zu weiterer Untersuchung solcher Fälle auffordern muss. as ausser den in bisherigen beschriebenen Fällen von dreifachen rillingsbildungen Zuverlässiges bei den Schriftstellern erwähnt ist, ist nicht viel. Als dahingehörigen Fall beschreibt DARESTE³}

vas Variiren der Thiere und Pflanzen im Zustande der Domestication.
 von V. CARUS, 1868. II. S. 19.
 omptes rendus. 1865. p. 568.

[.] a. O. VII. S. 266 ff.

C. Broch,

ein Hühnerei mit doppeltem Fruchthof in einem einfachen Gefässheij welches in dem einen Fruchthof einen normalen Embryo, in dem anderen einen normalen und einen abnormen Embryo, also Drillingt auf einem Dotter zeigte. Eine Vereinigung zwischen den drei Embryonen fand so wenig statt, als in den zahlreichen, früher !) erwähnten Fällen von normalen Zwillingen auf gemeinsamem Dotter.

Der bei GEOFFROY²) citirte Fall von MAYER, Geburt eines normalet Kindes in Gesellschaft eines Zwillings, der sich als »monstre double pa inclusion« erwies, war in Wirklichkeit weder » une naissance triples noch ein Tripelmonstrum, sondern Zwillingsgeburt mit einer Doppal bildung. Noch weniger können hier Hühnereier mit mehrfachen, bi 5 Dottern angeführt werden, von welchen wiederholt erzählt wurde.

Zweifelhaft ist ein Fall von dreifacher Extremität bei einer **Est** von MECKEL, den GEOFFROV³) anführt, desshalb, weil es vorgekomme ist, dass ein überzähliger Fuss, den eine Ente am Kopf trug, nicht de Charakter eines Flügels, sondern wirklich den eines verkümmerte Fusses trug. Ebenso der von GEOFFROV selbst beobachtete Fall v einem Hammel mit drei überzähligen Extremitäten an der recht Schulter, welcher als parasitische Doppelbildung zu deuten sein dürf

Eine dreiköpfige Schlange soll glaubwürdig nach Mirchill⁴) am Ontario gesehen worden sein.

Nach dieser Erschöpfung der Literatur, so weit sie mir zugäng ist, bleiben mir nur noch einige Worte über die Terminologie der Mehr fachbildungen übrig. Schon J. GEOFFROY⁵) verwirft die Bezeichnur »monstra bigemina et trigemina (Zwillings- und Drillingsmissgeburten welche einige Autoren gebraucht haben, weil dieselben zu Verwecht lungen mit Zwillings- und Drillingsgeburten führen könnten. Eben verwirft er das Wort »diplogenesis«, obgleich dasselbe unter Zusatz ein Adjectivs, welches den monströsen Charakter ausdrückte, wohl nich missverstanden werden dürfte. Triftiger sind offenbar die Gründ welche neuerdings von Döxirz⁶) gegen die Bezeichnung »Zwillings- un Drillingsmissbildung«⁷) geltend gemacht worden sind, denn, nachdel einmal festgestellt ist, dass jeder Mehrfachbildung ein einfacher Dotte

- 6) A. a. O. 1865. S. 126.
- 7) Reiner Pleonasmus ist »Doppelmissbildung«, wie man hier und da liest.

⁴⁾ A. a. O. VII. S. 285.

²⁾ A. a. O. p. 221.

³⁾ A. a. O. p. 198.

⁴⁾ SILLIMAN'S JOURN. X. 4826. p. 48.

⁵⁾ A. a. O. p. 44.

Ueber Dreifachbildungen.

a Grunde liegt, ist es erwünscht, »Zwillinge auf dem Dotter« von Iwillingen auf mehreren Dottern« zu unterscheiden. Dönmz schlägt für retere die Bezeichnung »Paarling« vor und will das Wort »Zwillinge« Ir die gewühnlichen Doppelgeburten im gangbaren Sinne reserviren, regegen nichts einzuwenden wäre, wenn nicht Dömmz, gleich Remenn, im Wirbelthierleib nicht als bilateral-symmetrischen, sondern als paarig-symmetrischen auffasste, was nach unserer Ansicht wiederum zu Missverständnissen führen könnte. Ausserdem dürften int alle Sprachen im Stande sein, beide Ausdrücke entsprechend wieimugeben.

In praktischer Beziehung hat sich bekanntlich H. MECKEL³) viele the gegeben, gewöhnliche »Zwillinge« und »Paarlinge« in dem oben wähnten Sinne (zu welchem letzteren auch nach Reichert alle Dopbildungen höheren Grades zu rechnen wären) an der Beschaffenheit **le Eihäute zu erkennen. Dass die Einfachheit des Mutterkuchens dazu** itht ausreicht, ist allgemein bekannt. MECKEL legt daher ein grosses wicht auf die Gomeinsamkeit der Eihäute, namentlich des Amnion, wie auf das gänsliche Fehlen des letzteren. Da er jedoch der Vermelzungstheorie huldigte, also alle Zwillinge auf zwei Dotter zukaführte und auch die Doppelmonstren aus ursprünglich getrennten imen hervorgehen liess, konnte es sich für ihn nur darum handeln, 1 Zwillinge aus einem oder aus getrennten Graaf'schen Follikeln mmen. Er führt mehrere Fälle von Doppelgeburten an, bei welchen sweder die Decidua, oder das Chorion oder auch das Amnion einfach d gemeinsam war. In allen Fällen von Zwillingen oder Zwillingsissbildungen mit gemeinsamen Eihüllen sollon diese ferner gleichen schlechts sein, was schon GEOFFROY 1) für die Doppelbildungen beuptet hat und andere Schriftsteller bestätigten.

Die erstere Frage kann nach den nunmehrigen Ermittelungen in sn Sinne, wie sie H. MECKEL gestellt hat, kaum noch ein Interesse ben, denn es ist nicht einzusehen, warum sich Zwillinge aus dem Hikel nicht verhalten sollten, wie andere Zwillinge, wie ich²) schon ther erörtert habe. Dagegen werden Zwillings- und Mehrfachgeburten it ein fachen Eihäuten, insbesondere mit einfachem oder fehlendem nnion, immer dem Verdachte unterliegen »Paarlinge* d. h. Zwillinge f dem Dotter zu sein, Individuen demnach, welche der Gefahr, eine ppelbildung zu werden, glücklich entronnen sind. Nur das Verhalten r (einfachen oder doppelten) Nabelblase kann hier entscheiden.

1) A. a. O. p. 277.

^{2;} A. H. O. VII. S. 274 ff.

In Bezug auf das gleiche Geschlecht von Zwiflingen, hat H. Macuni statistische Untersuchung ergeben, dass dasselbe bei der Mehrzahl der Zwillingsgeburten zutrifft (d. h. unter 141,715 Zwillingsgeburten befanden sich 90,487 mit gleichem Geschlecht, darunte 47,074 mit zwei Knaben, 43,443 mit zwei Mädchen, aber 51,22 Geburten ungleichen Geschlechts). Unter 719 Drillingsgeburten fand man 384 mal drei Knaben, 335 mal 3 Mädchen, dagegen 875 mal also in der Mehrzahl ungleiches Geschlecht, nämlich 166 mal 2 Knaben und 1 Mädchen, 109 mal 2 Mädchen und 1 Knaben. Unter 35 Vierlingsgeburten waren 11 mal 1 Knaben, 6 mal 1 Mädchen, dagegen in 24 Fällen ungleiches Geschlecht vorhanden, d. h. 9 mal ? Knaben und 2 Mädchen, 7 mal 3 Mädchen und 1 Knabe, und 8 ma 3 Knaben und 4 Mädchen. Die Ungleichheit des Geschlechts steigt also mit der Mehrgeburt und es lässt sich daraus weder eine Disposition für die Bildung von Monstren, noch ein Schluss auf des Ursprung der Eier deduciren. Wohl aber lässt sich das stets gleiche Geschlecht von Doppelbildungen für die epigenetische Theorie, nach welcher alle Mehrfachbildungen aus einem Keime ihren Ursprung nehmen, verwerthen.

Schliesslich stelle ich die allgemeinsten Resultate, zu welchen ich gelangt bin, zusammen:

Mehrfachbildungen beruhen auf der unbeschränkten Theilbarkeit des thierischen Organismus, welche derselbe bei den höheren Thieren jedoch nur auf der Stufe der Keimbildung, vom Momente der Befruchtung an bis zur Entstehung der ersten Körperanlagen, in böchstem Grade besitzt und mit der fortschreitenden Differenzirung der Organe immer mehr einbüsst.

Die Ursachen der Mehrfachbildung können nur in solchen Einwirkungen gesucht werden, welche im Stande sind, in dem oben erwähnten Zeitraume den Zellenbildungsprocess in der Keimhaut in abnormer Weise anzuregen und zu stören.

Auch Dreifachbildungen unterliegen den Gesetzen der bilateralen Symmetrie des Wirbelthierleibes, so weit ein gemeinsames Achsenorgan vorhanden ist. Weitere Theilungen führen dagegen meistens zur Asymmetrie, da die getheilte Unterachse für ihre Körperhälfte als Hauptachse zu betrachten ist.

Bei vollständiger Trennung der dreifachen Achsenorgane können je nach der Lagerung und gegenseitigen Neigung derselben symmetrische oder asymmetrische Mehrfachbildungen entstehen.

Auch die Entstehung von normalen Drillingen auf einem einfachen Dotter ist möglich, wenn auch beim Kenschen noch nicht beobachtet.

Offenbach a. M., 3. Juni 1871.

.

Erklärung der Abbildungen.

Tafel XI.

- 1. Larve von Pelobates fuscus mit dreifach getheilter Chorda dorsalis im Schwanzende. Natürliche Grösse.
- R. Das Schwanzende derselben Larve bei zehnmaliger Vergrösserung, um die dreifache Theilung der Chorda und die Ausbreitung der Muskelsegmente und der Blutgefüsse übersehen zu lassen.

Beiträge zur Entwicklungsgeschichte der Milchdrüsen beim Menschen und bei Wiederkäuern^{*}).

Von

Dr. med. Max Huss.

Mit Tafel XII u. XIII.

Mit vorliegender Untersuchung bezwecke ich eine in den diesen Gegenstand berührenden Arbeiten befindliche Lücke auszufüllen. Wenn auch die Kenntniss der Entwicklung der Milchdrüse des Menschen besonders durch die Untersuchung LANGKR's eine ziemlich genaue ist, so blieben doch über manche einzelne Punkte der betreffenden Vorgänge Lücken bestehen und von diesen darf die Bildung der Papille als die bedeutendste bezeichnet werden. Deshalb habe ich ausser den die Entstehung des Drüsengewebes einleitenden Vorgängen vorzüglich die Genese der Papille ins Auge gefasst und diese durchaus nicht so einfach gefunden, als die blosse Beurtheilung des fertigen Zustandes glauben lassen könnte, welch' letzterer bisher allein, wenigstens beim Menschen und einigen Wiederkäuern, durch die mikroskopische Untersuchung genauer bekannt geworden war.

Ausser der Entwicklung der Papille machte ich mir die Vergleichung der beim Menschen beobachteten Vorgänge mit den bei Säugethieren bestehenden zur Aufgabe, zu welcher ich vorwiegend durch die höchst eigenthümliche Thatsache inducirt ward, dass die stets der Papille des Menschen homolog erachtete Zitze wenigstens innerhalb eine-Abtheilung der Säugethiere bezüglich der zeitlichen Erscheinung sich ganz verschieden verhält. Während, wie längst bekannt, die Papills mammae des Menschen ein sehr spät auftretendes Gebilde ist, zeig

4) Auch als Inauguraldissertation gedruckt.

Dr. Max Huss, Beiträge zur Eutwicklungsgeschichte der Milchdrüsen etc. 177

h auffallender Weise die Zitze der Wiederkäuer in sehr frühem Fötaldium. Bringt man hiermit die Thatsache der bedeutenden Verschienheit der Zahlenverhältnisse der Ausführungsgänge (ductus galactoori) in Verbindung, so wird daraus einige Berechtigung hervorgehen, m Grunde jener Verschiedenheit nachzuforschen. Dass sie nicht blos n Menschen und die Wiederkäuer betrifft, ist daraus ersichtlich, dass enigstens ein Theil der übrigen Säugethiere, z. B. die Carnivoren, urch das Verhalten der Ausführungsgänge zur Papille sich enger an m beim Menschen beobachteten Befund anschliessen. Wenn auch kein weifel ist, dass beiderlei Gebilde, einerseits die Papille des Menschen, udererseits die Zitze der Wiederkäuer in ihren functionellen Boziehungen bereinstimmen, somit analoge Organe sind, so bleibt eben doch durch is vorhin angegebene Verschiedenheit beider ein Bedenken an ihrer ustomischen und genetischen Gleichwerthigkeit, d. h. an ihrer Honologie.

I. Mensch.

Sämmtliche diesen Gegenstand berührende Arbeiten betreffen die lächdrüse selbst, theils nur den Bau derselben, theils auch ihre Entricklung. Von diesen Arbeiten bedaure ich jene von ASTLEV COOPER¹) icht zu Gebote gehabt zu haben.

MECKEL²) beschreibt die erste Anlage der Milchdrüse als eine rreits im dritten Monat des Fötallebens auftretende in der Mitte eingeenkte Erhabenheit. Diese letztere bestimmt er als das erste Entwickungsstadium der späteren Papille. Die Zahl der Ausführungsgänge giebt anach dem Vorgange von WALTHER, HALLER u. a. auf 20 an.

Die ausführlichste Arbeit lieferte LANGER³) über Bau und Entwicklung der Milchdrüse bei beiden Geschlechtern. In dieser Abhandhung wird jener ersten Erhabenheit die Bedeutung einer embryonalen Papille nicht beigemessen, wie es von MECKEL geschah, sondern es wird die ganze Entwicklung der Papille in eine spätere Periode des Lebens verlegt, und ihr Auftreten als bedingt nachgewiesen durch die Anwetenheit eines alinsenförmigen Körpers«, der aus einer körnigen Masse bestehe und in der Mitte seiner Oberfläche eine vertiefte Stelle oder Einsenkung besitze. In Bezug auf die weitere Entwicklung des » linsenörmigen Körpers« giebt LANGER an, dass erst bei Embryonen, deren Körperlänge das Maass von 10 Cm. überschreitet, Milchgänge angetroffen

¹⁾ ASTLEY COOPER: on the Anatomy of the Breast. London 1840.

¹ J. F. MECKEL, Handbuch der meuschlichen Anatomie. 4820.

³) Denkschriften der Wiener Acudentie. Bd. III.

werden. Wie sich dieselben aus dem »linsenförmigen Körper« ber vorentwickeln, und wie sich der letztere selbst während dieser Vor gänge verhält, giebt LANGER nicht an. Betreffs der späteren Papille wir dann noch angeführt, dass mit dem Verschwinden der Einsenkung un mit der Erhebung der bleibenden Papille sämmtliche Drüsenausführungsgänge einzeln nach aussen münden. Nähere Angaben über diese Vorgang fehlen.

KÖLLIKER¹) bestätigt im Wesentlichen die LANGER'sche Untersuchen und weicht in seinem Berichte nur insofern von LANGER ab, dass er di Entwicklungsstadium der Milchdrüse Neugeborner als ein bereits weit vorgeschrittenes bezeichnet. Es ist ein Verdienst dieses Autors da Nachweis geliefert zu haben, dass diese Drüse wie andere Drüsen da Haut, ein Abkömmling des Stratum Malpighii ist.

Ueber die Anatomie der Milchdrüse, ihre Areola und Papille, ausse dem über die Lage der letzteren am Thorax macht HENLE²) ausführlich Mittheilungen, die das von mir betretene Gebiet nicht berühren.

Zur Lösung der gestellten Aufgabe war es nöthig, die ersten Buwicklungsstadien der Milchdrüsen selbst aufzusuchen, die mit de Bildung jener warzigen, mit einer oberflächlichen Einsenkung ver sehenen Erhebung einhergehen.

Das früheste, beim Menschen die erste Andeutung einer Entwicklung der Milchdrüse darbietende Stadium, fällt spätestens in jene Zei des fötalen Lebens, in welcher der Embryo vom Kopf bis zur Gegen des ersten Schwanzwirbels gemessen, eine Länge von noch weniger al 4 Cm. besitzt. Bei einem Fötus von 2,5 Cm. ist noch keine Spur eine äusseren Andeutung an der später durch das Organ ausgezeichneter Stelle vorhanden, während bei einem solchen von 4 Cm. eine solche Andeutung schon für das blosse Auge leicht zu erkennen ist. Ein zwischen diesen beiden angeführten befindliches Stadium stand mitnicht zu Gebote, so dass mir eine genaue Grössenangabe der in den Stadium der ersten Anlage jener Drüsen befindlichen Embryonen nicht ausführbar war.

In der Gegend der späteren Papille bemerkt man bei Embryonen von 4 Cm. Länge eine Stelle von 4 Mm. Breite, die sich durch grössere Blässe und eine eigenthümliche glänzende Beschaffenheit von ihrer Umgebung unterscheidet. In Mitte der in dieser Art ausgezeichneten Fläche erhebt sich ein Wärzchen von ungefähr 0,5 Mm. Breite und mit einer centralen Einsenkung verschen, welche wie ein feiner Nadelstich sich

¹⁾ Kölliker's Entwicklungsgeschichte des Menschen.

²⁾ HENLE's systemat. Anatomie des Menschen. Bd. II.

Beiträge zur Entwicklungsgeschichte der Milchdrüsen etc.

immt. Die ganze i Mm. breite Fläche entspricht der später von der lle und Areola eingenommenen Stelle, wie ich nachher anführen de Ich will sie als Areolarfläche bezeichnen.

179

Auf Verticalschnitten (Taf. XII. Fig. 1) sieht man die bereits erfolgte unung der beiden durch Stratum Malpighii und Hornschicht dargeten Schichten der Epidermis, während das Corium nur aus einer einn Schicht besteht, welche durch die bekannte embryonale Form des degewebes repräsentirt wird; dieses enthält hier theils rundliche, ds spindelförmige Zellen in spärlicher homogener Intercellularsubstanz. Stelle des Wärzchens ist von den angrenzenden Partien der Epidermis ch eine stärkere Anhäufung von Zellen im Stratum Malpighii ausgenet (Taf. XII. Fig. 4). Diese partielle Zellvermehrung entbehrt der arfen Abgrenzung gegen ihre Umgebung und stellt die erste Anlage · Milchdrüse vor. Von anderen ähnlichen Wucherungen der Epimis, wie sie zur Bildung von Schweissdrüsen und Haaren führen, an keiner der ührigen Stellen des Objectes etwas zu bemerken, wie nn auch nach Ausweis zahlreicher Präparate von Verticalschnitten migstens in der nächsten Umgebung der als Anlage der Areola mamre bezeichneten Fläche noch keine solchen Organe angelegt erscheinen.

Bei Embryonen von 6-7 Cm. tritt die äusserlich als leichte Vorgung sich kundgebende Stelle der Drüsenanlage viel deutlicher herr, und unterscheidet sich schärfer vom benachbarten Stratum Malthii, als im vorigen Stadium. Andere Abkömmlinge der malpighischen hicht sind auch hier noch nicht in der Nachbarschaft zu sehen. Die rüsenanlage misst in diesem Stadium ihrer Entwicklung 0,165 Mm. the und 0,390 Mm. Breite.

Die Stelle der Drüsenanlage eines weiblichen Embryo von 10 Cm. inge ist 4,5 Mm. breit. Die Erhebung selbst hat 0,5 Mm. Breite und ie auf ihr befindliche Einsenkung ist umfänglicher als bisher (Taf. II. Fig. 2).

Auf mikroskopischen Objecten sieht man weitere Fortschritte in der htwicklung der bezüglichen Theile des Integumentes. Die spindelmigen und rundlichen Zellen des Coriums sind in ein Stroma von zart Maserter Intercellularsubstanz eingelagert (Taf. XII. Fig. 2). Der mbryonale Zustand des Bindegewebes der Cutis hat also in den spären überzugehen begonnen. Vom Stratum Malpighii erstreckt sich ine ansehnliche Menge von flaschen – und zapfenförmigen Zellenmeherungen in die Cutis hinab. Diese Abkömmlinge der malpighithen Schichte der Epidermis verschonen die Stelle, welche in ihrer fitte die Erhebung mit der Einsenkung trägt, vollständig, wodurch liese Stelle von übrigen Integumente differenzirt erscheint. Die von M. VII. 8.

einer mächtigen Zellenanhäufung gebildete Drüsenanlage unterscheidet sich durch ihre Gestalt von den Anlagen der Haare oder Schweissdrüsen, indem sie nicht, wie letztere, flaschenförmig erscheint, sondern die Gestalt eines kurzen, ebenso langen, als breiten Kolbens darbietet. Die ganze Zellenwucherung hat im Vergleich zum vorigen Stadium an Umfang bedeutend gewonnen und ist bis an das benachbarte Stratum Malpighii hinauf von einer Lage Coriumgewebe umgeben, dessen zellige und faserige Formelemente daselbst eine dichtere Anordnung zeigen, als in den übrigen Cutispartien. Die Drüsenanlage misst in der Höhe 0,357 Mm. und in der Breite 0,450 Mm.

Bei Embryonen von 14,2 Cm. Länge ist die vorhin beschrieben Stelle mit ihrer warzigen Erhebung 4 Mm. breit und bietet im Wesenlichen denselben Befund, wie diejenige des vorigen Stadiums. Die Erhebung ist nur um ein Geringeres breiter, dabei aber eher etwa flacher geworden, ihre Einsenkung dagegen erscheint verhältnissmässig grösser, als im letzten Stadium (Taf. XIII. Fig. 3).

Verticalschnitte durch das Object lassen die bisher noch ganz einfache rundliche Epithelwucherung in einer etwas weiter vorgerückten Entwicklungsperiode erkennen. Die Knospung der Drüsenanlage stell hier in ihrem ersten Beginn. Mehrere kurzkolbige Knospen ragen 🕬 der ursprünglichen Zellwucherung schräg abwärts in das Corium Die Zellenformation ist dieselbe, wie im vorigen Stadium. Das game Organ, nämlich der centrale, schon früher gebildete Körper, wie von ihm in das Corium gesprossten Fortsätze bestehen aus runden und polygonalen Zellen mit rundlichen Kernen. Die innersten Zellen sind durch bedeutendere Grösse unterschieden und durch sehr deute liche scharfe Contouren ausgezeichnet. Nach aussen werden sie allmäblich kleiner. Die äusserste an das Corium grenzende Zellenlage ist ein langgestrecktes Cylinderepithel mit länglichen Kernen (Taf. I. Fig. 3)-Diese Schicht setzt sich zwar in die tiefste Zellenlage des Stratum Malpighii der benachbarten Cutis fort, ohne dass jedoch dort die Zelle schon deutlich cylindrisch gestaltet wären. Die Kerne beider Zellenarten besitzen einen körnigen Inhalt.

Die ganze Drüsenanlage misst in der Höhe 0,335 Mm. und in de Breite 0,436 Mm. Die Grösse der Knospen beträgt in der Länge 0,12 Mm. und in der Breite 0,090 Mm.

Bei einem Embryo von 18 Cm. Länge ist die durch den Mangel vo Haaren ausgezeichnete Areolarfläche über 4 Mm. breit, die Erhebuo von derselben Gestalt, wie im vorigen Stadium. Die Einsenkung ba sich im horizontalen Durchmesser erweitert, in verticalen dagegen ebe etwas abgeflacht. Die jetzt durch die Epidermis hindurch getretene

Wollhaare tragen nicht wenig dazu bei, die haarlose Areolarfläche von dem benachbarten Integument abgegrenzt erscheinen zu lassen. Das histologische Verhalten der Drüsenanlage hat sehr viel Uebereinstimmendes mit demjenigen des zuletzt erwähnten Embryo. Die kolbigen Knospen haben ihre Gestalt etwas verändert und erscheinen in Form von länger gestreckten schlauchartigen Fortsätzen der ursprünglichen Drüsenanlage. Diese Schläuche sind aber noch einfach ohne irgend welche Andeutung von secundärer Knospung. Die Grösseverhältnisse der Erhebung und der Einsenkung stimmen mit dem makroskopischen Befunde überein. Die ursprüngliche Drüsenanlage selbst besitzt eine Böhe von 0,450 Mm. und eine Breite von 0,420 Mm. Die zu Schläuchen verlängerten Knospen haben eine Länge von 0,900 Mm. und eine Breite von 0,075 Mm.

Bei Embryonen von 29 Cm. Länge besitzt die Areolarfläche einen Aurchmesser von 5 Mm. Die bis jetzt immer noch deutlich gewesene Erhebung hat sich fast ganz abgeflacht, die Einsenkung hat in ihrem wizontalen Durchmesser noch mehr zugenommen. Die ursprüngliche m Stratum Malpighii dieser Stelle aufgetretene Zellvermehrung, welche de erste Anlage der Drüsen bildet, besteht noch in ziemlichem Uminge. Die im vorigen Stadium noch einfachen, aber schlauchartig verlängerten ersten Knospen dieser Drüscnanlage sind dagegen in ein weiteres Stadium der Differenzirung getreten. Ihre einfache Gestalt ist durch die Entwicklung einer zweiten Knospengeneration modificirt worden, deren Glieder von kolbiger Form in einer Anzahl von 4-5 an den verlängerten Schläuchen sitzen (Taf. XIII. Fig. 4). Die Glieder der ersten Knospengeneration gestalten sich von jetzt an nach und nach immer mehr und mehr zu Ausführungsgängen, indem sie in gestreckter form die zu Drüsenläppchen umgestalteten secundären Knospen tragen. leide Knospengenerationen zeigen dieselben histologischen Verhältnisse wie die Drüsenanlage des Embryo von 14,2 Cm. Länge.

Dieses Stadium stimmt bezüglich der Entwicklung der Drüsentelläuche ungefähr mit demjenigen Stadium überein, in welchem Lucen die Rosettenbildung der Drüsenanlagen beobachtete. Es ist mir ticht gelungen, ein der LANGER'schen Rosette ähnliches Bild der ganzen Stalen Milchdrüse zu erhalten. Bei allen untersuchten Exemplaren divergirten die Drüsenschläuche während ihres Verlaufes nach abwärts in die Cutis so wenig, dass es in Bezug auf die Richtung der Drüsentehläuche nicht möglich war, eine Uebereinstimmung mit der LANGER'schen Darstellung wahrzunehmen. Ausserdem fand ich die ursprüngliche Drüsenanlage, LANGER's »linsenförmigen Körper« bei keinem der Embryonen, die dieses Stadium der Rosettenbildung aufweisen sollen, in

12 7

i

der Art geschwunden, wie es nach Fig. 1 der Langen'schen Abhandlung scheinen muss.

Bezüglich der Grössenverhältnisse der ganzen wie der einzelnen Theile kann ich folgende Maasse anführen: die ursprüngliche Drüsenanlage hat hier noch eine Höhe von 0,480 Mm. und eine Breite von 0,300 Mm. Die schlauchartigen Verlängerungen der ersten Knospungen haben eine Länge von 0,900 Mm. und eine Breite von 0,075 Mm. Die Glieder der zweiten Knospengeneration haben eine Länge von 0,120 Mm. und eine Breite von 0,075 Mm.

Da jetzt die Bedeutung der ersten in Gestalt einer Verdickung der Stratum Malpighii aufgetretenen Anlage als eine Stelle sich bemerkber gemacht hat, von der aus nicht etwa eine einzige Drüse, sondern eine Summe von solchen in der Cutis wucherte, so will ich diese Stelle als Drüsenfeld unterscheiden. Das Drüsenfeld nimmt die Mitte der Areolarfläche ein; von seinem mit einer Epidermiswucherung bedeckten Boden treten, wie vorhin beschrieben, die Anlagen mehrfacher Drüsen in die Lederhaut. Dass von einer Papille noch keine Rede sein kann, ist selbstverständlich.

Im Verfolge dieser Anlage der Milchdrüse in spätere Stadien, finden wir fernere Veränderungen sowohl bezüglich der Drüsen als bezüglich der Arcolarflächen. Die Areolarfläche eines Embryo von 32,5 Cm. Länge misst 5 Mm. Breite. Die vormalige Erhebung ist jetzt ganz verschwunden, aber die ihrer Umgebung entsprechende Partie der Arcolarfläche seist sich jetzt erhaben und bildet um die peripherisch bedeutend vergrösserte Einsenkung herum einen förmlichen Wall (Taf. XIII. Fig. 5W). Die Einsenkung besitzt nach der Untersuchung von Verticalschnitten eine Napfform, deren wallartige erhabene Umgebung dieselben Gewebselemente aufweist, wie die übrigen um sie herum liegenden Hautpartien. Folglich hat diese Erhebung auf der Areolarfläche nichts zu schaffen mit jener ursprünglichen Erhebung, die zwar auch eine Einsenkung in ihrer Mitte trug, aber allein durch die Epidermis gebildet ward und das Drüsenfeld unmittelbar unter sich liegen hatte (Figg. 1. 21). Drüsenfeld des jetzt vorliegenden Stadiums ist dagegen nur noch im Bereiche der Einsenkung zu suchen. Die embryonalen aus der ersten Knospung entstandenen Ausführungsgänge durchsetzen in ziemlicher Anzahl das Stratum Malpighii und reichen mit ihren Verzweigungen bis in die obersten Schichten des Unterhautbindegewebes hinab. Die Ausführungsgänge stehen in diesem Stadium mit der Oberfläche der Einsenkung in Zusammenhang, nachdem die im vorigen Stadium (Taf. XIII. Fig. 4) noch vorhandene mächtige Schicht der primitiven Epidermisvermehrung (LANGBR's »linsenförmiger Körper«) verschwunden

Beiträge zur Entwicklungsgeschichte der Milchdrüsen etc. 183

der vielmehr mit der Ausdehnung der Fläche in eine dünne Epidernislage übergegangen ist. Das Lumen der Ausführgänge ist noch dicht nit Zellen angefüllt, ebenso wie auch die Läppchen sich vollkommen solid zeigen.

Die an den zuerst entstandenen Schläuchen gebildeten Knospen, die ich vorhin als Drüsenläppchen bezeichnet habe, gehen ganz nach Art der Differenzirung anderer gelappter Drüsen weitere Verränderungen ein. Es entstehen an ihnen seitliche Ausbuchtungen, die sich allmählich deutlicher abheben und zu ferneren Läppchen gestalten, welche nunmehr den aus den Läppchen entstandenen Ausführgang besetzen. Wie die ersten Knospen, welche das Organ bildete, allmählich in Ausführungsgänge übergingen, so wandeln sich also auch die an den letzteren entstandenen Knospen mit dem Auftreten neuer Wucherungen in Ausführungsgänge um. Mit anderen Worten, der Ausführungsgang verzweigt sich nach den mit ihm in Verbindung stehenden, durch Knospen sich soudernden Läppchen.

Aus der Vergleichung des Drüsenfeldes dieser Entwicklungsstufe mit demjenigen der vorhergebenden stellen sich wichtige Vorgänge für die Entwicklung der Papille heraus. An die Stelle der ursprünglichen, das Drüsenfeld repräsentirenden Erhebung, die wir als ein Epidermoidalgebilde kennen lernten, ist eine Vertiefung getreten, welche durch allmähliche Erweiterung der ursprünglichen centralen Vertiefung (Taf. XIII Fig. 1, 2 E) entstand. Das Drüsenfeld wird durch den Boden einer napfförmigen Einsenkung E vorgestellt. Diese besitzt eine wallartige Ungebung W, an der auch das Corium Theil nimmt, so dass man wieder ein ähnliches Bild vor sich hat, wie es die ursprüngliche Erhebung mit ibrer Einsenkung lieferte, welche beide wir aber nur durch die Epidemis kennen gelernt haben. Das ursprüngliche Epithelwärzchen verdankt seinen Untergang der allmählich über eine grössere Fläche sich ausdehnenden d. h. sich peripherisch vergrössernden Einsenkung, die ⁱⁿ dem Maasse vorschreitet, dass die anfänglich über dem Niveau der Bantoberfläche gelegenen Zellen unter das Niveau derselben gelangen. Während also das Drüsenfeld ursprünglich das Niveau der Hautoberthe zum Theil überragte und nur eine kleine Einsenkung trug, so ligt es jetzt mit seiner fast in ganzer Ausdehnung vertieften Oberfläche unter dem Niveau der Haut. Die Umgebung des ursprünglich erhabenen Musenfeldes war eben, während die des letzten Stadiums mit der stark vergrösserten Einsenkung einen wirklichen Wall um die letztere herum bildet. Spätere Entwicklungsstadien werden zeigen, wie sich das vertiefte Drüsenfeld in dieser seiner letztgeschilderten Gestalt einerseits, und der dasselbe umgebende llautwall andererseits beim Aufbau der

bleibenden Papille verhalten. Die Einsenkung hat hier die der Au nahme der Ausmündungen sämmtlicher Ausführungsgänge entsprechen Dimension genommen, und ihre Erweiterung stimmt mit der Zahl d vom Boden des Drüsenfeldes aus entstandenen Drüsen. Ein Theil d Ausführungsgänge durchbohrt den Grund, ein anderer die Seitenwar dungen der Einsenkung. Die letztere stellt also einen gemeinsam Raum dar, in dem sämmtliche Ausführungsgänge der embryonak Milchdrüse münden oder mit anderen Worten: Die Einsenkun des Drüsenfeldes in ihrer jetzigen Gestalt bildet eine einzigen sehr weiten gemeinsamen Ausführungsgan der Milchdrüse.

Man würde irre gehen, wenn man diese anatomischen Verhältnis der Einsenkung des Drüsenfeldes gerade nur Embryonen von der ob angegebenen Grösse zuschreiben wollte, denn hat man Gelegenheit, d makroskopischen Verhältnisse bei Mädchen und Knaben zu beobachte so zeigt sich, dass besonders bei Knaben zuweilen im 42. Jahre no keine Papille sich entwickelt hat, sondern dass an ihrer Stelle imm noch eine Einsenkung besteht, oft von spaltähnlicher Gestalt, die eine solchen einzigen Ausführungsgange der Milchdrüse entspricht. MECE beobachtete diese vertiefte Form des Drüsenfeldes sogar noch bei eine Knaben von 15 Jahren; er fand in diesem Falle anstatt einer Papil nur eine spaltförmige Vertiefung in der Mitte der Areolarfläche. Das f Embryonen geschilderte Stadium kann also noch weit ins jugendlic Alter hinein fortbestehen, und repräsentirt damit eine Bildungshemmun

Im regelmässigen Verlaufe der Weiterentwicklung geht jenes Su dium rascher vorüber. Bei einem weiblichen Embryo von 33 Cm. Län ist die Areolarfläche kaum über 6 Mm. breit. Die Einsenkung d Drüsenfeldes erscheint schon dem blossen Auge etwas geringer, di gegen verhält sich die erhabene Umgebung wie im vorigen Stadiur Ein Verticalschnitt durch die tiefste Stelle der Einsenkung liefert e Präparat, welches sich bezüglich der Entwicklung der Drüsensubsta von Präparaten vorhergehender Stadien kaum unterscheidet. Die Ausführungsgängen der Drüse gewordenen Schläuche tragen an ihre unteren Ende in doldenförmiger Anordnung eine Anzahl von secu dären Ausführungsgängen, die mit Drüsenläppchen besetzt sind (Taf. X Fig. 6 DL). Das wichtigste an diesem Stadium ist die Veränderun welche die Einsenkung bezüglich ihres Raumverhältnisses erfahren hi Schon dem blossen Auge erschien sie von geringerer Ausdehnun Vergleicht man nun mikroskopische Objecte mit denjenigen des vorig Stadiums, so tritt der Unterschied in der Weite und Tiefe der Ei senkung schon ziemlich stark hervor. Die Mündungen der Au

Beiträge zur Entwicklungsgeschichte der Vilchdrüsen etc.

führungsgänge liegen bereits um ein Beträchtliches näher an der Hautoberfläche, als vorher. Es hat sich demnach der Grund der Einsenkung, also die in den vorigen Stadien vertiefte Oberfläche des Drüsenfeldes merklich gehoben. Dieser Vorgang ist von einer vermehrten Zellproduction im Stratum Malpighii des Bodens der Einsenkung begleitet, doch will ich damit nicht behaupten, dass hierin der einzige Factor der Einderung der Vertiefung zu suchen sei. Die Ausführungsgänge der Drüsen haben eine Länge von 0,454-0,975 Mm. und eine Breite von 4,030 Mm. Die Zweige der Ausführungsgänge besitzen eine Länge von 4,057 Mm. und eine Breite von 0,015 Mm. Die rundlichen Drüsenkppchen haben eine Länge von 0,045 Mm. und eine Breite von 4,045 Mm.

Nach dieser Darstellung meiner an Embryonen vorgenommenen Untersuchung wende ich mich zur Mittheilung der bei Neugeborenen gefundenen Verhältnisse.

Das Drüsenfeld eines weiblichen Neugeborenen ist immer noch twas vertieft, und seine Unigebung in ähnlicher Weise erhaben, wie in vorigen Stadium. Die ganze Areolarfläche ist etwas höher, als ihre Ingebung. Sie bildet eine flache Hervorragung, deren Rand die mittlere das Drüsenfeld vorstellende schwache Vertiefung als eine leichte Erbebung (Taf. XIII. Fig. 7 CW) umzieht. Um die Areolarfläche herum ligt ein Kranz Rleiner Erhabenheiten, welche den Ausmündestellen der bei Erwachsenen an dieser Stelle bekannten Talgdrüsen entsprechen. Xan sicht also auch bei Neugebornen nur eine der späteren Papille und der Arcola entsprechende Stelle, während von der Papille selbst noch kine Spur besteht. Dabei ist die Entwicklung der Drüsen innerhalb der Cutis weiter vorgeschritten. Die Ausführungsgänge sind viel länger und stärker, als vorher. Das obere Ende jedes Ausführungsganges ist w seiner Ausmündung in die Einsenkung ampullenförmig erweitert s die Figur), und die die Einsenkung auskleidende Hornschicht setzt sich eine Strecke weit in das Lumen jedes Ausführungsganges fort, sowie auch die tiefste aus Cylinderzellen bestehende malpighi'sche Schichte in die Ampullen verfolgt werden kann. Die Wandungen der Ausführungsgänge tragen in ihrer übrigen Ausdehnung ein Epithel aus angen Cylinderzellen. Das Verhältniss der Ausführungsgänge zur Einsenkung hat sich etwas anders gestaltet, denn während im vorigen Stadium siminitiche in die Einsenkung des Drüsenfeldes ausmündeten, schen wir hier schon einige Ausführungsgänge die freie Oberfläche der llaut, resp. der Arcolarfläche erreichen. Es hat somit eine weiter vorgeschrittene Erhebung des Drüsenfeldes stattgefunden, durch welche ^{der} peripherische Theil desselben in das Hautniveau tritt. Auf gut-

geführten Horizontalschnitten durch das Organ lässt sich dieses sche durch senkrechte Schnitte nachweisbare Verhalten genauer controliren. Man bekommt nämlich neben den von der Hornschicht ausgekleideten Durchschnittsbildern der Einsenkung noch die mit Cylinderepithel ausgekleideten Durchschnittsbilder der Lumina derjenigen Ausführungsgänge zu sehen, die bereits ausserhalb des Bereiches der theilweise noch bestehenden Einsenkung liegen. Die Ausführungsgänge messen nahe ihrer Ausmündung in der Breite 0,075 Mm.

Die nächsten Zweige besitzen nahe ihrem Abgange gemessen eine Breite von 0,045 Mm. Die den Drüsenläppchen entsprechenden Bildungen haben eine Breite von 0,030 Mm.

Das Drüsenfeld eines Mädchens von $2^{1/2}$ Monaten ist nicht mehr vertieft, sondern liegt in gleichem Niveau mit seiner in ähnlicher Weise wie beim Neugebornen erhabenen Umgebung (Taf. XIII Fig. 8). Die ganze Areolarfläche misst 9 Mm. in der Breite, ist stark gerunzelt und mit unregelmässigen Veitiefungen durchzogen. Der frühere Umfang der Einsenkung ist durch eine seichte ringförmige, das Drüsenfeld von seiner Umgebung trennende Vertiefung noch erkennbar. Dieses bit zum Niveau der übrigen Areolarfläche erhobene Drüsenfeld stellt sich als eine runde Fläche von 2 Mm. Breite dar und giebt sich in seiner Bedeutung noch deutlicher zu erkennen, wenn man das die Areolarfläche tragende, mit Karminlösung imprägnirte Hautstück mit der Loupe betrachtet. Die durch den Karmin rothgefärbten Lumina der Ausführungsgänge treten deutlich hervor, während die ganze Umgebung der fraglichen Fläche nichts Derartiges aufweist. Damit ist die erste Stule der Entwicklung der Papille gegeben, da erst von jetzt an, nach völligen Verschwinden der früheren Einsenkung, eine Erhebung über das Niveau der Cutis stattfinden kann. Diese Erhebung wächst im weiteren Verlauf der Papillenbildung.

Die letzte Stufe der Entwicklung der Papille beobachtete ich an einem Object, welches einem $2^{1}/_{2}$ Jahre alten Mädchen entnommen wurde. Die ganze Areolarfläche misst 9 Mm. Breite und bildet eine Erhabenheit, auf deren Höhe die 2 Mm. lange Papille hervortritt. Auf Verticalschnitten (Taf. XIII. Fig. 9) lässt sich leicht constatiren, dass die Stelle, auf der im vorigen Stadium die Ausführungsgänge zur Ausmündung gelangten, nicht für sich allein weiter in die Höhe gewachsen ist, sondern dass sie sich in Gemeinschaft mit einem Theile ihrer Umgebung, die bis zum vorletzten Stadium einen Cutiswall um die frühere Einsenkung bildete, zur Papille erhoben hat, während die ausserhalb der Papille noch vorhandene Partie der Areolarfläche zur Areola verwendet worden ist. Auf dem von der Umgebung des erhobenet

,

usenfeldes gebildeten Theil der fertigen Papille, d. h. auf der Seitenthe des Kegels der Papille kommt nie ein Ausführungsgang der chdrüse zur Ausmündung. Das, was von drüsigen Organen überapt daselbst ausmündet, sind Schweissdrüsen und auch diese sind ine häufigen Vorkommnisse. Glatte Muskelfasern durchziehen die pille in reichlicher Menge und bilden daselbst durch ihren verschienen Verlauf ein ansehnliches Netzwerk, welches in den früheren adien noch nicht differenzirt erschien.

Das durch Vorführung einzelner Stadien für die Entwicklung der ilchdrüse und vorzüglich der Papilla mammae Geschilderte will ich sch einmal kurz zusammenfassen. Die erste rein epidermoidale Erebung mit ihrer Einsenkung in die Cutis bildet das ursprüngliche rüsenfeld, welches in Folge einer Epithelwucherung des Stratum alpighij entsteht. Die Erhebung ist von einem später haarlos bleienden Hof umgeben, mit dem sie zusammen die Areolarfläche vorstellt, nd wird im Laufe der Entwicklung in der Art verändert, dass eine n einer Erweiterung der Einsenkung begleitete Abflachung eintritt. Ke Einsenkung wächst also auf Kosten der Erhebung des Drüsenfeldes, robei die Zellen des letzteren mehr und mehr in die Tiefe sich senken, is schliesslich das ganze Drüsenfeld, anstatt das Nivcau der Hautober-Iche zu überragen, unterhalb desselben bis an das Stratum Malpighii er Umgebung hinauf im Corium eingebettet liegt. Während dieses Voranges gewinnt die Einsenkung an Umfang, und die inzwischen vom keden des Drüsenfeldes aus in die Lederhaut gewucherten Drüsenanäle münden sämmtlich in sie ein. Die um die Einsenkung herumiegende haarlose Areolarfläche trägt hie und da Schweissdrüsen und bildet eine gering erhabene Hautpartie. Beide, Einsenkung und Erhebung der Areolarfläche, entprechen der späteren Papille und ihrer Areola. Die erhabene Areolarfläche erreicht das Maximum ihrer Höhe an Bande der oberflächlichen Einsenkung, so dass die letztere durch se gleichsam einen Wall erhält. Aus dem über die Raumzunahme der Einsenkung früher Gesagten geht hervor, dass dieser Wall nichts zu than haben kann mit der frühesten Erhebung, welche die erste Einsenkung trug. Dieses Wärzchen war eben das Drüsenfeld selbst, also m Epidermoidalgebilde. Der die Einsenkung in ihrer späteren Gestalt mgebende Wall liegt ausserhalb des Drüsenfeldes, ist also ein Cutissbilde und trägt andere Abkömmlinge des Stratum Malpighii in Gestalt M Schweissdrüsen. Das ganze Drüsenfeld ist also jetzt nur im Bereiche der Einsenkung zu suchen. An dieses Stadium (Taf. XIII Fig. 5, 6, 7), ^{in welche}m die Einsenkung gleichsam den einzigen Ausführungsgang

der Milchdrüse bildet, schliesst sich unmittelbar die Bildung der Papilk Die Einsenkung des Drüsenfeldes hebt sich mehr und mehr, bis si das Niveau ihrer wallartigen Umgebung erreicht hat, und so werde die Mündungen der Ausführungsgänge allmählich gehoben, so dass si schliesslich im Niveau der freien Hautoberfläche sich öffnen (Taf. XII Fig. 8). Von hier an gesellt sich zur Erhebung des Drüsenfeldes nod diejenige seiner Umgebung und durch beide erfolgt nun der weiten Aufbau der Papille, desjenigen Organs, welches sämmtliche Ausführungsgänge der Drüse auf einen verhältnissmässig kleinen Raun münden lässt (Taf. XIII Fig. 9).

Die Zeit, zu welcher man die einzelnen Entwicklungsstadien der Papille vorfindet, ist durchaus nicht an ein bestimmtes Alter des Individuums gebunden. Man findet, wie oben gesagt wurde, besonders be Knaben, selbst von mehr als zehn Jahren, noch ein sehr frühes Stadium der Papillenbildung, nämlich die nicht einmal vollständig bis zum Hauniveau erfolgte Erhebung des vertieften Drüsenfeldes. Diesen Proces der Ausgleichung der Einsenkung, also denjenigen der Erhebung 👹 eingesenkten Drüsenfeldes bis zum Niveau des umgebenden Hautwall sieht man beim Mädchen nicht erst in so späten Jahren vor sich gehei, Die Papille differenzirt sich also beim weiblichen Geschlechte früher all beim männlichen. Die vollständige Erhebung des Drüsenfeldes in Gemeinschaft mit seiner Umgebung zur vollendeten Gestalt und Grösse de Papille erfolgt dagegen selbst bei Frauen zuweilen erst zu der Zeit, d das Kind zu saugen beginnt. In solchen Fällen findet man dann be jüngst Entbundenen noch die Entwicklung der Papille erst bis zi demjenigen Stadium vorgeschritten, in welchem die Erhebung des Drüsenfeldes bis zum Niveau seiner wallartig erhabenen Umgebung erfolgt. Hier bleibt also ein früheres Stadium der Papillenbildung unter gleichzeitiger Volumsentfaltung der Areolarfläche fortbestehen.

Prüft man die Ansichten von MECKEL und LANGER bezüglich der späteren Entwicklung der Papille, so hält der erstere Autor das ursprüngliche durch Epidermoidalwucherung gebildete Drüsenfeld für die Anlage der Papille, während der letztere Autor diesem Ausspruche entgegehtritt und jener Erhebung die Bedeutung einer embryonalen Papille nich beimisst. Nach den Resultaten meiner Untersuchung liegt keinem der Aussprüche der beiden Autoren eine vollständig unrichtige Anschauung zu Grunde. Beiderlei Ansichten lassen sich vereinigen, indem man dar ursprüngliche Wärzchen mit seiner Einsenkung für die erste Anlage zi einem Theile der Papille erklärt. Das ganze ursprünglich als Wärzche die Hautoberfläche überragende Drüsenfeld mit seiner Einsenkung ver schwindet zwar nach und nach vollständig unter das Niveau der Hau

Beiträge zur Entwicklungsgeschichte der Milchdrüsen etc.

läche, hebt sich aber später wieder in die Höhe, um dann in einschaft mit seiner nächsten Umgebung das Hautniveau von neuem, n auch in veränderter Gestalt zu überragen.

Was einzelne Entwicklungsstadien der Milchdrüse angeht, so fand das von Kölliken für den Neugeborenen Angegebene bestätigt, dass ersten zu Ausführungsgängen sich umgestaltenden Knospen der prünglichen Drüsenanlage bereits gablige Theilungen zeigen, welche ihren untersten Enden schon wieder rundliche Knospen, die Anlagen Drüsenläppchen tragen.

II. Wiederkäuer.

Im Allgemeinen gilt von der hierher gehörigen Literatur, soweit sie r zugängig war, dasselbe, was vorhin von der Literatur über die Entkklungsverhältnisse der menschlichen Papille gesagt wurde. Man misst aber hier nicht blos jegliche Angaben über die Entwicklung # Papille, resp. der Zitze, sondern es fehlt in der Literatur über diesen exenstand auch die Entwicklung des ganzen Milchdrüsencomplexes, inlich des Euters. Alles über die Zitze und das Euter Bekannte schränkt sich nur auf den grob anatomischen und den histologischen u beider Organe. GURLT¹) führt an, dass das Euter der Kuh aus wei Drüsen bestehe, und dass jede der letzteren mit zwei Zitzen vershen sei, hinter denen sich noch eine kleine warzenähnliche Zitze auf der Seite befinde. In jeder Zitze beobachtete er nur einen Ausfühungsgang. In Bezug auf Entwicklung des Euters sagt er, dass die Brüste « durch Einstülpung der äusseren Haut entstanden, und dass 1 der später von den Zitzen eingenommenen Stelle kleine Grübchen ich zeigten, von denen jedes mit einem scharf erhabenen Rande umeben sei. Ueber das weitere Schicksal dieser Grübchen giebt er an, bss dieselben, wenn sich die Zitzen über die Haut erheben, enger nd zu den Canälen der Zitzen werden.

FRANK²) behandelt den makroskopischen und mikroskopischen Bau is Euters und der Zitze. In Bezug auf die Genese giebt er an, dass das Euter aus vier Drüsen zusammengesetzt sei.

Neine Untersuchung war theils auf die Entwicklung der Zitze, beils auf die ersten Differenzirungsvorgänge der Milchdrüse gerichtet. wobei ich vorzüglich die Verknüpfung der sich mir ergebenden Befunde

¹⁾ GURLT, Handbuch der vergleich. Anatomie der Haussäugethiere. 4. Auflage. Berlin 1860. S. 437. Anmerk.

²⁾ FRARE, Handbuch der Anatomie der Haussaugethiere. Stuttgart 1870. S. 692.

mit dem vorhin für die Verhältnisse beim Menschen mitgetheilten in Auge fasste.

Zur Untersuchung kam eine Reihe von Rindsembryonen, auf welch sich meine sämmtlichen Angaben beziehen, denn wenn ich auch von Schaf und Ziege einzelne Embryonen zu untersuchen Gelegenbei hatte, so war es doch nicht möglich, daraus ein vollständiges Bild m gewinnen. An die Untersuchung von Embryonen schloss ich eine solche von einige Wochen alten Thieren, welche in den mikroskopischen Verhältnissen der Zitze im Wesentlichen schon mit dem ausgebildeten Zustande übereinstimmten.

Das früheste Stadium entnahm ich einem Embryo, der vom Kopie bis zur Gegend des ersten Schwanzwirbels gemessen, eine Körperlänge von 3,8 Cm. besass. Die Drüsenanlage bestand in einer mit blossen Auge kaum sichtbaren leistenförmigen Erhabenheit, die an der Seine der äusseren Genitalien beginnend, nach vorn und etwas auswärts hinzieht, um dicht hinter dem Ursprunge des Nabelstranges zu endigen. Eine solche Leiste befindet sich zu beiden Seiten der Medianlinie des Körpers und jede zeigt drei hintereinander liegende, wenig deutliche Anschwellungen.

Männliche Embryonen von 7 Cm. haben je zwei jederseits nach aussen von der betreffenden Scrotalhälfte liegende und durch einen schmalen Zwischenraum von einander getrennte Drüsenanlagen, von denen die hintere der Medianlinie, resp. dem Scrotum näher, die vordere entfernter davon liegt. Jede der Drüsenanlagen besteht in einer 0,95 Mm. breiten Erhabenheit, die eine kleine Einsenkung auf ihrer Mitte zeigt. Mit der Lupe betrachtet, bietet eine solche Anlage der Milchdrüse die Form eines Napfes, der im Vergleich zu seinem Binnenraume unverhältnissmässig dicke Wandungen zeigt.

Dieser makroskopische Befund stimmt mit demjenigen eines weiblichen Embryo von 7 Cm. im Wesentlichen überein. Die Trennung der vier Drüsenanlagen ist deutlicher, als im vorigen Stadium, die Genitalien liegen nach hinten von den Drüsenanlagen. Die beiden Straten der Epidermis sind differenzirt. Das Corium besitzt in einer fast homogenen, gallertigen Intercellularsubstanz viele rundliche und spindelförmige Zellen mit rundem Kern und feinkörnigem Protoplasma. Diese Zellen sind im Allgemeinen kleiner, als bei menschlichen Embryonen dieses Alters. Zarte Faserzüge sind nur in den unteren Schichten deutlich unterscheidbar, während in den oberen noch keine Differenzirung der Intercellularsubstanz erfolgt ist.

Verticalschnitte durch diese Gebilde führen den Nachweis, dass die ganze Erhabenheit nicht, wie der erste Befund beim Menschen ergab,

Beiträge zur Entwicklungsgeschichte der Milchdrüsen etc.

nzig durch eine partielle Wucherung des Stratum Malpighii bedingt t, sondern auch und swar in weit höherem Grade durch eine Wucheing des benachbarten Gewebes der Lederhaut. Das ganze Gebilde esteht also äusserlich aus einer ringförmigen Erhebung, die eine nittlere Vertiefung umzieht, deren Boden etwas höher liegt als das enachbarte Hautniveau. In dem Ringwall tritt die Lederhaut empor, ber welcher eine mit der benachbarten Haut gleichdicke Epider-**Bisschicht liegt.** An dieser ist das Stratum Malpighii wie auch sonst, on einer das Stratum corneum weit übertreffenden Mächtigkeit. Die larnschicht tritt, wie die malpighi'sche Schicht in die Einsenkung, ber während sie dort eine mit anderen Hautstellen gleiche Stärke esitzt, zeigt das Stratum Malpighii unterhalb der Einsenkung eine redeutende tief in die Lederhaut einragende Verdickung. Es bildet so inen flaschenförmigen Fortsatz, wobei der Hals der Flasche von dem **n den Ringwall eingehenden Theil der Lederhaut umschlossen wird.** Fon anderen Differenzirungen des Stratum Malpighii ist in diesem Stalium nichts zu bemerken.

Die eben geschilderten vier Gebilde lassen sich durch Vergleichung mit späteren Zuständen in die Zitzen der Thiere verfolgen, weshalb ch sie sofort mit diesem Namen bezeichnen will, die vergleichende Erörterung der hier von dem Befunde beim Menschen ziemlich abweichenden Verhältnisse mir vorbehaltend.

Die vier Zitzen eines 46 Cm. langen weiblichen Embryo sind schon von bedeutenderem Umfange. Die ganze, die vier Zitzen tragende Hautstelle, dicht von der Fascie abpräparirt, besitzt eirea 3 Mm. Dicke und ist 4 Mm. breit und lang. Die Zitzen stellen konische Erhehungen vor, die mit ihrem breiten unteren Ende der Haut aufsitzen und 4 Mm. Länge haben. Es sitzen also die vier vollkommen Setrennten Zitzen auf einer verdickten gemeinschaftlichen Hautpartie, deren Corium und Epidermis sich auf die vier konischen Erhebungen, die Zitzen, fortsetzen. Jede der vier Zitzen finden wir aus einer Erbebung der Lederhaut gebildet, welche von der Epidermisschicht überkleidet, die Grundlage des Zitzenkörpers abgiebt. An der Spitze der Zitze tritt das Stratum Malpighii von einer eine leichte Einsenkung Ingenden Hornschicht bedeckt, in einen zapfenförmigen Fortsatz durch die Längsaxe der Zitze und endigt mit kolbiger Anschwellung etwa in gleicher Höhe mit der breiten Basis der Zitze.

Die Verbindung des an diesem Stadium sich ergebenden Befundes ^{mit} dem des Vorhergehenden ist nicht schwierig. Die Veränderung ^{beruht} im Wesentlichen auf einer Wucherung der Lederhaut und zwar

speciell des im vorhergehenden Stadium den Hals der flaschenförmig Einsenkung des Stratum Malpighii umgehenden Goriumgewebes.

Wenn ich das frühere Stadium mit dem entsprechenden be Menschen vergleiche, so muss bei letzterem auf jenen Zustand zurte gegangen werden, wo vom Stratum Malpighii aus gleichfalls eine v wallartiger Erhebung umgebene Wucherung in die Lederhaut erit war. Da ich diese als Drüsenfeld bezeichnet hatte, weil von aus die Anlage der einzelnen Drüsen stattfindet, so wird beim Rind embryo der hier in einen längeren Strang sich umwandelnde Forte des Stratum Malpighii, den ich vorhin kolbig geendet angab, der de Drüsenfeld entsprechende Theil sein müssen. Das kolbige En selbst entspricht dom Bod en des Drüsenfeldes.

Bezüglich der Textur kommen die Zitzen eines weiblichen Embr von 20 Cm. denen des vorigen Stratum gleich, und nur in Bezug die Grössenverhältnisse steht das letztere diesem etwas nach. Hin skopische Präparate zeigen auf Verticalschnitten den ersten Begi einer Knospung am Grunde des nach dem vorhin Auseinandergeset in einen die Zitze durchziehenden Zellenstrang umgewandelten Drüss feldes. Die ganze die vier Zitzen tragende Erhabenheit erscheint durch eine starke Vermehrung des embryonalen Coriumgewebes dingt, in dessen untersten Schichten sehr spärliche Träubchen Fettzellen aufgetreten sind. Wie die Zitze in diesem Stadium sich ve längert hat, so ist auch der mit dem Drüsenfeld endigende Zellenstra länger gestreckt. Seine Formelemente entsprechen jenen des vorge Stadiums.

Von nun an beginnen wichtige Veränderungen am Boden de Drüsenfeldes, indem daselbst in ähnlicher Weise, wie ich es oben vo Menschen beschrieb, die Drüsen sich zu bilden beginnen. Schon be 22 Gm. langen weiblichen Embryonen ist die Knospung der ursprünglichen Epithelwucherung sehr ausgesprochen. Man sieht vom Ende de Zellenstranges mehrere (5) dem letzteren das Ansehen einer kleine traubigen Drüse gebenden Knospen theils über, theils neben einande angeordnet, abgehen. Auch an dem oberflächlichen Integumente de Zitze beginnt ein analoger Process, und besonders in der Umgebund der Zitzenbasis zeigt die Epidermis die Anlagen anderer Abkömmling des Stratum Malpighii in grosser Anzahl. Sie ergeben sich als einfach kolbig geformte Fortsätze des Stratum Malpighii, wie die Anlagen vo Haaren oder Schweissdrüsen.

Die Zitzen eines weiblichen Embryo von 24 Cm. sind pahe³ 3 Mm. lang, von zwei Seiten her zusammengedrückt und lassen die # der Spitze befindliche Vertiefung deutlich erkennen, welche gegen d4

Beiträge zur Entwicklaugsgeschichte der Milchdrüsen etc.

m Drüsenfeld führenden Zellenstrang sich einsenkt. Die dem späteren ster entsprechende Hautpartie auf der die Zitzen als konische Erebungen stehen, setzt sich bedeutender von ihrer Umgehung ab, als a vorigen Stadium; eine Behaarung ist weder auf den Zitzen noch auf eren Umgebung erkennbar. Die vollkommene Trennung der Cutis om Unterhautbindegewebe ist nunmehr eingetreten. Letzteres besitzt rossen Fettreichthum und hat bedeutenden Antheil an der Differenfinng der erwähnten Hautpartie, die jetzt, da ihr Unterhautbindemwebe von den dem Drüsenfeld entsprossenden Läppchen erreicht wird, ein fötales Euter genannt werden kann. Auch die vier ver-Ingerten Zitzen mit ihren tiefer gewordenen Einsenkungen können n dieser Zeit nur als fötale Zitzen aufgefasst werden, denn bisher mthielten sie nicht blos den späteren Ausführgang der Drüse, sondern die Anlagen der Drüsen selbst. Die letzteren entstehen also hier in einer die Zitze vorstellenden Erhebung des In-Begumentes, welche schon vor der Knospung der Drüsenanlagen vorhanden war.

In diesem Stadium treten die Haaranlagen nicht blos in der Umgebung der Zitze, sondern auch auf der Zitze selbst in grossen Massen auf, und bieten verschiedene Stadien der Differenzirung dar. Auf der Hühe der Zitze sind meist einige Wollhaare bereits vollkommen entwickelt und überragen die Oberfläche der Haut. Auch am Boden des Drüsenfeldes ist eine Veränderung eingetreten, indem die Producte der ersten Drüsenknospung sich jetzt zu Schläuchen (den späteren Sammeltübren der Thierärzte) verlängert haben und ihrerseits wieder mit Knospen besetzt sind. Diese letzten Glieder der 2ten Knospengeneration besitzen hier und da neue Wucherungen, die zu einer 3ten Knospengeneration führen. Mit der Bildung der secundären Knospen treten die Drüsenenden in das Unterhautbindegewebe ein.

Den Längenwachsthum der Zitzen begleitet eine bedeutende Verlingerung der Einsenkung. An jeder der vier Zitzen erscheint nun an dem aus einer Fortsetzung des Stratum Malpighii gebildeten Axenstrang, dessen äusserste Zellenschichte in die Gylinderzellenschichte des Stratum Malpighii übergeht, eine bemerkenswerthe Veränderung. Am mittleren Theile seiner Länge zeigt er sich bedeutend verdickt, bach oben wie nach unten zu verjüngt; seine Gestalt ist etwa spindelfirmig zu bezeichnen. Die äussere Einsenkung setzt sich sammt der Hornschicht der Epidermis tiefer als im vorhergebenden Stadium, in den Axenstrang fort, ohne jedoch die erweiterte Stelle zu erreichen, welche nur durch Zellen eingenommen wird. Die Cylinderepithelschicht erstreckt sich bis zum Boden des Drüsenfeldes, an welchem die bereits

oben erwähnten Knospen entstanden sind und theilweise in Schläudi (Ausführungsgänge), theilweise in Läppchen sich differenzirt haben Sowohl Schläuche als Läppchen besitzen eine Auskleidung von Cylinder epithel, und überdies sind die letzteren mit kleinen rundlichen Zelle erfüllt, welche in den ersteren nur streckenweise vollkommen, während andere Strecken hohl erscheinen. Blutgefässe verlaufen in grosser Anzahl um die Drüsensubstanz herum.

Ganz denselben Befund bieten Einbryonen von 28 Cm. Eines der Euter trug entsprechend der oben angeführten ersten Anlage sech Zitzen, von denen die zwei hinteren abortiv sich erkennen liessen.

Hinsichtlich der Behaarung der Zitze findet man andere Verhält nisse bei Embryonen von 46 Cm. Länge. Die nahezu 4 Mm. langt Zitzen sind von ihrem freien Ende bis zu ihrer Basis, da wo ihr Integument in die Bedeckung des Euters übergeht, wieder vollkommet haarlos. Die eine Zeit hindurch bestehende Behaarung ist also wieder verschwunden. Man sicht nur zwei bis drei kurze Epithelzapfen, di sich kurz über der Basis der Zitze von dem Stratum Malpighii de Epidermis aus in das Corium der Zitze hinein erstrecken. Die Epithelwucherungen befinden sich offenbar, nachdem diejenigen di übrigen Theiles der Zitze bereits rückgebildet waren, ebenfalls im Zo stande der Rückbildung. Im oberflächlichen Theil des Coriums de Zitze bis zur Spitze derselben hin bietet sich ein grosser Gefässreichthum dar.

Bei einem 60 Gm. langen weiblichen Embryo bildet das ganze Euter einen stärkeren Vorsprung, als in jedem der vorhergehenden Stadien. Die Zitzen sind bereits über 4 Mm. lang, stark lateral zusammengedrückt und an der Spitze mit der mehrmals angeführten Einsenkung verschen. Der Embryo ist mit Lanugo bedeckt, die Zitzen dagegen, und ein Theil des Euters in der Umgebung der ersteren in einer Breite von 0,25 Gm. erschienen dem blossen Auge vollkommen haarlos.

Von dem freien Ende der Zitze durch die Axe derselben hinab in die Tiefe der Cutis erstreckt sich der zum Drüsenfeld führende Axenstrang, dessen untere zwei Dritttheile die schon im vorigen Stadium angedeutete spindelförmige Erweiterung (Ampulle) zeigen, die der sogenannten Cysterne des Ausführungsganges bei Kühen entsprich-Die von oben kommende Einsenkung hat jetzt ihr Lumen bis in die Ampulle erstreckt, in der nur noch die Epithelauskleidung bestebi-Die Ampulle reicht nicht ganz bis zur Basis der Zitze, denn schon nahe der Basis beginnt die Einmündung der Drüsenschläuche und auch weiter nach oben zu bemerkt man in der Wandung einen Besatz von

Beiträge zur Entwicklungsgeschichte der Milchdrüsen etc.

Ifachen länglichen Knospen. Das Wachsthum dieser letzteren ist fast sschliesslich nach der Spitze der Zitze zu gerichtet. Unterhalb der sis der Zitze bildet die Drüsensubstanz vielfache das Unterhautbindewebe durchziehende Verzweigungen. Die jüngsten Knospen erreichen imer erst eine ansehnliche Länge, ehe sie ihrerseits wieder Knospen eiben. Der übrige mikroskopische Befund bestätigt das schon mit lossem Auge Erkannte, nämlich den Mangel von Haaranlagen und uderen Abkömmlingen der Malpighi'schen Scnichte an der Oberfläche er Zitze und in der nächsten Umgebung derselben am Euter.

Das jetzt folgende letzte Stadium ist von einem vierzehn Tage alten albe weiblichen Geschlechts entnommen. Das ganze Euter ist veraltnissmässig noch wenig voluminös, seine Behaarung dünn, aber bis licht an die Zitzenbasis hin vollständig. Die Gestalt des ganzen Organs st derjenigen des Organs bei erwachsenen Kühen schon sehr ähnlich. he vier entwickelten Zitzen sind von gleicher Länge und messen von ler Basis zur Spitze 2 Cm. Ihr grösster Querdurchmesser beträgt circa 7 Nm. Ihre Gestalt ist die eines Conus mit abgerundeter Spitze. Die Wile der letzteren trägt die Ausmündung des aus dem anfänglich soliden Atenstrang entstandenen einzigen Ausführungsganges des betreffenden Drüsencomplexes. Die Mündung ist auf dem Querschnitte nicht rund, modern sternförmig, wie man es meist an solchen Canälen beobwehtet, die ihr Lumen durch Aneinanderlegen ihrer Wandungen schliessen, wobei dann ihre Schleimhautfalten in einander greifen. Die der ganzen runzligen Oberfläche der Zitze zukommende Haarlosigkeit erstreckt sich auch noch auf einen kleinen Theil der Umgebung der Basis der letzteren und bildet so eine Art Areola, ähnlich wie sie beim Menschen bekannt ist, allein es fehlt die Pigmentirung, wie der regelmissige Kranz von Talgdrüsen, wodurch sie beim Menschen ausgezeichnet wird. Spaltet man eine Zitze so, dass der die Längsaxe der Zize durchziehende Ausführungsgang in seiner ganzen Ausdehnung heigelegt wird, so kann man mit Leichtigkeit dieselben zwei Abschnitte mierscheiden, die im zuletzt beschriebenen embryonalen Stadium nur mi Hulfe des Mikroskopes mit Sicherheit unterscheidbar waren. Man fødet die ganze Zitze von einem Canal durchzogen, dessen äusserer der Spitze der Zitze zukommender Abschnitt (Strichcanal der Thierärzte) nur ^{1,5} Mm. Länge und 0,75 Mm. Weite hat. Die Schleimhaut dieses Abschnittes ist von blasser Beschaffenheit und weist eine sehr feine, in desem Alter des Thieres nur durch die Loupe erkennbare Längsfaltung N. Der innere die ganze übrige Länge der Zitze durchziehende Abschnitt des Ausführungsganges erstreckt sich noch ein Stück unterhalb der Basis der letzteren in das Euter hinab. Das Lumen dieser letzteren M. VII. 2. 43

Strecke misst 1,5 Mm. in der Quere. Die Schleimhaut zeigt an dess oberer Partie dieselbe Art der Längsfaltung, wie sie der erste Abschni des Canals trägt, während sich an der der Drüsensubstanz näher gi legenen Partie desselben längs- und quergerichtete Schleimhautfalle kreuzen, wodurch die Schleimhaut dort eine netzförmige Oberfäch darbietet. In diese Erweiterung des Ausführungsganges (Cisterne de Thierärzte) münden etwa in der Höhe der Basis der Zitze die Ausführungsgänge der Drüsen (Sammelröhren) mit bald weitem, bald enges Lumen aus.

Verticalschnitte durch die ganze Zitze liefern eine Reihe von That sachen, die hier zur Erwähnung kommen müssen, wenn sie auf theilweise schon bekannt sind. Beide Epidermoidalschichten de Zitzenoberfläche sind stark entwickelt. Die von einer dichten Lati plattenförmiger Zellen hergestellte Hornschicht setzt sich an der Ammündung des Ausführungsganges tief in das Lumen des letzteren hindi fort, wo sie stellenweise eine grössere Mächtigkeit erreicht, als an di Zitzenoberfläche. Nachdem sie noch einen Abschnitt der Schleimhant oberfläche der ampullenartigen Erweiterung des Ausführungsgange ausgekleidet hat, macht sie an Dickedurchmesser abnehmend schlime lich einem Cylinderepithel Platz, von welchem die Auskleidung 🛎 tjeferen Theiles der Schleimhaut des Ausführungsganges gebildet wir In der die »Cisterne« vorstellenden Erweiterung besitzt also 🕷 Schleimhaut zwei Epithelformen. Der der Basis benachbarte Abschrift trägt Cylinderepithel, der andere gegen die Mündung gerichtete besit eine Fortsetzung der Epidermis. Der von der Epidermisschichte aus gekleidete Theil des Binnenraumes der Zitze (ein Theil der Ampel und deren Ausführungsgang) besitzt dieselben Papillen der Lederhau wie sie das äussere Integument der Zitze aufweist, welches sich som ohne histologische Grenze in den Ausführungsgang fortgesetzt het. Di so gestaltete Schleimhaut ist am mächtigsten in den oberen Abschnit des Ausführungsganges und verliert in der Tiefe mehr und mehr : Mächtigkeit. An der Grenze der Hornschichte der Epidermis ver schwinden auch die runden Zellen des Stratum Malpighii und es blei nur die tiefste Zellenlage, die aus Cylinderepithel bestehende Zeller schichte übrig, welche von da an die Auskleidung des Ausführungsgang übernimmt. Die in die Malpighi'sche Schicht der Epidermis einragend Papillen sind von ansehnlicher Länge und hie und da findet man me rere Papillen an ihrer Basis verbunden. Auf der Höhe der Zitze und oberen verengten Theile des Ausführungsganges gewinnen sie ei solche Ausdehnung, dass sie das ganze Stratum Malpighii zu durc setzen scheinen, und von einer dünnen Lage desselben bekleidet

Beiträge zur Entwicklungsgeschichte der Milchdräsen etc.

ie Hornschicht eindringen ¹). Die Faltung der Schleimhaut des Austhrungsganges giebt diesen Papillen mannigfaltige Richtungen nach em Lumen des Ausführungsganges. Auf mikroskopischen Durchchnitten, sowohl Vertical- als Horizontalschnitten, findet man sehr lifferente Bilder, indem die Papillen in verschiedener Richtung durchchnitten sind. Derartige Bilder können dem Ungetübteren sehr leicht Veranlassung zu Irrungen geben.

Diese Faltung der Schleimhaut, welche im obersten Abschnitte des Ausführungsganges die eben beschriebene Eigenthümlichkeit bezüglich der Papillen darbietet, liefert im letzten Drittel der Länge des Ausfubrungsganges ein zweites erwähnenswerthes Verhalten, dessen Beschreibung hier angereiht werden soll. Legt man in der oben genannten Höhe Horizontalschnitte durch die Zitze, so erhält man Bilder von Schläuchen, die mit dem Lumen der cisternenartigen Erweiterung des Ausführungsganges zusammenhängen. Diese Schläuche sind mehrfach verästelt, theilweise hohl, zum Theil scheinbar solid, tragen eine Fortsetrung des Cylinderepithels des Ausführungsganges und haben auf dise Weise mit wohlgelungenen Durchschnitten von Drüsensubstanz, die man an dieser Stelle auch wirklich zu suchen berechtigt ist, sehr viel Uebereinstimmendes. Dieses Verhalten entspringt an einer bedeuunden Faltenentwicklung der Schleimhaut, wie durch die Controle mit Lingsschnitten zu erweisen ist. Ein zweites, den Sachverhalt aufklärendes Moment besteht darin, dass man auf jedem der angefertigten Schnitte stets dieselben Schläuche erhält, während die Anfertigung solch' gelungener Ansichten von wirklichen Drüsenschläuchen viel seltener glücken dürfte.

Was die Grundlage der Zitze betrifft, so wird diese, wie vorher, vom Integument gebildet, wobei die Lederhaut den bedeutendsten Antheil hat. Dieselbe besitzt in der faserig differenzirten Intercellularsubstanz neben rundlichen Zellen noch eine grosse Anzahl von spindelformigen Elementen. Zahlreiche Gefässe durchziehen das Bindegewebe, indem sie sich an dem obersten Abschnitt der Zitze sehr stark verästeln und durch eine reiche Anastomosenbildung dort ein anschnliches Gefassnetz zu Stande kommen lassen. Unter der Schleimhaut des obersten Abschnittes des Ausführungsganges kommen glatte Muskelfasern in circukrer und longitudinaler Anordnung vor, denen man die Function eines Schliessmuskels beimisst. Die Wirkung dieser Musculatur muss entweder durch die melkende Hand, oder durch das Saugwerkzeug des Jungen oder

⁴) Die Verhältnisse der Papillen sind sehr genau von L. FRANK beschrieben. I. c. 8, 698.

durch einen zu starken spontanen Milchandrang überwunden werde wenn der Verschluss des oberen Abschnittes des Ausführungsgange der von manchen Autoren als eigentlicher Zitzencanal (oder Strichcans bezeichnet wird, gehoben werden, und der gefüllte, als eine bloss Erweiterung des Ausführungsganges erscheinende Milchbehälter ode die Cisterne sich entleeren soll.

Für die Wiederkäuer ergicht sich somit, soweit meine am Rind angestellten Beobachtungen für die ganze Abtheilung maassgebend seit können, ein zwar in vielen Punkten mit dem beim Menschen Erkannte übereinstimmender. aber in andern wesentlichen Momenten verschiedener Entwicklungsgang des gesammten Apparates der Milchdrüsen.

Was die Entstehung der Drüsen angeht, so treffen wir den erste Zustand als eine auf der Mitte vertiefte Erhebung, die wir zugleich als Anlage der Zitze erklärten und an der wir nicht blos die Zellenwucherung des Stratum Malpighii, wie es beim Menschen der Fall ist, sondern auch, und zwar im vorwiegenden Maasse, das embryonaleCoriu betheiligt fanden. Eine Abflachung dieser Erhebung findet zu keiner Zeit statt, vielmehr sind alle ferneren Vorgänge mit einer Weiterbildun der ursprünglichen Protuberanz verbunden. Der die Zitze bildende Vorsprung des Integumentes vergrösserte sich, während in seinen Innern ein die Drüse bildender Differenzirungsvorgang stattfindet. Der letztere wird eingeleitet durch ein in der Axe der Zitze erfolgendes Auswachsen der ursprünglichen, die Drüsenanlage vorstellenden Epithelwucherung, von deren Grund der Boden des Drüsenfeldes repräsentit wird, welchem die Drüsen allmählich entspriessen. Indem das die Bidungsstätte der Drüsen (Drüsenfeld) in die Tiefe verlegende Auswachsen der Zitze einen anfänglich soliden, allmählich von aussen her bohl werdenden Canal in der Axe der Zitze entstehen lässt, liefert es den Grund zu neuen Differenzirungsvorgängen, welche den genannien Canal in mehrere ungleichwerthige Abschnitte zerlegen. Der der Mündung nächste Abschnitt (Strichcanal), ist durch bedeutende Enge von dem folgenden weiteren ampullenförmigen (Cisterne) unterschieden, und letzterer selbst kann wieder in zwei Abschnitte zerleg werden, einen inneren mit Cylinderepithel bekleideten und einen mehl äusseren, der eine Fortsetzung der Epidermis trägt. Dass der die Drüsenmundung aufnehmende tiefere Theil der Ampulle dem blinden End des ursprünglichen Axenstranges und damit dem von mir als Drüsen feld bezeichneten Abschnitt entspricht, ist selbstverständlich.

Zur Zeit, da die fötale Zitze eine Menge von Haaranlagen trägt, d

Beiträge zur Entwicklungsgeschichte der Milchdrüsen etc.

spater, nachdem sie eine gewisse Stufe ihrer Entwicklung erreicht haben, sich wieder rückbilden, unterscheidet sich die Bedeckung der Zitze in keiner Weise von dem übrigen Integument des Thieres. Die vollständige Haarlosigkeit der Zitze späterer Stadien, wie man sie auch bei Kühen findet, lässt sich durch die Momente der Vererbung und Anpassung Jeder Körpertheil, welcher durch Generationen hindurch erklären. dauernden oder oft wiederholten Einwirkungen äusserer Eingriffe ausgesetzt war, erleidet gewisse Veränderungen, die sich allmählich vererben können. Auf diese Weise wird die Behaarung jenes Theiles der Haut verloren gegangen sein, der als Zitze während des Säugegeschäftes einer steten Einwirkung von Seiten des Jungen ausgesetzt war und im unbebarten Zustande viel besser seinen Functionen zu entsprechen im Stande sein musste, als im Zustande der Behaarung. Das nur auf eine kurze Zeit beschränkte Vorkommen von Haaren auf der Zitze erscheint von jenem Gesichtspunkte aus als ein Rückschlag in den ursprünglich allgemeinen Zustand der Behaarung, welcher durch den auf Grund der Amassung erworbenen nackten Zustand bald wieder verdrängt wird.

Was endlich das gesammte Euter betrifft, so entsteht dasselbe aus der Vereinigung von mehreren und zwar von mindestens vier ursprüngich discreten Drüsenanlagen. Diese Vereinigung mehrerer Drüsen zu einem Complexe wird durch eine Verdickung der die einzelnen Drüsen tragenden Hautstelle vorbereitet, welche bereits vor der Differenzirung des Drüsengewebes vorhanden ist, und vorwiegend durch Vermehrung des Unterhautbindegewebes zu Stande kommt.

Zum Schlusse soll noch eine kurze Zusammenstellung der Hauptmomente meiner Untersuchung Platz finden, womit ich die beim Jenschen und beim Rind sich ergebenden Uebereinstimmungen und Verschiedenheiten hervorheben und somit die bei beiden zur Bildung eises functionell übereinstimmenden Organs führenden Vorgänge mit mander vergleichen will. Zur besseren Uebersicht werden die einzeinen Entwicklungsstadien der Papille des Menschen denjenigen der litte des Wiederkäuers (Rind) gegenüberstellt.

Mensch.

Wiederkäuer.

4. Stad. Die ursprüngliche Erhebung ist ausschliesslich bedingt hebung ist bedingt durch das Drudurch das Drüsenfeld.

². Stad. Die ursprüngliche Erbehung flacht sich im Laufe der wei- hebung flacht sich im Laufe der kren Entwicklung der Drüsenanlage weiteren Entwicklung nicht ab.

senfeld und seine Umgebung. 2. Stad. Die ursprüngliche Er-

1. Stad. Die ursprüngliche Er-

(Fortsetzung von Mensch.)

ab. Die Einsenkung des Drüsenfel- Die Einsenkung des Drüsenfelde des wächst gleichsam auf Kosten der wächst in die Länge, aber nicht au ursprünglichen Erhebung in die Kosten der Erhebung. Die letzten Breite und Tiefe. Die Umgebung des bleibt nicht blos bestehen, sonder Drüsenfeldes, welche keinen Theil es wächst sogar die Umgebung der hat an der ursprünglichen Erhebung Drüsenfeldes, die von vornherein umzieht jetzt wallartig erhoben die an der ursprünglichen Erhebung napfförmig erweiterte Einsenkung Theil hat, um die Einsenkung herun und trägt so zur Vertiefung der Ein- in die Höhe, wodurch die letztere senkung bei.

(Fortsetzung von Wiederkäuer.) zu einem langen Canal ausgezogen wird. Aus der erhobenen von der Cutis gebildeten Umgebung det Drüsenfeldes gebt die Zitze hervor, in welche die Einsenkung sich hinab erstreckt.

Die Resultate des 2. Stadiums sind demnach in beiden Fällen gleiche. Beide, die Drusen des Menschen und die des Wiederkäuers besitzen jetzt anscheinend nur Einen Ausführungsgang in Gestalt der vergrösserten Einsenkung. Beide Arten der Ausführungsgänge sind von einem Cutiswall umgeben, der durch sein weiteres Heranwachsen beim Rind die Zitze bildet, während er beim Menschen, wo die Einsenkung des Drüsenfeldes schwindet, in viel geringerer Ausbildung auftritt und dadurch dem Drüsenfelde sich allmählich über ihn zu erheben gestattet Der die Einsenkung des Drüsenfeldes umziehende Cutiswall bildet som einen Theil der Anlage der Papille des Menschen und der Zitze de Wiederkäuer. Bei Wiederkäuern tritt er schon sehr frühzeitig auf un erlangt bald ein bedeutendes Volum, bei Menschen dagegen wird « erst deutlich erkennbar, wenn das Drüsenfeld als napfförmige Einsen kung unter dem Niveau der Hautoberfläche liegt, und auch da bilde er keinen bedeutenden Vorsprung.

Das Verhältniss bei Wiederkäuern bietet nun im weiteren Wachs thume des die Zitze vorstellenden Organs nichts Bemerkenswerthe mehr dar. Die Zitze vergrössert sich in der angegebenen Weise un tritt dadurch allmählich in ihr definitives Verhalten ein.

Mit diesem für Mensch und Wiederkäuer gleichartigen Stadiu ist die Differenzirung der Zitze beendet, während für den Mensche noch ein drittes Stadium angereiht werden muss, um die Entwick lung der Papille zu zeigen, die der Hauptsache nach eigentlich er beginnt.

Beiträge zur Entwicklungegeschichte der Milchdrüsen etc.

(Forissizing von Mensch.)

(Fortsetzung von Wiederkäuer.)

3. Stad. Die napfförmige Einnkung beginnt durch Erhebung es Drüsenfeldes nach der Hautberfläche allmählich seichter zu verden und kommt so in gleiches liveau mit der Haut. Von diesem Momente an erheben sich nun beide. Drüsenfeld und seine Umgebung um weiteren Aufbaue der Papille.

Die Papille ist die Erhe-Boden des Drüsenfeldes.

Die Zitze ist die Erhe**bung des vorher vertieften bung der Umgebung des** Drüsenfeldes, welcher Er- Drüsenfeldes, welches seihebung auch die nächste nen Boden in der Tiefe fort-Ungebung des Drüsenfeldes erhält. Der die Zitze durchfolgt. Die sie durchziehen-ziehende Ausführungsgang den Ausführungsgänge ent- der Drüsen entstand aus der wickeln sich aus der ur-Verlängerung der Einsensprünglichen Anlage, am kung des Drüsenfeldes, die durch die Erhebung der Umgebung des letzteren zu Stande kam.

Den in vorliegender Arbeit angeführten Untersuchungsresultaten molge ist die anfangs gestellte Frage, ob die Papille des Menschen und die Zitze der Wiederkäuer Analoga oder Homologa sind, bedingungsweise mit » ja « zu beantworten. Dass sie Analoga sind, bedarf keiner weiteren Erörterung. Homologe Organe sind sie aber nur insofern, als n ihrem Aufbau die Umgebung des Drüsenfeldes zur Verwendung tommt. Diese Verwendung ist aber eine sehr verschiedene, so dass durch selbst der Werth der bedingten Homologie herabgedrückt wird; sie sind nicht homolog insofern als das Drüsenfeld bei Wiedertävern während der Entfaltung der Zitze in der Tiefe bleibt und der enzige Ausführungsgang durch die Erhebung des Cutiswalles bedingt wird, während beim Menschen das Drüsenfeld nicht vertieft bleibt, sondern sich zur Papille mit erhebt, auf der die zahlreichen Ausführungsgänge der vom Drüsenfeld aus gesprossten Drüsen zur Mündung ommen.

Erklärung der Abbildungen.

Tafel XII.

Fig. 4. 2. 3. sind die ersten Entwicklungsstadien der Drüsenanlage auf senkrechtem Durchschnitte. Vergrösserung 275.

Fig. 4. Von einem weiblichen Embryo von 4 Cm. Länge. Die Drüsenanlage ist zum Theil über die Hautoberfläche erhaben. Die im Text beschriebene Einsenkung fehlt hier, da sie bei der Schnittführung nicht mit getroffen wurde.

> Bezeichnungen: H == Hornschicht. --- St. M. == Stratum Malpighii. --C == Corium. -- D. A. == Drüscnanlage. (Langer's slinsenförmiger Körper.)

- Fig. 3. Weiblicher Embryo von 10 Cm. Länge. Das Drüsenfeld liegt bereits ganz unterhalb der Hautoberfläche. Die Einsenkung ist stark vergrössert. Bezeichnung: E = Einsenkung; die übrigen Bezeichnungen, wie in Fig. 4.
- Fig. 3. Weiblicher Embryo von 44,2 Cm. Länge. Die Einsenkung ist grösser, die kolbige Drüsenanlage im ersten Beginn der Knospung. Bezeichnung: K - Knospun (Drüsenanlagen): die übrigen Bezeich-

Bozeichnung: K = Knospen (Drüsenanlagen); die übrigen Bezeichnungen wie in Fig. 4 und 2.

Tafel XIII.

- Alle Figuren stellten Verticalschnitte dar. Die ersten drei Figuren dieser Tafel sind eine Wiederholung der drei Figuren der 4. Tafel in schematischer Darstellung. Sie werden nur der besseren Uebersicht halber den übrigen dargestellten Stadien noch einmal mit beigefügt.
- Fig. 4. Erstes Stadium der Drüsenanlage in Form des warzig erhobenen Drüsenfeldes mit seiner Einsenkung. Vergrösserung 75.
 Bezeichnungen: H = Hornschicht. St. M. = Stratum Malpighii. C = Corium. E = Binsenkung.
- Fig. 2. Zweites Stadium, in welchem das Drüsenfeld ganz unter dem Hautniveau liegt. Vergrösserung 75. Bezeichnungen wie in Taf. XII. Fig. 2.
- Fig. 3. Drüsenanlage im ersten Beginn ihrer Knospung. Vergrösserung 75. Bezeichnungen: K = Knospen; im Uebrigen wie in Fig. 3.
- Fig. 4. Von einem weiblichen Embryo von **19** Cm. Die Drüsenanlage steht in der zweiten Knospung. Die Glieder der ersten Knospung haben sich zu Ausführungsgängen verlängert. Links von der Anlage der Milchdrüse ist eine Schweissdrüse bemerkbar. Vergrösserung 75.

Bezeichnungen : A = Ausführungsgänge. — D.L. = Drüsenläppchen. Uebrige Bezeichnungen wie in Fig. 3.

Fig. 5. Von einem weiblichen Embryo von \$2,5 Cm. Länge. Starke Vergrösserung der Einsenkung des Drüsenfeldes. Um die Einsenkung ist der Cutiswell sichtbar. Die Ausführgänge münden sämmtlich in die Einsenkung. Vergrösserung 115.

Bezeichnung: C. W. = Cuțiswall. Uebrige Bezeichnungen wie in Fig. 4.

Beiträge zur Entwicklungsgeschichte der Milchdrüsen etc.

g. 6. Von einem weiblichen Embryo von 33 Cm. Länge. Die Binsenkung ist seichter geworden. Entwicklung einer dritten Knospengeneration. Die Glieder der zweiten Knospung bilden secundäre Ausführungsgänge. Vergrösserung 415. Links von der Einsenkung sicht man zwei Schweissdrüssen.

> Bezeichnung: S. A. = Secundäre Ausführungsgänge. Ucbrige Bezeichnungen wie in Fig. 5.

: 7. Von einem weiblichen Neugebornen. Die Ausführungsgänge sind mit ampullenförmigen Erweiterungen versehen.

Bezeichnung, wie in Fig. 5.

- S. Von einem Mädchen von \$¹/₂ Monaten. Die Kinsenkung des Drüsenfeldes ist durch die Erhebung des letzteren bis zum Hautniveau verschwunden. Bezeichnung wie in Fig. 5.
- Yon einem Mädchen von \$1/2 Jahren. Erste Erhebung des Drüsenfeldes und seiner Umgebung über das Hautniveau zur Bildung der Papille. Bezeichnung wie in Fig. 5.

Bemerkungen über die Milchdrüsen-Papillen der Säugethiere.

Von

Carl Gegenbaur.

In den in dieser Zeitschrift veröffentlichten »Beiträgen zur Enwicklungsgeschichte der Milchdrüsen, von Dr. M. Huss « wurde gezeich dass die Brustwarzen des Menschen und die Zitzen der Wiederkäum abgesehen von der Verschiedenheit ihrer Lagerung, beztiglich ihm Genese und der davon sich ableitenden Structur, Bildungen von gum verschiedenem morphologischem Werthe seien. Theile, die man gemän einer gewissen oberflächlichen Uebereinstimmung und wohl auch beeinflusst durch die Gleichartigkeit der physiologischen Leistung für homologe Gebilde zu halten wohl niemals beanstandet hatte, stellten sich durch jene Untersuchung in recht hohem Grade verschieden heraus. Es dürfte sich demnach der Mühe verlohnen, jenen Verhältnissen in einem etwas weiteren Umkreise nachzugehen, als es vom Verfasser geschab, und nach ferneren Verbindungen zu suchen.

Für diesen Zweck muss ich aus der genannten Arbeit einige Punktehervorheben. Das ist einmal die Uebereinstimmung der ersten Anlage der Drüsen beim Menschen und beim Rinde, und zweitens die Verschiedenheit der Papille von der Zitze. Die Uebereinstimmung der Anlage wird dadurch gebildet, dass sie eine epidermoidale Wucherung mit einer mittleren leichten Vertiefung bildet, das Drüsenfeld. Vom Boden dieses Drüsenfeldes entstehen die Drüsen ganz auf dieselbe Weise wie andere Hautdrüsen, nämlich durch Wucherung von Zellensträngen aus der Malpighi'schen Schicht in die darunter gelegene Lederhaut, wie man diese, auch die Lederhaut nicht blos passiv betreffende Erscheinung aufzuführen pflegt. Um das Drüsenfeld erhebt sich beim Menschen ein nur kurze Zeit bestehender, und auch keine bemerkenswerthe Höbe

C. Gegenbaur, Bemerkungen über die Milehdrüsen-Papillen der Sängethiere. 205

ewinnender Cutiswall, der beim Rinde gleich mit der Differenzirung es Drüsenfeldes bedeutendere Ausdehnung gewinnt. Mit letzterem 'erhältniss ist schon die erste gewichtigere Verschiedenheit gegeben, und nunmehr beschreiten beiderlei Organe in ihrer ferneren Differenirung gesonderte Wege. Beim Menschen wird die Vertiefung des Jrüsenfeldes flacher, und die an seinem Boden mit der Malpighi'schen Schicht verbundenen Drüsen kommen in demselben Maasse zu einer aberflächlichen Ausmündung. Mit der fernern Erhebung des Drüsenfaldes rücken die Mündungen auf die Spitze der durch die Erbebung mbildeten Papille, während der vorher den Cutiswall darstellende Theil der Umgebung des Drüsenfeldes theils in die Seitenfläche der Papille, theils in die Areola mammae übergeht. Das ursprünglich vertiefte, im Grunde einer Einsenkung gelegene Drüsenfeld gelangt mit der Papillenbildung auf die Spitze dieser Erhebung. Beim Rinde dagegen findet nicht hur keine Erhebung des Drüsenfeldes statt, sondern dasselbe senkt sich immer tiefer in den Grund der vom Cutiswall umschlossenen Höhlung, in demselben Grade, als der Cutiswall höher wird. Die vom Drüsenfilde aus entstandenen einzelnen Drüsen kommen daher niemals mit her Mündung an die Oberfläche, sondern münden in einem von der untralen Einsenkung zum Drüsenfeld sich heraberstreckenden Hohl-**Du**me aus.

Die Verschiedenheit der so entstehenden Bildungen tritt noch deutlicher durch die Vergleichung der einzelnen Theile hervor. Die Mündungen der Milchdrüsengänge liegen beim Menschen auf der Spitze der Papille, beim Rinde finden sie sich im Grunde eines die Axe der Zitze turchsetzenden Canals. Für diesen letzteren besteht nichts Aehnliches beim Menschen, und nur während eines vorübergehenden Stadiums ist bine ihm vergleichbare Bildung in der vom Cutiswall umzogenen Ein-Denkung des Drüsenfeldes vorhanden. Ebenso fehlt als bleibende ildung beim Menschen der Cutiswall, der beim Rinde die Zitze hertielt. Dagegen entbehrt die Zitze des Rindes der Areola, von der die sotsprechende Fläche weder an der Oberfläche der Zitze noch des Buters gesucht werden darf, sondern im Anfangstheile des Zitzenanals (Strichcanals). Dass unter diesen Verhältnissen die Ampulle des Strichcanals nicht mit einem Sinus lactiferus verglichen werden kann, argiebt sich von selbst, und ist ebenso begreiflich, wie der Mangel einer Bomologie zwischen dem Strichcanal des Rindes und einem Ductus ectiferus der menschlichen Mamma.

Indem wir so behaupten dürfen, dass die Zitzen des Rindes Ind die Papillae mammarum des Menschen ganz verchiedene Typen repräsentiren, und damit keine streng C. Gegenbaur,

homologen Gebilde sind, erhebt sich daraus die Frage nach eine beiderlei Bildungen verknüpfenden Momente. Ein solches kann zwa schon in den frühesten Zuständen der betreffenden Organe erkann werden, allein dies scheint mir nicht ausreichend, da eben jener gleichsam indifferente Zustand wieder seine Erklärung verlangt. Man kan fragen, warum beim Menschen sich eine Einsenkung bilde, waru nicht sofort die Papille entstehe, da die Erhebung der letzteren w ersten Momente der Drüsendifferenzirung an möglich erscheinen kans Die Antwort auf diese Fragen giebt die Vergleichung, indem sie d genannte Verhalten als Vererbung nachzuweisen sucht. Wenn w diesen als einen auf beiderlei sonst sich so different verhaltende Form fortgesetzten Befund auf Grund einer gemeinsamen Vererbung erklärt wollen, bedarf es vor allem des Nachweises einer im Wesentlichen jenem vergänglichen Stadium übereinstimmenden bleibenden Ein richtung bei anderen Säugethier-Organismen, und diese führt zu ein vergleichenden Umschau im Bereiche der Säugethiere.

Zuerst sei hier auf die Verbreitung der beiden Formen der Au mündungsverhältnisse der Milchdrüsen die Aufmerksamkeit gerichtet Bei der verhältnissmässig geringen Zahl genauer Untersuchungen üb die Milchdrüsen der Säugethiere wird das Kriterium der einen oder d anderen Kategorie nur im Verhalten der »Ausführgänge« gesucht werde können. Wo die Zitze nur von einem einzigen Ausführgang durchset wird, liegt Grund zur Voraussetzung eines mit dem Rinde übereinstimmenden Verhaltens vor, indess eine, mehrfache Mündungen tre gende Zitze das Verhalten der Papilla mammae des Menschen darbietet und darnach wird beurtheilt werden dürfen. Nach diesem Verhältnis hat bereits J. MULLER¹) einen Unterschied zwischen zwei grossen Gruppet der Säugethierabtheilungen aufzustellen versucht, indem er der Zitad der Wiederkäuer einen einzigen Ausführgang, jener der übrigen Säugethiere dagegon mehrere zuschrieb. Inwiefern diese Aufstellung Berechtigung hat, kann nur die genauere Prüfung entscheiden, für welche allerdings bis jetzt nur noch wenig selbständige thatsächliche Unterlage besteht.

Aehnlich wie die Papilla mammae des Menschen verhält sich die Zitze der Carnivoren, wie die Untersuchungen von Hund und Katze lehren, welche RUDOLPHI²) bekannt gemacht hat. Für den Hund sind

⁴⁾ De glandularum secernentium structura penitiori. Lips. 4880. p. 48. »qui (sc. trunci ductuum lactifororum) aut sinu juncti in mammae papillam aperiuntur uti in ruminantibus, aut disjuncti papillam perforant, qualis de caeteris mamma libus homineque sinul experientia docet.«

⁹⁾ Abhandl. d. Königl. Academie der Wiss. zu Berlin. 4832. S. 342.

), für die Katze 5 Oeffnungen auf der Spitze der Papille nachgewiesen. ach anderen Angaben wechselt bei diesen die Zahl von 8-13. Von agethieren ist durch RUDOLPHI und ASTLEY-COOPER 1) beim Kaninchen me Mehrzahl von Ausführgängen erkannt. Für die Edentaten finde ich ine Angabe von Rudolpen bei Manis, dessen Papillen von fünf bis sechs men Gängen durchsetzt werden sollen. Gleich beschränkt finde ich ie Angaben für die Halbaffen, von denen ich wenigstens bei Chiromys & Vorkommen einer grössern Anzahl von Mündungen auf den Papillen argestellt finde²). Bei den Affen scheint ein ähnliches Verhalten wie ein Menschen zu bestehen, und vom Orang hat Owen 10-12 Milchmg-Oeffnungen beschrieben. Bringt man endlich hierzu noch die von MAILLANT³) beim Elephanten gemachte Beobachtung von 8 Ausführfugen, sowie die von Owen⁴) bei Rhinoceros indicus aufgefundene, rgen 12 betragende Zahl der Mündungen in Betracht, so ergiebt sich lerdings, dass bei Repräsentanten einer grossen Anzahl von Säugehieren — der Mehrzahl der einzelnen Abtheilungen — eine dem für den kaschen am genauesten gekannten Typus des Verhaltens der Papille ligende Einrichtung vorkommt. Dieser würden sich nach der Beobmitting STELLER's 5) auch die Sirenen anreihen, deren Papille von 10-12 lichgängen durchbohrt sein soll.

Während für die eben aufgeführten Säugethiere die bezüglichen Natsachen entweder klar erwiesen oder durch mehrfache Beobachtungen • der Hauptsache bestätigt sind, ist es ein anderes bei den Cetaceen.

Für die echten Getaceen besteht keine ganz völlige Uebereinstimwung der Angaben. Die Mehrzahl der Autoren führt zwar einhellig is Existenz eines einfachen erweiterten Ausführganges für jede Zitze n, aber von Owrn⁶) finde ich bei Beschreibung der Milchdrüsen eines lephin das Bestehen zahlreicher Ausführgänge behauptet. Wenn er ich dabei auf JOHN HUNTER stützt, so steht damit die Angabe dieses lators in Widerspruch, da von demselben ganz zweifellos nur ein eininziger gemeinsamer Gang beschrieben wird⁷). Dies ist um so auf-

Ì

4) Anatomy of vertebrates. Vol. III. 4868. p. 777. »The nipple itself, shown by dilating the mammary fossa is perforated by numerous lactcal ducts.«

7) Ueber den Bau und die Oekonomie der Wallfische, Uebers, v. J. G. SCHNEIDER. Leipz. 4795. S. 403.

⁴⁾ On the anatomy of the breast. London 1840. Ich bedaure dieses Werk

³⁾ PETERS, in Abhandl. der Königl. Acad. der Wiss. zu Berlin. 4866. Taf. 4. R. 5. m.

³⁾ Voyage dans l'interieur de l'Afrique en 1780-1785. Liège 1790. S. 196.

⁴⁾ Transactions of the Zoological Society. Vol. IV. Part. III. S. 85.

⁵⁾ Ausführliche Beschreibung von sonderbaren Meerthieren. Halle 1753. S. 69.

C. Gegenbanr,

fallender, als OWEN noch auf derselben Seite die HUNTER'sche Darstellun wiedergieht. Mit HUNTER stimmt RUDOLPHI, ferner ET. GEOFFROY ST. H LAIRE¹) sowie RAPP²) überein, so dass die von OWEN gelieferte Beschrebung auf einem Missverständnisse zu beruhen den Anschein hat.

Die Cetaceen entfernen sich also sowohl von den Sirenen als auch von den übrigen, mehrfache Ausführgänge der Milchdrüse besitzenden deciduaten Säugethieren, und schliessen sich mehr dem zweiten Typis an, welchem zunächst Wiederkäuer und Schweine angehören. Bei den ersteren ist das übereinstimmende Verhalten in grosser Ausdehnung nachgewiesen, so dass es als ein gemeinsam ererbter Charakter geben kann. Auch bezüglich der Schweine besteht keine bedeutende Divergen der Angaben und die Mehrzahl derselben theilen der Zitze einen einzigen Ausführgang zu, womit ich nach eigenen Beobachtungen an Sus scrofa übereinstimmen kann. Von zwei Ausführgängen spricht Musi-EDWARDS³, indem er sich auf A. GOOPER bezieht.

Schwieriger ist die Beurtheilung des Verhaltens der Einhufer, für welche bekanntlich in jeder der zwei Zitzen zwei Ausführgänge (Strichcanäle) nachgewiesen sind. Man könnte hier annchmen, dass von eine grüsseren Anzahl von discreten Milchdrüsen, wie sie die übrigen Säuze thiere erkennen lassen, nur zwei sich ausgebildet haben, und dass jeit der beiden Strichcanäle dem Ausführgang einer einzigen primitive Drüse entspräche, in welchem Falle die Einrichtung sich dem erste Typus anreihen liesse. Durch die Prüfung des Verhaltens jeder de beiden Zitzencanäle giebt sich jedoch eine überaus grosse Uebereinstimmung mit dem einzigen Zitzencanale der Wiederkäuer kund, inder auch bei der Stute eine ausgebuchtete Erweiterung des Canals zahlreiche Milchgänge aufnimmt. Vergl. hierüber die Darstellungen Ruporru I. c. Taf. I. Fig. 4 und Taf. II. Fig. 4., ferner die Beschreibung und Abbildung in L. FRANK'S Handbuch der Anatomie der Hausthiere. S. 692 Dadurch gelangt man zu der Auffassung, dass die bei Wiederkäum auf je zwei einer Seite angehörigen Zitzen vertheilten Apparate bei der Einhufern jedenfalls in einer einzigen Zitze vereint sind. Die Zitze eine Stute würde demnach zwei Zitzen eines Wiederkäuers entsprechen und das gesammte Euter der Stute bezüglich der Ausführwege sich w näher an das mindestens vier Zitzen tragende Euter der Wiederkäu anschliessen, als es bei der blossen Beachtung der äusseren Verhältnist der Zitze den Anschein hat.

⁴⁾ Fragmens sur la structure et les usages des Glandes mammaires des C tacées. Paris 1884.

²⁾ Die Cetaceen. Stuttgart 1887. S. 177.

⁸⁾ Leçons sur la Physiologie. T. IX. p. 428. Anmerk.

Diese Verbindung von zwei Milchdrüsencomplexen und die Vereinigung ihrer Ausführwege in eine Zitze möchte ich jedoch nicht direct we einer Verschmelzung discret bestehender Zitzen ableiten, als vielnehr von einer allmählich stattfindenden Verschiebung der ersten Anlage der Drüsen. Wenn man sich vorstellt, dass an der Stelle einer jeden der beiden Zitzen die beim Rinde wie bei anderen Wiederkluern cinfache Drütsenanlage (vergl. den Aufsatz von M. Huss) doppelt vorunden ist, dass ferner diese beiden Anlagen sich derart unter einander verbinden, dass der für jede bestehende Cutiswall beide Einsenkungen meinsam umzieht, aber auch zwischen beiden Anlagen hindurch ein Septum entsendet, so wird man daraus die bei der Stute bestehenden ferhältnisse ableiten können. Diese Auffassung lässt keinen aus dem Werhalten der Strichcanäle, überhaupt aus dem inneren Raum der litte zu entnehmenden Einwand zu, und wird also, indem sie dazu dest, den doppelten Zitzencanal der Einhufer aufzuklären, die Milchasführwege des Euters der letzteren mit jenem der Wiederkäuer in waren Zusammenhang zu bringen.

Die beiden Typen der Papille vertheilen sich also derart über die Sugethiere, dass die eine auch beim Menschen bestehende, den Affen, lichaffen, Carnivoren, Edentaten, Nagern, dem Elephant, Rhinoceros, und den Sirenen, der andere den Cetaceen, Wiederkäuern und Einhufern ukommt. Vermittelnde Formen sind in diesen Abtheilungen nicht belannt geworden. Von um so grösserer Bedeutung ist die Thatsache, dass uter den Beutelthieren ein die beiden extremen Papillenformen der unodelphen Säugethiere vermittelnder Zustand gefunden wird.

Nach den Untersuchungen von J. MORGAN¹) erscheinen bei jungen Linguruhs die vier Zitzen als wenig bedeutende Erhebungen oder Fortilte des Integumentes, Gebilde, deren terminale Fläche eine Grube aufwist. Diese leitet in einen die Zitze durchsetzenden Ganal, an dessen Ende ein papillenartiger Körper vorspringt. Des letzteren Oberfläche wird von den Mündungen zahlreicher Milchgänge durchsetzt. Dieser Mand scheint sich bis zu jener Periode zu erhalten, in welcher das Thier seine Jungen säugt. Alsdann tritt die Papille aus dem Grunde des Ensles hervor und steht, vom Munde des Jungen umfasst, am freien Ende einer ziemlich langen Zitze. Ob das Hervortreten der Papille durch im Junge besorgt wird, ist unbestimmt. Die terminale Papille erscheint inbei den Grössenverhältnissen des Mundes der saugenden Jungen angepest, und bei ausgewachsenen Weibchen giebt sich auch fernerhin eine inche Anpassung der Zitzen an das Wachsthum der Jungen zu erkennen,

⁴⁾ Transactions of the Linnean Society. Tome XVI. S. 64 und S. 455.

C. Gegenbaur,

worüber ich bezüglich des Näheren ebenso auf die citirte Schrift verweise, wie bezüglich der Verschiedenheit des Verhaltens des vorderen und hinteren Zitzenpaares. Das Wesentliche des aufgeführten Befundes wird darin zu suchen sein, dass der Zustand der Zitze zu verschiedenen Zeiten verschieden ist, dass vor der Lactation die Zitze von einen Ganale durchbohrt erscheint, in dessen Grund die Mündungen der Milchdrüsengänge angebracht sind, während mit der Function der Zitze eine Umstülpung erfolgt, durch welche die auf einer Papille ausmündenden Milchgänge auf die Spitze der Zitze gelangen.

Diese beiden an einer und derselben Zitze erscheinenden Zustände entsprechen den beiden oben geschilderten Typen der Zitze. Der zweite bei Wiederkäuen und Einhufern herrschende Typus entspricht im Wesentlichen den ersten Zustande der Zitze bei Känguruhs, sowie der erste Typus mit dem spätern Befunde der Zitze bei den genannten Beutelthieren übereinstimmt.

Die einfach perforirte Zitze der Wiederkäuer kann daher ebens wie die mehrfach von Milchgängen durchsetzte Papille der Mehrzahl der Säugethierabtheilungen von einer bei einer Gruppe der Beutelthier noch fortbestehenden Einrichtung abgeleitet werden, und diese erscheiz jenem andern differenzirteren, weil nicht mehr beiderlei Befunde verbindenden Verhältnisse gegenüber als ein Zustand der Indifferen Wie sich diese nach beiden so divergenten Richtungen auflöste, wird Gegenstand einer besondern Erwägung sein müssen.

Das primäre Verhalten der Zitze bei Känguruh's wird als der nicdere Zustand beurtheilt werden dürfen, da es vom zweiten Zustand vorausgesetzt wird, und diesen aus sich hervorgehen lässt. Wir können nun jene Form mit jener bei Wiederkäuern verknüpfen, wenn wir annehmen, dass das neugeborne Junge nicht jener kleinen im Innern der Zitze geborgenen, die Mündungen der Milchdrüsengänge tragenden Papille bedarf, um an der Zitze sich anzusaugen, dass vielmehr das Volum seines Mundes ihm gestattet, die primäre Zitze selbst aufzunehmen. In diesem Falle wird eine gewisse Grösse der neugeborenen Jungen vorausgesetzt werden müssen, welche zugleich die didelphe Brutpflege ausschliesst, oder doch wenigstens nicht in dem Maasse zulässt, wie er bei den Halmaturen noch besteht. Man wird sich vorstellen können, dass mit dem allmählichen Schwinden des Didelphismus einer bestimmten Säugethierform und der dabei durch das längere Foetalleben erzielten Grössenzunahme des neugebornen Jungen die in Innern der primären Zitze befindliche Papille allmählich nicht mehr in Verwendung kommt, indem bald nur das Ende der primären Zitze

211

Bemerkungen über die Milchdrüsen-Papillen der Säugethiere.

st wird, aus welchem jetzt ein einziger Canal die Milch ausleitet. ortgesetzte Vererbung dieser Praxis muss dann von einer allmähn Rückbildung der im Grunde des Zitzencanals geborgenen Papille eitet sein, wodurch die Milchdrüsengänge einfach in dem Grunde Canals zur Mündung kommen. Die hier bei Wiederkäuern u. s. w. findende Erweiterung des Canals zu einem sinuösen Milchbehälter dann als eine fernere, aber für unsere Zwecke minder wichtige, ler aus einer Anpassung erklärbaren Veränderung zu betrachten So erscheint also ein eigenthümlicher Typus der Zitze bei einer eilung monodelpher Säugethiere aus einer bei Didelphen bestehen-Zitzenform ableitbar.

Bestärkt wird die Richtigkeit dieser Ableitung nicht wenig durch in der bezüglichen monodelphen Säugethiergruppe (der Schweine, Wiederkäuer und der Einhufer) waltenden hohen Ausbildungsgrad neugebornen Jungen, im Gegensatze zu den meisten anderen Abungen der monodelphen Säugethiere, deren Junge einen minder n Reifegrad mit zur Welt bringen.

Der andere Zitzen-Typus ist in gleicher Weise von der geschilen Form der Halmaturen-Zitze ableitbar, und zwar vom zweiten ande derselben, der durch die terminal gestellte, von mehrfachen hdrüsengängen durchsetzte Papille ausgezeichnet ist. Diese Form ls die höhere und differenzirtere bezeichnet worden. Man kann sie len entsprechenden Zitzen-Typus der monodelphen Säugethiere leiten durch die einfache Annahme, dass der bei den Känguruh's jedesmal wiederholende Act des Hervortretens der Papille aus dem amgebenden Zitzen-Schlauche allmählich sich derart vererbt hat, er in einer immer früheren Lebensperiode sich bildet. Der aus r Anpassung an das säugende Junge temporär erworbene Befund t sich, und wird zu einem constanten Charakter. Das Hervortreten Papille erscheint dann als das sich vererbende Moment, welchem von Huss geschilderte Vorgang der Erhebung der Papille aus dem ade der vom Drüsenfelde eingenommenen Einsenkung entspricht. Zitzenschlauch ist in diesem Stadium durch den die Einsenkung iehenden Cutiswall repräsentirt, und die Einsenkung selbst erscheint Canale homolog der bei Känguruh's den Zitzenschlauch bis zu dem illenvorsprung hinab durchsetzt. Bei den meisten Boutelthieren int diese Vererbung bereits stattgefunden zu haben, so dass sich Typus ihrer Zitzen dem jener Gruppe von Monodelphen nähert, zu cher auch der Mensch gehört.

In vorstehender Deduction habe ich also im anatomischen Verhalton 'Zitzen einer Abtheilung der Marsupialia das Verbindungsglied von BL VII. 9. 44

zwei bei den monodelphen Säugethieren sehr different erscheinende Zitzenbildungen aufgedeckt, so dass diese sich nicht mehr fremd gegenüberstehen, und auch in ihren genetischen Beziehungen vollkomme verständlich erscheinen werden. Es bleibt nun noch die Eigenthümlichkeit der Känguruh-Zitze zu erklären, eine Form, die an sich unverständlich ist. Denn wenn die im Grunde des Zitzenschlauches liegende Papille in Function kommend vom Munde des saugenden Jungen umfast werden soll, so muss sie erst aus dem Grunde des Schlauches hervettreten, und damit das freie Ende der Zitze bildend, in ein Verhältzis eingehen, welches nicht ursprünglich gegeben ist, nicht als ein ererbin und damit typisches erscheint. Die Erklärung wird also sich wesentid auf den primären Zustand jener Beutelthierzitze zu richten und nach zuweisen haben, in wiefern dieser Zustand auf einer Vererbung begründet sein kann. Lässt sich eine mit jenem primären Zustan congruente Form des Ausführungsapparates der Milchdrüsen auffindet welche zugleich die Anpassung an eine bestimmte Art der Functi ausdrückt, so wird man diese Form unbedenklich mit jenem primär Zustand der Känguruh-Zitze in Verbindung bringen dürfen, inde letztere dann von ihr sich ableiten lässt.

Die Lösung dieser Frage kann von den Monotremen aus unte nommen werden. Die beiden bis jetzt bekannten Monotremen-Gattung bieten bezüglich des Baues ihres Säugeapparates chenso bedeutent Uebereinstimmungen als einige bemerkenswerthe Verschiedenheitel dar 1). Bei Ornithorhynchus findet sich jederseits in der mittlet Bauchgegend eine, wie es scheint, wenig vertiefte nur durch etwa dunklere Färbung der Cutis ausgezeichnete Stelle des Integumentet an welcher eine grosse Anzahl von Drüsen mit discreter Oeffnung 🗊 Ausmündung kommen. Nach langem von einer Anzahl von Forschatt über die Deutung dieser Drüsen geführtem Kampfe fiel bekanntlich 🖨 Entscheidung zu Gunsten des mammalen Charakters des Schnabel thieres aus, und die Bedeutung jener Drüsen als Milchdrüsen wat allgemein angenommen. Da eine Papille fehlte, auch bei offenbar 🖬 Lactationsgeschäfte begriffenen Weibchen keine Andeutung zeigte, ferner die Configuration der Mundorgane des unreif geborenen Jungs zum activen Ergreifen und Umfassen eines Theiles der bezügliche das Drüsenfeld vorstellenden Integumentfläche in keiner Weise geeige erschien, so konnte man sich nur der Vorstellung hingeben, dass der

Vergl. vorzüglich J. FR. MECKEL, Ornithorhynchi paradoxi anatome. Lipsine 1828. Ferner Owen. Philosophical Transactions 1833. S. 517 und Philos. Transact. 1865. S. 671.

Bemerkungen über die Milchdrüsen-Papillen der Säugethiere.

213

lem Drüsenfelde angelagerte Junge von der secernirten Milch aufnehme, hne an der Mutter angesaugt zu sein. Der Mechanismus der Lactation zeigt sich demnach auf der niedrigsten Stufe, und es ist mehr der mütterliche als der kindliche Organismus, dem die bedeutendere Rolle zufällt. Der Umstand, dass das Junge sich nicht an der Mutter befestigt, and demgemäss nicht von derselben weiter getragen wird, steht mit dem Nestbaue des Thieres ebenso im Zusammenhange, wie dieser wieder von dem die Begleitung der Mutter nicht gestattenden Aufenthalte der Letzteren im Wasser abhängig erscheint (Owen).

Weiter differenzirt ist das Organ bei Echidna, deren beide Milchdrüsencomplexe im Grunde einer taschenförmigen Vertiefung des Integumentes der Bauchfläche ausmünden. Das bei Ornithorhynchen eberflächlich gelagerte Drüsenfeld findet sich hier als Grund einer Hauttasche (marsupial or mammary pouch; Owen.), welcher jedoch mit dem Marsupium der Beutelthiere nur ganz oberflächliche Aehnlichkeiten darbietet. Sie ist schon dadurch von diesen Bildungen verschieden, dass jedes der beiden Drüsenfelder in einer besondern Tasche liegt, die also eine jeder Mamme zukommende Bildung vorstellt, während das Marsupium der Beutelthiere ein den gesammten Drüsen gemeinsames, weil sämmtliche Zitzen umschliessendes Gebilde ist.

Der das Drüsenfeld repräsentirende blinde Grund der Mammartasche von Echidna besitzt ausser den zahlreichen Drüsenmündungen keinerlei andere Bildungen, und namentlich ward eine Papille vermisst-Am Eingange in die Tasche zeigt das Integument eine leichte Wulstung, ist aber noch wie in der übrigen Umgebung mit Haaren besetzt, die erst gegen die Einsenkung spärlicher worden, woselbst die Cutis zugleich sich verdünnt. Die Berücksichtigung der geringen Grösse der unreif geborenen Jungen, sowie die Würdigung der Beschaffenheit seiner Mundorgane hat es Owen wahrscheinlich erscheinen lassen, dass das Junge in die Mammartasche eingebettet wird, und dort mit seiner breiten schlitzförmigen Mundöffnung die ernährende Socretionsflüssigkeit aufnimmt, die durch die Wirkung eines Muskels auf die Drüsen aus den Mündungen der letzteren austritt. Die Mammartasche wird demnach zur Aufnahme des Jungen dienen, und damit functionell einem Marsupium vergleichbar sein, wenn sie auch niemals mit einem solchen bomolog ist. Im Vergleiche mit Ornithorhynchus entspricht sie einer Weiterbildung des dort gegebenen Verhaltens, und erscheint als eine vom integument ausgehende Anpassung an das sich hier anlegende Junge, welches dadurch von der Mutter mit umhergetragen werden kann. Vergleicht man die Mammartasche von Echidna mit dem Verhalten der pimären Zitzen der Känguruh's, so wird man die einzige bedeutendere

44*

C. Gegenbaur,

Verschiedenheit in der hier bestehenden Papille finden, die aber ebenso im Grunde einer Vertiefung liegt, wie das Drüsenfeld von Echidna. Wenn wir uns nun die Mammartasche von Echidna als eine Anpassung an das sich in sie einlagernde Junge erklären müssen, so wird der Canal im primären Zitzenschlauche von Halmaturus, damit in Beziehung gebracht, als eine Vererbung eines ähnlich wie bei Echidna bestehenden Befundes zu erklären sein. Jener Ganal wird einmal eine Zeitlang dem zur Zitze gelangenden Jungen zum Aufenthalte gedient haben.

Ich sehe demgemäss in jenem eigenthümlichen Verhalten der primären Zitzen der Känguruh's eine durch Vererbung forterhaltene Einrichtung, die aus einem Zustande stammt, in welchem das Junge sich in einer Mammartasche barg, wie solches noch bei Echidna fortbestebt. Die primäre Zitze des Känguruh's repräsentirt nach dieser Auffassung eine Mammartasche. Der gewulstete Rand der Mammartasche der Echidna entspricht dabei der etwas stärkeren vom primären Zitzenschlauche der Känguruh's vorgestellten Erhebung des Integumentes. In dem Vorhandensein einer Papille im Grunde des Zitzenschlauches spricht sich jedoch schon im primären Zustande die Zitze eine bedeutende Weiterbildung dieses Apparates aus, und dadurch wird der Anschluss an die Mammartasche von Echidna kein unmittelbarer. Vielmehr leitet sich aus dem Bestehen der Papille die Voraussetzung eines Zustandes ab, in welchem das Junge nicht wie bei Echidna blos in die Mammartasche eingebettet war, und von dem Drüsenseeret aufnahm, sondern das Drüsenfeld selbst mit dem Munde umfasste und dasselbe so zur Papille umformte. Da ein solcher Zustand zur Erklärung der Entstehung der Papille nothwendig angenommen werden muss, ist die in der Reihe der Thatsachen bestehende Lücke durch jene Voraussetzung auszufüllen. Die Rückbildung der Function der Mammartasche als eines Marsupialapparates wird erklärlich aus der Entwicklung des echten Marsupiums. Sohald dieses sich bildet, bedarf es nicht mehr der das Junge umschliessenden Mammartasche, da eben das Marsupium nicht blos das einzelne Junge, sondern alle zusammen umschliesst. Die Ausbildung des echten Marsupiums wird also eine Instanz für die Rückbildung der Mammartasche sein. Andererseits steht ebenso die Entwicklung der Papille hiermit in Einklang, insofern diese eben aus der Befestigung des Jungen am Drüsenfelde hervorgeht, und damit eine vom benachbarten Integumente ausgehende, zur Fixirung des Jungen in der Nähe der Milchdrüsenöffnungen (am Drüsenfelde) beitragende Bildung als nicht mehr nothwendig erscheinen lässt.

Die Ableitung der primären Zitzenform der Känguruh's von der

ammartasche der Monotremen und wieder die Ableitung der Wiedermerzitze von der primären Zitzenform jener Marsupiaten, endlich der usammenhang der zwischen der secundären Form der letzteren und en verbreiterten Zitzentypus der monodelphen Säugethiere besteht: le diese Beziehungen schliessen die mehrfachen Formzustände einer er ersten Ernährung der geborenen Jungen dienenden Einrichtung ager an einander, und verweisen auf eine gemeinsame bei den Monoremen bestehende Form, die, den niedrigsten, indifferentesten Zustand wstellend, als Grundform gelten darf. Die oben vorgeführten vermeiedenen Zustände erscheinen als Differenzirungen dieser Grundform, isich bei Ornithorhynchus darbietet. Eine Anzahl Drüsen, die aus witer entwickelten, in bestimmter Richtung differenzirten Hautdrüsen ststanden angesehen werden können, mündet jederseits auf einer huistrecke des Abdomens aus. Diese Fläche repräsentirt, von zahlwichen Oeffnungen durchbohrt, das »Drüsenfeld«. Aehnliches besteht nch noch bei Echidna, aber das Drüsenfeld liegt im Grunde einer vom ingumente gebildeten Vertiefung, der Mammartasche, in welcher das here sich einlagert.

Bei Beutelthieren tritt die Mammartasche aus ihrer Function, denn what sich im Marsupium ein anderer Schutzapparat für die saugenden ingen gebildet. Morphologisch besteht eben die Mammartasche noch i der primären Form der Zitze. Im Grunde der functionell rückgebiliten Mammartasche ragt eine das Drüsenfeld tragende Papille vor. Niese tritt aus der Mammartasche vor, wenn das Junge sich ansaugt, und ildet die Spitze der Zitze, deren Basis von der umgestülpten Mammariche vorgestellt wird.

Daraus leiten sich zwei verschiedene Typen der Zitzen ab. Der im ist bei den Wiederkäuern u. s. w. repräsentirt. Er legt sich sehr inzeitig, und dadurch auf eine sehr alte Ererbung den Schluss intattend, in Gestalt einer Mammartasche an, indem das vertiefte Drümield von einem Cutiswall umzogen wird. Diese Anlage entspricht im Befund der Monotremen, vorzüglich bei Echidna. Bald wächst i Wand der Mammartasche, resp. der Cutiswall, weiter in die Höhe, id bildet die Zitze, deren Binnenraum — die ursprüngliche Mammariche — zu einem gemeinsamen Ausführweg der am Drüsenfelde sich benden Milchgänge verwendet wird.

Im andern Typus zeigt die erste Anlage des Drüsenfeldes gleichb eine Einsenkung, es besteht also auch hier die Spur einer Mamrtasche (Vergl. die von Huss auf Taf. XIII. Figg. 5. u. 6. gegebene rstellung dieses Verhaltens beim Menschen), die deshalb von grösster deutung ist, weil sie als eine von einem niedern, nur noch bei den C. Gegenbaur,

Monotremen bestehenden Zustande ererbte Einrichtung sich darstell Dieses Stadium verschwindet aber bald, indem die Einsenkung sic erhebt und der Cutiswall sich abflacht. Da die centrale Erhebung w dem gänzlichen Verschwinden des Cutiswalles auftritt, wird an di primäre Zitzenstadium der Beutelthiere (Halmaturen), ein Anklar gegeben, der noch durch die längere Dauer dieses Stadiums besonde wichtig ist. Wir treffen dann den Cutiswall, wie er eine Vertiefung un schliesst, aus der die lange Zeit sehr niedere Papille hervorragt. D Cutiswall repräsentirt hier den Zitzenschlauch jener Beutelthiere, d Vertiefung entspricht dem Binnenraume des primären Zitzenschlauche und die Papille eben demselben Gebilde, welches als Papille bei Ha maturen im primären Zitzenschlauche liegt. Dagegen schreitet die Ei hebung des Drüsenfeldes weiter und lässt die Ausführgänge der Drüss allmählich auf die Spitze eines Vorsprungs, eben der Papille gelangen

Indem der der Papille zugewendete Theil des Cutiswalles in d Areola mammae übergeht, findet sich in letzterer ein der Zitze d Wiederkäuer nothwendig fehlendes Gebilde. Denn wenn diese Fläc der Innenwand der Mammartasche entspricht, kann sie bei Wieder käuern nur im Zitzencanale gesucht werden, ebenso wie sie b Halmaturus an die Aussenfläche der Zitze zu liegen kommt, sobald d primäre Form der Zitze in die secundäre übergeht. In dem vo benachbarten Integumente verschiedenen Verhalten der Areola mamme drückt sich somit die letzte Spur einer Einrichtung aus, deren ers Anfänge in ganz anderer functioneller Verwandung bis zu den Monc tremen hinab zu verfolgen sind.

Das volle Verständniss der Tragweite der Thatsache von der bedeu tenden Verschiedenheit der beiderlei Typen der Zitzen bei der Abtheilur der monodelphen Säugethiere, lässt erkennen, dass die letzteren in meb fachen, mindestens in zwei besonderen Stämmen, aus den Didelphe hervorgingen. Der eine Stamm umfasst diejenigen, in deren Mammau tasche es entweder zu keiner Papillenbildung kam, oder wo die Papil einer Rückbildung erlag, welche letztere Möglichkeit bereits obe erwogen wurde. Hieher würden also die Schweine, die Wiederkäu und Einhufer gehören, indess die echten Cetaceen zwar im Allgemeine gleichfalls hier sich anreihen lassen, aber doch wieder in bemerkent werther Weise abweichen ¹).

⁴⁾ Die bedeutendste Eigenthümlichkeit der Cetaceen-Zitze erkenne ich ihrer Einlagerung in eine Hautvertiefung, die kaum anders als Mammartasc zu deuten ist. Wäre die Zitze von mehrfachen Ausführgängen durchbohrt, würde die Erklärung des Gesammtverhaltens wenig Schwierigkeit darbieten aber das Drüsenfeld nicht an der Oberfläche der Zitze gesucht werden darf, so lie

Der zweite Stamm umfasst sämmtliche Deciduaten, denen noch die Edentaten, aber auch Rhinoceros und die Sirenen aus der Abtheilung der Indeciduata sich anschliessen. Was die Sirenen und Rhinoceros betrifft, so ist deren Stellung unter die Indeciduata wegen der Unbekanntschaft mit deren bezüglichen Einhüllen problematisch. Für die Sirenen war die Annahme einer näheren Verwandtschaft mit dem Ungulaten, speciell mit den Artiodactylen bestimmend für die Voraussetzung eines mit letzteren gleichen Verhaltens der Placenta, ebenso wie die Zugehörigkeit der Rhinoceroten zu den Perissodactylen aus verwandtschaftlichen Verhältnissen mit Tapiren und Pferden gefolgert ward. Ob diese Verwandtschaften wirklich in der bis jetzt festgehaltenen Weise bestehen, wird nochmals zu prüfen sein, nachdem durch die Würdigung der Zitzen einige Zweisel erregt worden sind. Mancher der hoch angeschlagenen Charaktere der Perissodactylen verliert an Werth, sobald die Vergleichung sich über die Ungulaten hinaus ensireckt, und durch die Verwandtschaft mit Hyrax wird ohnehin die

Stellung der Rhinoceroten als noch keineswegs aufgeklärt gelten dürfen.
Was die Edentaten betrifft, so ist deren Stellung zu den Indeciduaten wohl sicherer, allein es bleibt bei dem mehr negativen Charater dieser letzteren Abtheilung nicht ausgeschlossen, dass die genannte Ordnung selbständig aus dem didelphen Stamme sich abgetweigt hat. Gegen letztere Beziehung spricht nun keineswegs das Verhalten der Zitzen, da eben bei den Didelphen die Ausbildung jener Form dieser Organe hervorging, welche den Deciduaten ebenso wie den Edentaten unter den Indeciduaten zukommt.

Indem ich die Bemerkungen schliesse, will ich noch beifügen, dass ich damit nur einen Theil dieses Gebietes berührt habe, und zwar jenen, welcher der anatomischen Prüfung noch am meisten zugängig ist. Ein anderer, die Zahlenverhältnisse der Milchdrüsengruppen und ihrer Ausführapparate umfassender Gebietstheil blieb von mir deshalb unberücksichtigt, weil die hier sich erhebenden Fragen noch keine sicheren Angriffspunkte darbieten. Welche Rollen hierbei Vererbung und Anpassung spielen, ist noch vollständig dunkel. Dass diese Womente jedoch auch hier von grösster Wichtigkeit sind, dürfte eben so sicher sein, als ihre hohe Bedeutung aus der eben ausgeführten Vergleichung nicht zu verkennen sein wird.

ľ

1

1

bier ein Fall vor, der nicht so einfach auf den einen oder andern Typus zu bezieben ist. Die Möglichkeit, dass hier eine besondere, vielleicht direct aus dem didelphen Zustande stammende Form besteht, ist zwar nicht sofort zurückzuweisen, allein es bedarf hier vor Allem genauerer Untersuchung.

ļ

Ueber die Producte der Einwirkung von Natriun auf ein Gemisch von Phosgenaether und Iodaethyl

Mitgetheilt von

A. Geuther.

4. Mittheilung.

In der Nachricht über ihre Versuche mit Phosgenaether geben Wu und Wischin¹) an, dass sich derselbe mit Natrium gerade auf in Kohlenoxyd, Kohlensäureaether und Chlornatrium spaltet und dass höchs wahrscheinlich aus diesem Grunde ihre Versuche ein-, zwei- und drei basische Säuren synthetisch durch Eintragen von Natrium in ein Ge menge von Phosgenaether und den Haloidverbindungen der einatomigen zweiatomigen und dreiatomigen Alkoholradicale darzustellen nicht go lungen seien. Etwas Näheres über diese Versuche wird aber nich berichtet. Da ich der Meinung war, dass bei der Einwirkung von Na trium auf ein Gemisch von Phosgenaether und Iodaethyl jedenfalls be sondere durch Substitution hervorgehende Producte entstehen würden wenn auch nicht gerade die von WILM und WISCHIN Erwarteten, s habe ich Herrn Dr. FRANZ MATTHEY veranlasst diese Reaction näher 2 studiren. Seine Resultate, welche sich auf das nähere Studium de dabei erhaltenen nicht sauren Producte beschränken, bilden den Inba dieser ersten Mittheilung.

Natrium wirkt auf Phosgenaether für sich der Hauptsache nach i der von WILM und WISCHIN angegebenen Weise ein, es entsteht Na triumchlorid, Kohlenoxyd und Kohlensäureaether, daneben aber auc Aethylkohlensaures Salz und eine geringe Menge Oxalsaures Sal welche beide Körper als Producte der Einwirkung von Natrium ^{at} Kohlensäureaether gekannt sind²).

⁴⁾ Annalen der Chem. u. Pharm. Bd. 447 p. 458.

²⁾ Vergl. diese Zeitschrift Bd. IV. p. 260. Kine andere Kinwirkung als da

Fügt man 2,5 Grm. Natrium in möglichst dünnen Scheibchen zu ler Mischung von 40 Grm. Phosgenaether und 20 Grm. lodaethyl, welche sich in einem Kochfläschchen befindet, so tritt rasch Erwärmung les Gemenges ein und man hat sofort die Verbindung mit einem umetehrten Kühler herzustellen, um Substanzverlust zu vermeiden. Die nfänglich nur schwache Gasentwicklung steigert sich rasch nach migen Minuten und wird, wenn man nicht bald für gute Abkühlung brch kaltes Wasser gesorgt hat, sogar stürmisch. Das sich entrickelnde Gas brennt an der Spitze mit leuchtender, unten mit blauer Jamme. Es enthält nur Spuren von Kohlensäureanhydrid, dagegen viel Kohlenoxyd und wahrscheinlich auch eine grössere Menge von Aethyl. Such Verminderung der Gasentwicklung kann die Reaction durch Ernitten im Wasserbade auf 60-70° zu Ende geführt werden. Wird der Ruckstand im Kölbchen mit Wasser behandelt, so scheidet sich ein auf der Salzlösung schwimmender öliger Körper ab, der mit Aether aufmommen werden kann. Nach Abdestilliren des Letzteren bleibt er wieder zurück und zeigt der Rectification unterworfen einen von 100 his 250° steigenden Siedepunkt. Um grössere Mengen desselben zu erbilen, wurde nach mehreren Versuchen folgende Art der Darstellung 🏙 die zweckmässigste erkannt. Man umgiebt das Kölbchen, worin sich die ohen angegebenen Mengen von Phosgenaether und Iodacthyl beinden, mindestens mit Eiswasser, noch besser mit einer Kältemischung, nd fügt erst nach einiger Zeit das Natrium in möglichst dünnen Scheibchen und möglichst rasch zu, verbindet sofort das Gefäss mit ^{inen} weiten umgekehrten Kühler, den man mit Eiswasser versehen ut und lässt durch das offene Ende desselben etwa 20 Grm. gewöhnichen wasserfreien Aether dazu fliessen. Dieser leitet die Einwirkung lofort ein und vermindert die Heftigkeit derselben. Nach Verlauf von 15-20 Minuten ist dieselbe nahezu beendigt und nun kann der Kolben Imählich im Wasserbade auf 70-80° erhitzt werden. Nach Verlauf on etwa einer Stunde kann die Operation als beendigt angesehen ^{ver}den. Nur bei Anwendung einer Kältemischung ist es möglich 45

atrium übt das Zink auf den Phosgenaether, derselbe wird nämlich beim Kritzen damit am umgekehrten Kühler im Wasserbade noch unter seinem Siedeankt hauptsächlich in Aethylchlorid und Kohlensäureanhydrid zersetzt, ohne dass ⁿZink eine Veränderung zu bemerken wäre. Es ist dies dieselbe Zersetzung, welche ^{3r} Phosgenäther nach WILM und WISCHIN erfährt, wenn er für sich bis gegen 4500 ^hitzt wird. Das gleichzeitige Auftreten aber von Chlorwasserstoff dabei deutet ^{nch} eine andere Zersetzung an, welche vielleicht unter Entstehung von Leuchtgas ^r sich geht. Amalgamirtes Zink und Zinkstaub wirken ebenso, letzterer aber ⁱ niedrigerer Temperatur. Platin schwamm übt diese Wirkung nicht.

A. Geuther,

oder höchstens 20 Grm. Phosgenaether auf einmal zu verwenden. Der Kolbenrückstand wird mit Aether wiederholt ausgezogen, der aetherische Auszug mit etwas Wasser gewaschen, über Chlorcalcium völlig entwässert und der Aether aus dem Wasserbade vorsichtig abdestillirt. Letzterer enthält das noch unverändert gebliebene Iodaethyl, während der Rückstand, dessen Menge bei Anwendung von 10 Grm. Phosgenaether höchstens 3,5 Grm. betrug, das Höhersiedende darstellt. Gegen 600 Grm. Phosgenaether wurde auf diese Weise behandelt.

Bei der mit der Gesammtmenge des erhaltenen höher siedenden Productes vorgenommenen Rectification stieg das Thermometer von $100-360^{\circ}$, es blieb dann noch neben abgeschiedener Kohle eine braune zähflüssige in Aether lösliche Masse in geringer Menge zurück, die nicht weiter untersucht wurde. Durch wiederholte Destillation, wobei immer unter Abscheidung von Kohle noch geringe Mengen Höchstsiedendes übrig blieben, konnte der Siedepunkt des schliesslich unverändert Destillirenden bis auf 260° erniedrigt werden. Was über dieser Temperatur überging, liess keinen constanten Siedepunkt bemerken, während bei dem bis dahin Destillirenden 3 Siedepunkte erkennbar schienen, nämlich einer bei $120-130^{\circ}$, ein anderer bei $180-190^{\circ}$ und ein dritter bei $250-260^{\circ}$.

Die sehr nahe liegende Vermuthung, dass das zwischen 120 und 130° Destillirende, welches mehr als die Hälfte der Gesammtmenge ausmachte, der Hauptsache nach aus Kohlensäureaether bestehen werde, hat sich durch die Untersuchung bestätigt. Das bei 126° dem Siedepunkt des Kohlensäureaethers Uebergegangene wurde analysirt:

0,2726 Grm. gaben 0,5308 Grm. Kohlensäure, entspr. 0,1448 Grm. = 53,1 Proc. Kohlenstoff und 0,2145 Grm. Wasser, entspr. 0,0238 Grm. = 8,8 Proc. Wasserstoff.

Da dieses Resultat der Zusammensetzung des Kohlensäureäthers, welcher 50,8 Proc. Kohlenstoff und 8,5 Proc. Wasserstoff enthält, nicht genau entsprach, so wurde wiederholt rectificirt und wieder analysirt. Gefunden wurden einmal 54,3 Proc. Kohlenstoff und 8,8 Proc. Wasserstoff, ein anderesmal 51,7 Proc. Kohlenstoff und 8,8 Proc. Wasserstoff. Diese immer noch bestehende nicht unwesentliche Abweichung der analytischen Resultate mit den berechneten führte zur Vermuthung, dass die ihren sonstigen Eigenschaften nach sich als Kohlensäureäther charakterisirende Substanz noch mit einem kohlenstoff- und wasserstoffreicheren Körper gemengt sein müsse, der sich durch Destillation nicht entfernen lasse, eine Vermuthung, die sich vollständig bewahrheitete.

Um dieses vermuthete Product, welches durch Rectification des

Kohlensäureäthers daraus abzuscheiden nicht gelang, zu erhalten, wurde die Gesammtmenge des Letzteren durch Kochen mittelst überfüssiger Natronlauge in einem mit einem umgekehrten Kühler verbundenen Kolben vollständig zersetzt. Die übriggebliebene auf der wässnien Lösung schwimmende ölige Flüssigkeit wurde von jener getrennt und zur Entfernung etwa darin enthaltenen Alkohols mit Calciumchloridlösung geschüttelt, entwässert und rectificirt. Sie ging zwischen 100 und 180° über, das niedrigst übergehende enthielt noch Alkohol, die zwischen 130 und 140° übergegangene Portion wurde analysirt und agab: 68,9 Proc. Kohlenstoff und 12,7 Proc. Wasserstoff; die Höchstsedende bei 479° destillirte Parthie wurde gleichfalls analysirt und errab: 66,5 Proc. Kohlenstoff und 10,9 Proc. Wasserstoff. Diese beiden Producte, welche dem Kohlensäureäther beigemengt waren, sind also tohlenstoff- und wasserstoffreicher als dieser und erklären die bei der Analyse desselben gefundenen Abweichungen. Da ihre Menge indess ngering war, um eine völlige Trennung durch Destillation zu gestatten, wurde von dieser hier Abstand genommen. Dass beides noch keine minen Producte waren, geht aus den analytischen Resultaten hervor, welche zu keinen einfachen Formeln führen.

Die Trennung der über 130° siedenden Producte durch fractionirte Destillation war äusserst schwierig und mühsam. Nach wochenlangem Rectificiren wurden ausser den immerhin noch beträchtlichen Zwischengliedern 2 Portionen erhalten, welche als möglichst rein angesehen werden konnten, eine solche, welche bei 179° destillirte und eine solche, welche bei 249° überging. Beide waren gelb von Farbe und wurden analysirt.

Das bei 179^o Uebergegangene ergab: 64,0 Proc. Kohlenstoff und 11,1 Proc. Wasserstoff; nach nochmaliger Rectification aber: 64,7 Proc. Kohlenstoff und 10,8 Proc. Wasserstoff; und nach einer dritten Rectification dieselben Resultate.

Das bei 249^o Uebergegangene ergab: 72,0 Proc. Kohlenstoff und 10,2 Proc. Wasserstoff und nach nochmaliger Rectification: 72,2 Proc. Kohlenstoff und 10,1 Proc. Wasserstoff.

Da diese beiden Producte eine saure Reaction zeigten und ausser ihrem Siedepunkte kein Kriterium vorhanden war, woraus sich ihre Reinheit ergeben hätte, im Gegentheil die Vergleichung der gewonnenen analytischen Resultate des bei 179° Destillirten mit denen, welche das aus dem Kohlensäureäther nach der Behandlung mit Natronlauge erhaltene Product von eben dem Siedepunkt ergab, ihre Unreinheit wahrscheinlich machte, so wurden dieselben mit überschüssiger starker Natronlauge unter häufigem Umschütteln in zugeschmolzenen Röhren

im Wasserbade so lange erhitzt, als noch eine Abnahme ihres Volums zu bemerken war, darauf von der Natronlauge getrennt, mit Calciumchloridlösung gewaschen und entwässert. Durch die Natronlauge hatte sich bei beiden das Volum vermindert, am meisten war dies bei dem bei 179º Destillirenden der Fall und durch Kochen der Natronlauge konnte bei beiden eine wie Alkohol riechende Flüssigkeit überdestillirt werden, welche sich nach wiederholter Rectification über Aetzkalk auch als gewöhnlicher Alkohol erwies. Derselbe konnte nichts anderes, als das Zersetzungsproduct einer Substanz sein, welche dem bei 479º Siedenden in grösserer, dem bei 249º Siedenden in geringerer Menge beigemengt war und deren Siedepunkt also offenbar zwischen den Siedepunkten beider Producte, aber näher an 179º als an 249º liegen musste. Als die so gereinigten öligen Producte nun wieder destillirt wurden, ging bei beiden, bei dem von 179º Siedepunkt aber mehr als bei dem von 249º Siedepunkt, einc Parthie schon zwischen 130 und 140º über, ganz von der Art, wie sie schon bei der Zersetzung des Kohlensäureaethers durch Natronlauge erhalten worden war. Dasselbe musste also ein 2. Zersetzungsproduct jener Substanz sein, die schon den Alkohol geliefert hatte. Als 3. Zersetzungsproduct fand sich bei der Natronlauge noch Kohlensäure. Nach dieser Erfahrung wurden nun auch die Zwischenglieder von 150-179° und von 180-249° Siedepunkt der gleichen Behandlung mit Natronlauge unterworfen und dieselben 3 Producte: Alkohol, Kohlensäure und das zwischen 130 und 140º Siedende erhalten. Die Menge des letzteren Productes war im Ganzen nun so bedeutend geworden, dass eine vollkommene Reindarstellung möglich war. Dasselbe erwies sich als dasselbe

Diaethylaceton,

welches FRANKLAND und DUPPA¹) durch Zersetzung des Diaethyldiacetsäureaethers mittelst alkoholischer Kalilösung oder mittelst Barytwasser neben Kohlensäure und Alkohol erhalten haben. Die Analyse einer zwischen 134 und 138° tubergegangenen Parthie ergab 73,6 Proc. Kohlenstoff und 12,2 Proc. Wasserstoff. Die Formel: C⁷H¹⁴O erfordert: 73,7 Proc. Kohlenstoff und 12,3 Proc. Wasserstoff.

FRANKLAND und DUPPA geben den Siedepunkt ihres Diaethylacetons zu 137,5 bis 139° an und das spez. Gewicht bei 22° zu 0,847. Das von der analysirten Substanz beobachtete spez. Gewicht war 0,820 bei 13°. Die Verbindung besitzt ausserdem auch noch den übereinstimmenden Geruch, so dass an der Identität beider Producte wohl nicht gezweifelt werden kann.

⁴⁾ Annal. d. Chem. u. Pharm. Bd. 438. S. 242.

Ueber die Producte der Einwirkung von Natrium etc.

Da nun das Diaethylaceton zugleich mit Alkohol und Kohlensäure lurch Einwirkung starker Basen aus den Diaethyldiacetsäureaether entsteht und da auch diese 3 Körper gleichzeitig als Zersetzungsproducte unter analogen Umständen in unserem Falle auftraten, so ist es sehr wahrscheinlich, dass auch unter den öligen Producten Diaethylliacetsäureaether, dessen Siedepunkt nach FRANKLAND und DUPPA bei 210-2120 liegt, mit enthalten war und dieser Aether also ein unmittel bares Product der Einwirkung von Natrium auf ein Gemenge von Phosgenaether und Iodaethyl ist. Beimabe zur Gewissheit wird dieser Schluss aber durch die Vergleichung der nun erhaltenen analytischen Resultate der übrigen Substanzen mit den früher gewonnenen.

Durch erneuete vielfache Rectificationen des vor der Behandlung mit Natronlauge, bei 479° siedenden Productes konnte eine Aenderung der Siedetemperatur nicht wahrgenommen werden. Die auch jetzt noch bei 479° (corr. bei 482,5°) siedende ölige Flüssigkeit gab aber bei der Analyse folgende Resultate:

0,1965 Grm. lieferten 0,4955 Grm. Kohlensäure und 0,1998 Grm. Wasser, entspr. 0,13514 Grm. = 68,8 Proc. Kohlenstoff und 0,0222 Grm. = 11,3 Proc. Wasserstoff.

Nachdem die Substanz noch wiederholt rectificirt worden war, argab sie folgende Zahlen:

0,1714 Grm. lieferten 0,4350 Grm. Kohlensäure und 0,1725 Grm. Wasser, entspr. 0,11864 Grm. = 69,2 Proc. Kohlenstoff und 0,019167 Jrm. = 11,2 Proc. Wasserstoff.

Aus diesen Resultaten leitet sich für die Substanz die Formel:

ber.	gof.	١	Vor der Behandlung mit Natron- lauge wurden erhalten :	
$C^9 = 68, 4$	68,8 69	<u>,</u> ,2	64,0	64,7
$H^{16} = 11, 4$	11,3 11	,2	41,1	10,8
$0^2 = 20, 2$		-	—	
400,0				

Die Verbindung ist im reinen Zustande fast farblos, besitzt einen ⁿ Terpenthin erinnernden Geruch und einen brennenden hintenach ^{ittern} Geschmack. Ihr spez. Gewicht wurde bei 42° zu 0,898 ge-^{anden.} Beim Erhitzen mit concentrirter Natronlauge bleibt sie unver-^{ndert.} Sie reagirt neutral. Ueber den chemischen Charakter derselben ^{isst} sich nichts mit Bestimmtheit angeben, wahrscheinlich ist sie ein ^{cetonartiger} Körper. Vom Diaethylaceton: C⁷H¹⁴O unterscheidet sie ^{ich} in der Zusammensetzung durch ein Mehr von C²H¹⁴O.

224 A. Geuther, Ueber die Producte der Einwirkung von Natrinm etc.

Die Rectification des früher bei 249^o siedenden Productes e dass auch hier der Siedepunkt durch die Behandlung mit Natror nicht verändert worden war, wohl aber die Zusammensetzung.

0,2162 Grm. des bei 249° übergegangenen Antheils ergab 0 Grm. Kohlensäure und 0,2133 Grm. Wasser, entspr. 0,16675 Gr 77,1 Proc. Kohlenstoff und 0,0237 Grm. = 11,0 Proc. Wasserste

0,2770 Grm. des noch wiederholt rectificirten Productes lie 0,7949 Grm. Kohlensäure und 0,2737 Grm. Wasser, entspr. 0, Grm. = 78,3 Proc. Kohlenstoff und 0,03044 Grm. = 14,0 Proc. We stoff.

Aus diesen Resultaten lässt sich für das Product die Fo $C^{20}H^{34}O^2$ ableiten.

ber.	gef.	Vor der Behandlung mit Natro lauge wurden erhalten :	
$C^{20} = 78, 4$	77,1 78,3	72,0 72,2	
$H^{34} = 11,1$	11,0 11,0	10,2 10,1	
$0^2 = 10,5$			
100,0			

Diese Verbindung ist ein gelbliches Oel, das beim jedesm Destilliren unter Bräunung eine geringe Zersetzung erleidet. Im C und Geschmack ist es der vorhergehenden Verbindung verwandt. spez. Gewicht wurde bei 42° zu 0,934 gefunden. Es ist dick und bei Winterkälte zähe. Ueber seine chemische Natur läss ebenfalls nichts bestimmtes aussagen, seine Formel setzt sich zusa aus $2 C^7 H^{14}O$ (Diaethylaceton) $+ 3 C^2 H^2$.

Vergleicht man die analytischen Resultate, welche vor de nigung der beiden letzteren Producte mittelst Natronlauge er wurden mit denen, welche nach der Reinigung damit erhalten wu so ergiebt sich, dass früher eine bedeutend geringere Menge Kohlund eine geringere Menge an Wasserstoff gefunden wurde, wie Fall sein musste, wenn das frühere Product noch mit Diaethylc säureäther C¹⁰H¹⁸O³, welcher nur 64,5 Proc. Kohlenstoff und 9.7 Wasserstoff enthält, veruneinigt war. Dieser Thatbestand, zusa mit dem oben auf Seite 222 u. 223 angegebenen macht also das handensein des Diaethyldiacetsäureaethers unter der ducten der Einwirkung des Natriums auf das Gemenge von Phc aether und Iodaethyl fast zur Gewissheit.

Jena, Ende December 1871.

Ueber Sciadopitys und Phyllocladus.

Von

Dr. Eduard Strasburger.

1) Sciadopitys verticillata.

Diese schöne japanesische Schirmfichte wurde unter ihrem jetzigen Namen 1) zuerst von Zuccarini, in Siebold's Flora japonica Bd. II. fasc. 4. Mschrieben und auf 2 Tafeln (101 und 102) dargestellt. Die igenthümlichen Nadeln derselben hat vor Kurzem Hugo v. Монц²) zum egenstand ciner besonderen Arbeit gemacht. Auf anatomische Merkale sich stützend, kam v. MOHL zu dem Resultate, dass die blattartigen ebilde, die in den Achseln kleiner Schuppen an der erwachsenen fanze auftreten, nicht einfache Blätter seien, sondern der Verwachsung er beiden ersten Blätter eines im Uebrigen verkummerten Achsel-Prosses ihre Entstehung verdanken. Diese Angabe widersprach theren Deutungen: so derjenigen von Zuccarini, der sie für gewöhn-^{che}, der Axe unmittelbar abstammende Blätter hielt (l. c. Bd. II. · 3) — (siehe auch PARTATORE in DECANDOLLE'S Prodromus Pars. XVI. 435) und denen von AL. DIOKSON (in SEKMAN'S Journal of Botany IV. 866, p. 224) der sie für phylloide Stengel (phylloid shoots) analog ^{enen} von Phyllocladus, erklärte. Aus einer Stelle bei Engelmann Jeber die Charaktere der Abietineen-Genera« in der bot. Zeit. 1866, 486, geht hervor, dass derselbe sie übrigens auch, als aus 2 ver-^{achsenen} Blättern entstanden aufgefasst hatte und sprach er diese ¹⁸sicht auch in der Sitzung der Naturfreunde in Berlin (1868 p. 14) ³, ohne sie jedoch eingehender zu motiviren.

¹⁾ Früher als Taxus verticillata. Thumberg, flora jap. p. 276.

Morphologische Betrachtungen des Blattes von Sciadopitys. Bot. Zeit. 4874,
 und 409.

· Dr. Eduard Strasburger,

Mir schien es von Wichtigkeit die von Hugo v. Mohl anatomisch gewonnenen Resultate entwicklungsgeschichtlich zu prüfen und eine kräftige Pflanze von Sciadopitys verticillata im hiesigen botanischen Garten bot mir die Gelegenheit hierzu.

Bekanntlich wechseln an der entwickelten Pflanze verlängere Internodien, die an hervorragenden Pulvini nur verkummerte, schuppenartige Blätter tragen, mit schr kurzen Internodien ab, wo in den Achseln dieser Schuppen die langen, nadelförmigen Gebilde stehen, scheinbar einen Quirl um die Axe bildend. Diese blattartigen Gebilde¹ sind linienförmig, an der stumpfen Spitze eingeschnitten, auf der oberen Seite convex, auf der unteren Seite ziemlich abgeflacht; in der Mittellinie beider Seiten verläuft eine Furche, welche auf der oberen Seite seichter ist, dieselbe schöne, grüne Farbe und den gleichen Glant wie die übrige Oberseite des Blattes besitzt, während die Furche der Unterseite tiefer und breiter ist und sich durch eine matte, gelblichweisse Färbung auszeichnet. Die anatomische Untersuchung zeigt, dass diese Gebilde von 2 in sich abgeschlossenen vollkommen freien Gefästbündeln durchzogen werden, diese Gefässbündel sind um ein Drittel de ganzen Blattdurchmessers von einander entfernt, ihre Markstrahlen sin nicht unter einander parallel, sondern divergiren stark nach der Oberseite des Blattes hin; doch was besonders hervorzuheben ist, ihr Hol ist nicht wie gewöhnlich der Oberseite, sondern der Unterseite zugewendet; sie kehrem dem entsprechend ihren Bast nach oben. v. Mos schloss aus diesem Umstande, wie auch aus anderen anatomische Thatsachen, dass diese blattartigen Gebilde aus der Verwachsung de beiden ersten Blätter, einer im übrigen verkümmerten secundären Ax entstanden seien. Es sind die beiden einzigen Blätter derselben, den an ihrer Basis ist nichts von anderen blattähnlichen Gebilden zu bemerken; dass es Blätter sind und nicht Phyllocladus ähnliche Cladodio wie es AL. DICKSON behauptete, erkannte von MOBL aus dem Vorhanden sein eines nur den Coniferenblättern eigenen Gewebes, das er al Transfusionsgewebe²) bezeichnet und das ihre Gefässbündel um schliesst. Endlich folgt, seiner Annahme nach, aus der Stellung de Bündel, dass die beiden Blätter hier mit ihren gegen die primäre Ax des Triebes hingewandten Rändern verwachsen sind, dass daher di

⁴⁾ v. Mont l. c. p. 8.

²⁾ l. c. p. 42. Bin Gewebe, das den Uebergang vom Gefässbündel zum umge benden Gewebe vermittelt und in welches das Gefässbündel sich allmälig in dc Blattspitze auflöst. Dieses Gewebe scheint den Uebertritt des Saftes aus den Gefäss bündeln zum Parenchym des Blattes zu erleichtern.

Ueber Sciadopitys und Phyllocladus.

heinbar obere Seite des Doppelblattes organographisch als die Unterite aufzufassen sei¹). Gestützt wurde diese Deutung auch durch inen Vergleich mit jungen Samenpflanzen, wo die Cotyledonen ind die ersten auf dieselben folgenden Blätter einfach sind, ohne Mutzblatt auftreten, keinen Einschnitt an der Spitze haben und demmtsprechend auch nur ein einziges Bündel besitzen, das sein Holz nach wen und seinen Bast nach unten kehrt.

Die gegebene Deutung konnte auch nicht entkräftigt werden durch has Auftreten, ja durch das Beschränktsein der Spaltöffnungen auf die untere Furche des Blattes (also auf die ermittelte organographische Oberseite) während die Cotyledonen und ersten einfachen Blätter von Sciadopitys ihre Spaltöffnungen nur auf der Unterseite tragen; denn auch bei anderen Coniferen befinden sich bei ungewöhnlicher Blattstellung die Spaltöffnungen häufig auf der aufwärts gerichteten Seite, w. B. bei Thujopsis, Libocedrus, bei Juniperusarten etc.

An der Keimpflanze folgen auf die beiden lineal-lanzettförmigen Smenblätter die, dem ersten sehr verkürzten Jahrestriebe angehörenden enfichen Laubblätter (mit ungetheilter Spitze und einfachem Gefässbindel), mit den Samenblättern zusammen einen Scheinquirl bildend. Der nächste Jahrestrich besitzt schon, abgeschen von der schwächeren Ratwickelung, vollkommen die Organisation der späteren Triebe; der untere Theil desselben besteht nämlich aus verlängerten Internodien mit verkümmerten schuppenartigen Blättern, - der obere aus äusserst rerkürzten Internodien, wo in den Achseln der Schüppchen bereits die linienförmigen, an der Spitze emarginirten, mit ? Bündeln versehenen Blatter stehen. Es ist also, sagt v. Mont (p. 3) auf den ersten Blick ^{klar}, dass wir einen ähnlichen Fall vor uns haben, wie ihn eine keimende Kiefer zeigt; Entwicklung des Blattes an der primären Axe im *sten Jahre, Verkümmerung desselben in den späteren Jahren an allen lieben und Ersatz durch ein aus einer verkümmerten secundären Axe summendes blattähnliches Gebilde. Die Keimpflanzen, die ich unter-Mehte, bestätigten in allen Punkten die MonL'schen Angaben. Die "htwicklungsgeschichtlichen Untersuchungen brachten aber noch weiere interessante Einzelheiten. Der Vegetationskegel von Sciadopitys nterscheidet sich nur wenig von dem der Pinusarten. Eine continuirche Dermatogenschicht überzieht zunächst den Scheitel; unter der-¹ben befindet sich eine doppelte Lage Periblem und das spitz nach ^{en} zulaufendes Plerom : die beiden Letzteren nur schwach von einder geschieden. Die Blattbildung wird durch tangentiale Theilungen

⁴⁾ l. c. p. 24.

Bd. VII. 2.

der Dermatogenzellen, wie bei Pinusarten, eingeleitet. Die Blätter bleiben schuppenförmig, sind sehr einfach gebaut, besitzen eine spaltöffnungslose Oberhaut, ein lockeres, inneres Gewebe, in welchem man, in der Mediane des Blattes, der oberen Fläche näher, ein schr einfaches Bündel verlaufen sieht. In älteren Blättern werden die Zellen der etwas dichter zusammenschiessenden, auf die Epidermis folgenden Zelllage, einzelt stärker verdickt und bilden so unregelmässig zerstreute Spicularzellen. In den Achseln dieser Blätter werden in bestimmten Intervallen die Doppelblätter gebildet. Sie treten schon in geringer Entfernung vom Vegetationskegel auf, doch erst dann, wenn ihr Tragblatt in soiner Enwicklung ziemlich vorgeschritten ist und sein einziges centrales Gefässbundel zu bilden beginnt; sie erheben sich aus der Axe durch tangentiale Theilungen im Periblem als kleine, etwas flachgedrückte Höcker, sonst durchaus wie gewöhnliche Achselknospen. Die Anlage bleibt bis an die Basis frei; ihre Oberfläche ist nur auf de allerjüngsten Zuständen gleichmässig abgerundet, zeigt aber alsbald einen deutlichen, medianen Einschnitt am Scheitel; diesem folgt # etwas älteren Anlagen ein schwacher medianer Einschnitt auf der Unterseite. Ein Scheitelwachsthum ist über dieses erste Stadium hinau an der Anlage nicht mehr wahrzunehmen; sie wächst nur durch intercalare Theilungen, besonders an ihrer Basis, wie andere Nadeln rash in die Länge. So lange der Einschnitt noch wenig sichtbar ist, erinner das Doppelblatt an eine junge Fruchtschuppenanlage, etwa von Pices, noch mehr von Ginkgo; ein Vegetationskegel, auf den diese beiderseitigen Blattanlagen bezogen werden könnten, tritt hier aber nie besonders vor; der Scheitel der Axc selbst ist vor der Bildung der Querfurche jedenfalls als solcher aufzufasson, allein er geht in der Bildung der beiden Nadeln auf, so dass sich beide Anlagen in der Mittellinie unmittelber bertthron. Der Einschnitt am Scheitel ist bei jungen Doppelnadeln viel auffallender als bei älteren, denn die Doppelnadeln nchmon bedoutend an Länge zu, während der Scheitel fast unverändert bleibt. Auch die Furche auf der Unterseite der Anlage wird bald deutlicher; es hal sich eine ihr gegenüberliegende doch schwächere auf der Oberseite gobildet. Um die Anlage herum entspringen Haare, die rasch wachsen, mehrzellig werden, sich vielfach hin und her krümmen und in einer kopfförmigen Anschwellung enden; sie dienen wohl, da das Tragblet sehr zart geblieben, zum Schutze des jungen Doppelblattes. Erst went das Doppelblatt etwa die Länge von 0,65 Mm. erreicht hat, beginnt die Bildung der Gefässbündel in demselben. Man sicht von den beider nächsten Stammbündeln aus, über der Bündelinsertion des Deckblattes je ein Bündel abgehen und ziemlich rasch in aufsteigender Bichtunf

Ueber Sciadopitys and Phyllocladus.

sich in das Doppelblatt hinein differenziren. Ihr Verlauf wird zunächst durch das Auftreten einzelner Spiralzellen in dem langgestreckten mittkren Gewebe jedes der Doppelblätter angezeigt; einzelne Stellen werden hierbei häufig übersprungen, um alsbald durch nachträgliche Differenzirung eingeholt zu werden. Das Bündel wächst mit dem Blatte fort. Es sind dies die nämlichen beiden Bündel, die auch bei anderen Coniferen die Achselknospen versorgen und wir sehen sie auch bei Sciadopitys in diejenigen Achselknospen treten, die zu Zweigen auswachsen. Die Bündel zeigen innerhalb der Axe ihre habituelle Lage, und treten auch in derselben Lage d. h. mit schräg nach oben und ausen gerichtetem Baste in die Anlage des Doppelblattes.

Wir haben es hier also auch mit einer ganz ähnlichen Erscheinung wie bei den Fruchtschuppen der Coniferen zu thun. Mit dem Wegfallen der äusseren Gliederung an der Achselknospe fällt auch die Ursache weg, welche die Bündel aus ihren ursprünglichen Bahnen ablenkte, - sie setzen nun in unveränderter Lage ihren Lauf aus der Axe fort. Diese Stellung mit schräg nach oben gekehrtem Baste hört auf wunderhar zu sein, sobald man dieses erwägt, und dass die Bündel wirklich diese Lage schon in der Axe haben und dass sie aus der Art ihrer Einfügung im Bündelkreise derselbe folgt, kann man auf jedem Tangentialenschnitte sehen.

Jedes Bündel verfolgt selbständig im Doppelblatt seinen Weg und ist zu keiner Zeit mit dem anderen verbunden; es zeigt von Anfang an dieselbe Stellung, wie im fertigen Blatte. Auf Querschnitten des Stengels durch die verkürzten Internodien, kann man die Bündelgruppen (1 fürs Deckblatt und 2 für das Achselproduct) auf ihrer Wanderung durch die Rinde in verschiedener Entfernung von der Stengelmitte verfogen.

Dieses Alles zeigt unzweifelhaft, dass wir es hier mit einer Achsel-¹⁰⁰spe zu thun haben und die Entwicklungsgeschichte lehrt uns ³⁰sserdem, dass die Vereinigung der beiden Blätter dieser Knospe zum ³⁰spelblatte bis auf die ersten Stadien ihrer Entwicklung zurückgreift, ⁵⁰ dass ein Vegetationskegel zwischen denselben sich zu keiner Zeit ^{mehr} nachweisen lässt. So wichtig diese Befunde, so werden sie es ⁸⁰ch mehr, wenn man diese jungen Zustände der Doppelnadel mit den ^{ent}sprechenden bei Pinus Pumilio vergleicht.

Die Kurztriebe in den Achseln der Deckblätter erzeugen bei Pinus Pumilio zunächst eine Anzahl Niederblattpaare (meist 7). Ein deutlicher Vegetationskegel ist zwischen denselben vorhanden, ähnlich dem der laupttriebe. Nach diesen Niederblättern folgen die beiden Nadeln; sie "helten sich zu beiden Seiten des Vegetationskegels, doch so nahe an

Dr. Eduard Strasburger,

einander, dass derselbe in ihrer Bildung fast ganzlich aufgeht; nur ein kleiner, unscheinbarer Höcker bleibt in der Mitte zwischen den Nadeln zurück und wird in die neuen Wachsthumsrichtungen nicht mit hineingezogen. Denken wir uns auch diesen mit emporgehoben, so bleiben beide Nadeln verbunden und erzeugen dieselbe Doppelnadel wie bei Sciadopitys. Diese Aehnlichkeit der Anlagen ist so auffallend, dass man sich bei ihrer Betrachtung dieses Gedankens gar nicht erwähren kann. Er erweckte denn auch in mir die Vermuthung, ähnlich verwachsene Doppelnadeln könnten ausnahmsweise bei Pinus vorkommen: ich suchte nach solchen und war auch bald so glücklich mehrere sowohl bei Pinus Pumilio wie auch bei Pinus sylderselben . vestris zu finden. Sie sind bisher wohl deshalb nur übersehen worden, weil sie den Kurztrieben mit nur einer Nadel, die ebenfalls und zwar viel häufiger vorkommen, sehr ähnlich sind. Bei aufmerksamer Betrachtung kann man sie immerhin schon äusserlich erkennen; sie sind dicker als gewöhnliche Nadeln, allseitig abgerundet und hin und wieder wie die Doppelnadeln von Sciadopitys mit 2 kurzen Spitzen am Scheitel verschen. Auf dem Querschnitte zeigten solche Pinusdoppelnadeln ? mehr oder weniger von einander getrennte Gefässbündelgruppen, jede aus 2 Bündeln bestehend. Jedes dieser Bündelpaare verhielt sich wie das Bündelpaar eines gewöhnlichen Blattes und was von einer besonderen Schutzscheide umgeben. Wo die Verwachsung eine recht vollständige war, zeigten die beiden Bündelpaare auch die nämliche Stellung wie die beiden Bündel im Doppelblatte von Sciadopitys: sie kehrten ihre Markstrahlen und ihren Bast divergirend nach oben und nach aussen, ihr Holz nach unten und innen. Meist waren die beiden Blätter aber nicht völlig mit einander verwachsen, und dann war es, abgesehen von späteren Drehungen, stets die nach unten gekehrten Seiten, die eine mehr oder weniger tiefe Spalte zwischen sich liessen.

Das Nadelpaar schien also nicht rein transversal zu stehen, sondern nach der oberen Kante etwas verschoben. Es lässt sich das vielleicht mit dem Umstand in Zusammenhang bringen, dass häufig die Niederblätter statt decussirt nach $\frac{1}{5}$, an den Kurztrieben stehen und dann die Nadeln vielleicht auch in derselben Stellung folgen. So dürften dann die beiden letzten der Hauptaxe zugekehrten Glieder des Spirale sein und also auch nur um $\frac{2}{5}$ des Stammunfanges von einander abstehen. Möglich ist weiter, dass sie dann auch leichter verschmelzen und dass in Folge dessen solche auf der unteren Seite einen Spalt zeigende Doppelnadeln besonders häufig vorkommen. Ich habe diesen Umstand hier besonders hervorgehoben, weil er vielleicht auch erklärt, warum zei Sciadopitys die untere Furche etwas tiefer als die obere ist. Dieser Pankt lässt sich freilich nur hypothetisch behandeln; so viel ist aber lurch die Entwicklungsgeschichte und den Vergleich mit Pinus sicher estellt, dass auch die Doppelnadel von Sciadopitys aus 2 Blättern beteht, die der Hauptsache nach mit ihren Oberseiten verbunden sind, len Vegetationspunkt der sie trennen müsste, gemeinschaftlich empornebend.

Durch die Beobachtung homologer Fälle bei Pinus Pumilio und glvestris werden überhaupt alle Einwände, die man sonst noch gegen liedoppelte Zusammensetzung der Sciadopitysnadeln vorbringen könnte, veseitigt. Endlich findet dieselbe auch ihre glänzende Bestätigung in imem von MAXWELL T. MASTERS (Vegetable Teratology¹) beobachteten nonströsen Falle. MAXWELL T. MASTERS beschreibt hier nämlich, wenn weh mit ganz anderer Deutung, die Durchwachsung einer Doppelnadel von Sciadopitys. Das Pseudoblatt hatte sich gespalten und zwischen minen beiden Theilhälften eine kleine Axe entwickelt, die an ihrem Scietel einen Wirtel neuer Pseudoblätter trug.

Diese Bildungsabweichung beweist, dass in manchen Fällen ein Fagetationskegel zwischen beiden Blättern zurückbleiben, und dieelben getrennt auftreten können, ja dass dieser Vegetationskegel sogar a einem Zweige auswachsen könne. Bei der Kiefer kommt der analoge fal bekanntlich ziemlich häufig vor, und wenn dieselbe, von Schafen terbissen ihrer Spitze beraubt wurde, oder wenn der Kiefermarkkäfer fan Baum befällt, so treibt der Vegetationskegel zwischen den Nadeln bisweilen junge verlängerte Zweige — was bei der canarischen Kiefer fagar immer geschieht, sobald sie viel Aeste und Zweige verloren hat²). — Es wäre zu versuchen, ob man durch Entfernung der Zweigenden, fe jungen Doppelnadeln der Sciadopitys nicht künstlich zu dieser abtermen Zweigbildung bewegen könnte.

Die Beobachtungen an Pinus Pumilio und sylvestris legten die Armuthung nahe, dass auch bei der californischen Nusskiefer, der Aus monophyllos Fremmont, deren Kurztrieb nur eine Nadel trägt, dese eine Doppelnadel sei³). — Dieses bestätigte sich nicht, vielmehr Arhielten sich die einnadligen Sprosse ganz wie der grössere Theil der einnadligen auch bei Pinus Pumilio — sie besitzen wirklich nur

⁴⁾ London 4869, p. 354, Anm. 3. Auf diese Stelle machte mich Herr Prof. Burg gütigst aufmerksam.

¹⁾ SCHACHT, der Baum p. 414.

³⁾ Diese Vermuthung wurde schon von H. BRAUN ausgesprochen: Individuum P. 66 Anm.

eine einzige einseitige Nadel ¹), an deren Basis der verschrumpfte Vegtationskegel des Kurztriebes häufig noch nachzuweisen war. Auf Querschnitten durch einen solchen Kurztrieb von Pinus monophyllos findet man zunächst einen geschlossenen Bündelkreis, der schwache Bündel an die, wohl nach 2/5 gestellten (bis 7) Niederblätter abgiebt. Höber hinauf öffnet sich der Bündelkreis einseitig und tritt als einfaches und einfach bleibendes Bündel in die, die Axe scheinbar unmittelbar forsetzende Nadel. Ihr gegenüber sind Spuren des Vegetationskegels zu erkennen.

Dass die Spaltöffnungen in so eigenthümlicher Weise bei Sciadepitys nur in der unteren Furche stehen, verleitet fast zu der Annahme, dass die, bei der Urform noch getrennten Blätter, ihre Spaltöffnunge auf der Oberseite trugen, ein Fall der bei Coniferen nicht selten 🛤 und dass diese Spaltöffnungen nur deshalb auf die untere Furche beschrünkt sind, weil diese allein noch einen Streifen der ursprünglichet Oberfläche bietet. (Achnlich wie die untere Furche an der Doppelnadi von Pinus.) Damit scheint es nun aber nicht gut übereinzustimmet dass die Samenlappen und ersten einfachen Blätter von Sciadopity. ihre Spaltöffnungen nur auf der Unterseite tragen. Doch auch bis Thuja, Cupressus, Juniperusarten werden an den Blättern der erwachsenen Pflanzen die Spaltöffnungen nur auf der inneren oder haup sächlich doch auf der inneren also morphologisch oberen Blattfächt angelegt, während sie an den frei entwickelten ersten Blättern der Samenpflanzen vornämlich auf der Unterseite oder doch allseitig autreten. Möglich also, dass bei den hypothetischen Vorfahren der Sciadopitys, die aller Wahrscheinlichkeit nach, zweinadligen Kurztriebe, 🗰 die heutigen Pinusarten, besassen, die Spaltöffnungen auch nur auf den einander zugekehrten, geschützteren Blattflächen, also den Oberseite der Nadeln gebildet wurden, ähnlich wie sie bei den vorhin erwähntet Cupressineen nur auf der, der Axe angedrückten, geschützteren Oberseite sich zeigen. Leider bieten die Doppelnadeln von Pinus hier kein Anhaltepunkte, da sie ebenso wie die einfachen Nadeln, ihre Spaltöffnungen allseitig tragen.

Von Mohl glaubte eine auffallende Achnlichkeit zwischen der Blättern von Sciadopitys und der Fruchtschuppe der Abietineen ge funden zu haben, indem er hierbei von der bekannten Deutung vo BRAUN und CASPARY ausging, dass die Fruchtschuppe der Abietinee aus 2 Blättern, den ersten Blättern einer noch unterdrückten Achsel

4) Dieses erkannte auch schon VAN TIEGBEN: Ann. d. sc. nat. 5^{ème} série, T. 3 p. 273.

Ueber Sciadopitys und Phyllocladus.

spe verwachsen sei. Hingegen bin ich aber auf Grund zahlreicher entklungsgeschichtlicher Untersuchungen (wie dies in einer demnächst erscheinenden Arbeit gezeigt werden soll) zu der Ueberzeugung geumen, dass die Fruchtschuppe discoiden Ursprungs sei und somit auch die Analogie beider in diesem Sinne weg. Sie bleiben als izes sich nur insofern analog, als sie beide metamorphosirte Achprosse, und zwar metamorphosirte Kurztriebe vorstellen.

Im Uebrigen machen sich Unterschiede zwischen beiden schon auf allerersten Entwicklungsstadien geltend, denn während die kleine uthige Inflorescenzanlage der Abietineen sofort durch starkes einiges Wachsthum ihrer Aussensoite die Fruchtschuppen erzeugt und Vegetationskegel die beiden Blattrudimente und die Achselproducte selhen (die beiden Blütthen), auf die Oberseite der Anlage veroben werden — entwickelt hier die Achselknospenanlage sofort beiden Blätter, die sich gemeinschaftlich erheben und ihre urungliche Wachsthumsrichtung beibehaltend, durch basale Streckung andere Nadeln in die Länge wachsen.

2) Phyllocladus.

In mancher Beziehung ist Phyllocladus noch merkwürdiger als Schon RICHARD 1) macht darauf aufmerksam, dass die adopitys. enthumlichen, blattartigen Gebilde dieser Pflanze in den Achseln iner Niederblätter stehen und dass man sie deshalb wohl als abgehte Zweige aufzufassen habe. -- Seitdem sind sie auch fast ausinslos als Phyllodien und Cladodien beschrieben worden, ohne dass " meines Wissens, eine eingehende Untersuchung derselben unternmen worden wäre. Jede nähere Betrachtung lehrt nun aber, dass solches Cladodium von Phyllocladus ein höchst complicirtes Gele ist und dass es jedenfalls noch eine andere morphologische Bemung als die eines abgeflachten Zweiges verdient. Ich wähle als les Beispiel Phyllocladus rhomboidalis Rich. Es wechseln hier an 'Axe die sterilen Niederblätter an verlängerten Internodien mit fer-¹ Niederblättern an vorkürzten Internodien ab. Aus den Achseln ser letzteren entspringen die Cladodien, sie sind einander in Folge sen genähert, wenn auch nicht bis zur Bildung eines Scheinwirtels, bei Sciadopitys. Die Niederblätter sind sehr zart gebaut, klein, eal; sie sterben frühzeitig ab, und sind an der Basis entfalteter Clalien nur noch als gebräunte kleine Schuppen zu erkennen. Die Clalien sind rautenförmig, gesägt, manche wohl auch mehr oder -----

¹⁾ Mémoire sur les Conifères et les Cycadées, p. 92.

weniger alternirend fiederförmig eingeschnitten. Schon mit den blossen Auge kann man erkennen, dass die Zähne am Rande des Cladodium von verschiedener Natur sind : einzelne erscheinen grösser und enden in einer scharfen gebräunten Spitze, die anderen sind kleiner, weniger scharf und meist nicht verdorrt; auch bemerkt man, dass die grösseren, je an der Basis eines meist vorspringenden Abschnittes des Cladodiumrandes stehen, alle mit, nach dem Scheitel des Cladodium zu, gerichteter Spitze; die kleinen stehen auf den Abschnitten und sind nach dem Scheitel dieser gekehrt. Hält man ein solches Cladodium, welches durch Liegen in Alkohol durchsichtiger geworden, gegen das Licht, so bemerkt man zunächst einen starken Mittelnerv in demselben und von diesem ausgehend, abwechselnd einfache Zweige, welche in den grösseren Zähnen enden und ganze Zweigsysteme, welche in die vorspringenden Abschnitte des Randes laufen und sich in diesen auf die einzelnen Zähne vertheilen. Das System eines solchen Abschnittes wiederholt in allen Stücken (nur in kleineren Maassstabe), das System des ganzen Cladodiums. Die einfachen Zweige und Zweigsysteme wechseln rechts und links am Cladodium ab; in des obersten Theilen derselben sieht man endlich nur die einfachen Zweige Was liegt nun näher als anzunehmen, dass ein solches Cladodium ein ganzes Zweigsystem repräsentire; dass die grösseren Zähne die Deckblätter; die Abschnitte über denselben secundäre Zweigsvsteme in ibren Achseln seien. Auf dem Querschnitte gewinnt diese Annahme Man findet nämlich den Mittelnervet bedeutend noch an Stütze. an der Basis des Cladodiums von einem kleinen Bündelkreise gebildet dieser Bündelkreis spaltet sich in eine vordere und hintere Hälfv und gieht ein Blattbündel und 2 Achselknospenbündel ab. Das Blattbundel kehrt seinen Bast nach dem Cladodiumrande, sein Holz der Mitt desselben zu; die beiden Achselknospenbündel verschmelzen mit ihre Rändern und zeigen eine dem Blattbündel entgegengesetzte Stellung Das Blattbündel tritt in den grösseren Zahn, das Achselknospenbündt in den darüber liegenden Randabschnitt, doch haben auch sie zuvo sich zum Kreis vereinigt und abwechselnd rechts und links Blattbünde abgegeben, die in den kleinen Zähnen enden. In dem unteren Theil des Cladodiums sind alle Deckblätter fertil, am Scheitel erzeugt da Cladodium, nur noch sterile Deckblattzähne und endet schliesslic zwischen denselben in einem abgestorbenen, gebräunten Vegetations kegel.

Jede Flächenansicht und jeder Querschnitt zeigen diese Verhält nisse in der anschaulichsten Weise. Auch kann man aus dem Quer schnitte ersehen, dass sich der Bau des Cladodiums auf seinen beide

Ueber Sciadopitys und Phyllocladus.

iten gleich bleibt und die Epidermis auch beiderseits Spaltöffnungen art.

Wie Phyllocladus rhomboidalis verhält sich auch Ph. trichoanoides Don., nur dass die einzelnen Abschnitte am Cladodium irker entwickelt und auseinender gerückt sind, so dass es das Anhen eines gefiederten Blattes erhält. Die Fiedern wiederholen in was kleinerem Maassstab die Verhältnisse des ganzen Cladodiums »n Phyllocladus rhomboidalis, denn sie zeigen zum Theil auch noch chselproducte in den Achseln ihrer untersten Deckblattzähne. Die iedern alterniren deutlich an der Mittelaxe des Cladodium. Der Bau nd der Gefässbündelverlauf ist der nämliche wie bei Ph. rhomboialis. Die Entwicklungsgeschichte des Ph. trichomanoides ist sehr icht zu verfolgen, da die einzelnen Abschnitte das ganze Claodium wiederholen; es genügt ein einziges junges Cladodium aus iner sich öffnenden Knospe, um dieselbe vollständig zu erhalten. Das ladodium wächst mit einem Vegetationskegel, der sich wie der Vegeinskegel des Stammes verhält. Aus dem Vegetationskegel werden bwechselnd rechts und links Blattanlagen erzeugt; diese nehmen sch an Grösse zu, der Vegetationskegel entwickelt sich zwischen den-Men weiter. In den Achseln des 3.-4. Blattes unterhalb desselben ildet sich die erste Anschwellung für die Achselknospe. Diese erheint in Folge gemeinsamer Streckung an der Basis, alsbald auf das eckblatt etwas hinaufgerückt. Etwa am fünften Blatte vom Scheitel eht man die Achselknospe ihr erstes Blatt bilden, es entsteht gegenber dem Deckblatte auf der Aussenseite; das nächste folgt auf der eckblattseite über demselben; das nächste wiederum auf der Axenite u. s. w. An besonders kräftigen Cladodien sieht man auch hier ch weitere Achselanlagen entstehen, doch bringen diese Letzteren es um mehr bis zur Blattbildung. Das junge Cladodium zeigt hierbei e schwache Bevorzugung des Wachsthums der Innenseite, die sich Folge dessen etwas wölbt; die Aussenseite wird concav; die Spitzen * Deckblätter greifen hier herüber. Während der weiteren Enticklung der Achselproducte dauert auch die gemeinsame Streckung selben und des Deckblattes an der Basis fort; hierdurch wird die adodiumspreite erzeugt.

Bei Ph. rhomb. ist diese Streckung allen seitlichen Anlagen geinsam: die Cladodiumfläche bleibt zusammenhängend; bei Ph. choman. wachsen in Folge einer bedeutenderen Verlängerung der Welaxe die einzelnen Abschnitte selbständig aus und bilden die isolen Fiedern. Das junge Cladodium von Ph. trich. ist ganz schmal, äter wird es breiter, die sich bildenden Blättchen immer grösser bis

Dr. Eduard Strasburger, Ueber Sciadopitys und Phyllocladus.

236

die freien Deckblattenden gegen dieselben verschwinden und schli lich nur noch wie Zähnungen des Randes erscheinen. Die prim Blätter am Cladodium sind stärker als die secundären an den Ach abschnitten, sie bleiben, wie erwähnt, auch stärker markirt, und dorren an ihrer Spitze, während die dazwischen liegenden klein noch längere Zeit frisch bleiben. Bbenso wie die einzelnen Absch am Cladodium wird dasselbe auch in der Achsel des Niederblatte Zweige erzeugt, nur entsteht hier nicht das erste Blatt des Cladoc dem Deckblatt gegenüber, sondern rechts und links von domselben erfolgt denn auch nicht eine gemeinsame Streckung, an der Basis. durch das Deckblatt auf das Achselproduct emporgehoben würde. dern dieses Deckblatt behält seine Stellung und verdorrt am während sich das Cladodium frei aus seiner Achsel entwickelt. Abschnitte des Cladodiums zeigen übrigens auch hier schon eine A nation, doch stehen sie, wie erwähnt retchs und links vom Deckbl Wir haben also bereits dem Verhalten der primären Anlage des dodiums einen Anhaltepunkt zur Beurtheilung seiner Abschnitte gewonnen. Dieser für Coniferen scheinbar ganz vereinzelte Fall Bildung des ersten Blattes des Achselsprosses an der Axenseite ge über dem Deckblatt, ist nämlich, wie hiernach zu schlicssen, aus ersten Typus durch eine frühzeitige Drehung der jungen Anlage un in der Achsel ihres Deckblattes entstanden.

Diese Drehung greift so weit in der Entwicklung zurück. sie sich kaum mehr nachweisen lässt und findet vielleicht nur ihren unmittelbaren Ausdruck in dem Verdrängen der Deckblattsp auf die Bauchseite der Anlage. Auch sieht man sehr häufig bei Ph cladus trichom. einzelne Abschnitte, namentlich am Scheitel des dodium eine Transversal-Stellung einnehmen. Dann wird auch s die Alternation der secundären Blattanlagen an einem solchen schnitte und das Hinaufrücken des Deckblattes auf dasselbe ver dert. Wenn aber auch die Blätter an den Cladodiumabschnitten, sprünglich rechts und links gegen ihr Deckblett gestanden. weniger bleibt eigenthumlich ihre Alternation und ihre Beschrän auf nur zwei Seiten des Triebes. Sie ist jedenfalls eine Folge frühzeitigen Abflachung, dass sie aber aus einem gewöhnlichen Sp entstanden, dafür sprechen die so häufigen Durchwachsungen selben. Nicht nur bei Ph. trichom., sondern auch bei Ph. rhe entwickelt sich der Vegetationskegel des Cladodiums häufig weiter bildet wieder Blätter und neue Cladodien in spiraliger Aufeinan folge.

Zur vergleichenden Anatomie der Schultermuskeln.

Von

Max Fürbringer,

Assistent an der anatomischen Anstalt zu Jena.

......

I. Theil

Hiersu Tafel XIV-XVIII.

Vorwort und Einleitung.

Die Muskulatur der Schulter ist schon seit früher Zeit zu einer viel bearbeiteten Frage der vergleichenden Anatomie gemacht worden. Die ersten ausführlicheren Arbeiten von MECKEL¹) und CUVIER²) zeichnen sich durch eine gewisse Genauigkeit und (namentlich bei MECKEL) detaillirte Beschreibung aus, entbehren aber einer wirklichen, durch Gründe unterstützten Vergleichung und haben darum nur den Werth zootomischer Vorarbeiten. Einen wirklichen Fortschritt auf diesem Gebiete bietet die Inauguralabhandlung PFEIFFER's³) dar, die manche schätzenswerthe Deutungen der Schulterknochen giebt und zugleich in einer dem Geiste der neueren vergleichenden Anatomie entsprechenden Weise eine Vergleichung der Schultermuskeln der Säugethiere, Vögel und Amphibien wenigstens versucht. Von demselben Gesichtspuncte aus sind die Untersuchungen von STANNIUS⁴) zu beurtheilen, während hingegen die OwERS⁵) ein zwar sehr reiches, aber geistig noch wenig verarbeitetes

¹⁾ System der vergleichenden Anatomie. III. Halle 1828.

²⁾ Leçons d'anatomie comparée. I. 2. ed. Paris 1835.

³⁾ Zur Anstomie des Schultergerüstes und der Schultermuskeln bei Säugethieren, Vögeln und Amphibien. Giessen 1854.

⁴⁾ Anatomie der Wirbelthiere. 1. Aufl. Berlin 1846. 2. Aufl. Berlin 1854. fotztere blos Fische und Amphibien enthaltend.)

⁵⁾ Comparative Anatomy and Physiology. London 4866. 67. Bd. VII. 1.

Max Fürbringer.

Material darbieten und insoïern mit den geistvollen, durchdachten osteologischen Arbeiten dieses Forschers wenig gemein haben. Eine in neuerer Zeit erschienene Arbeit RÜDINGER's¹) ist als ein Rückschritt auf diesem Gebiete zu bezeichnen. Der Verfasser nimmt den von den früheren vergleichenden Anatomen in richtiger Einsicht verlassenen alten Standpunct der Analogien ein, wonach die functionelle Bedeutung der Muskeln als Vergleichungspunct benutzt wird, giebt darnach Vergleichungen, die bei der ersten Einsicht sich als falsch erweisen und lässt bei der Beschreibung der Muskeln oft die nöthige Genauigkeit und Kenntniss der zu ihnen in Beziehung stehenden Knochen vermissen.⁷)

Durch GEGENBAUR³) und darauf durch PARKER⁴) wurde zuerst eine wirkliche endgültige vergleichende Untersuchung der Knochen des Brustgürtels und des Brustbeins gegeben und damit der vergleichenden Myologi eine neue Basis geschaffen. Die neueren nach dieser Zeit erschienene myologischen Monographien, namentlich der Engländer, geben Kenntnisvon der erfolgreichen Benutzung dieser Errungenschaften. Eine allenthalben richtige Deutung der Muskeln wird jedoch noch vermisst. Eine Fortschritt von principieller Bedeutung repräsentirt die Abhandlun-ROLLESTON's⁵), die eine allerdings in ihren Resultaten unrichtige unleicht widerlegliche Vergleichung einzelner Schultermuskeln giebt, ab-

 Untersuchungen zur vergleichenden Anatomie der Wirbelthiere II., Schultzergürtel und Brustflosse der Wirbelthiere. Leipzig 4865.

4) A Monograph of the Structure and Development of the Shoulder-Girdle En ad Sternum in the Vertebrata. London 1868.

5) On the Homologies of certain Muscles connected with the Shoulder-joint. Trans. Linn. Soc. of London. Vol. XXXI. 3. 4869. S. 609 f. — Die Wichtigkeit der Nerven für die vergleichende Myologie im Allgemeinen ist bereits früher von andern Untersuchern erkannt worden, so z. B. von Fischen (Anatomische Abhamdlungen über Perennibranchiaten und Derotremen. Hamburg 4864), der auf die Art der Innervirung der Kiemenmuskeln grosses Gewicht legt. Nach Rolleston haben HUMPHAY (The Muscles and Nerves of the Cryptobranchus japonicus. Journ. of Amat. and Phys. 4874) und CHAMPNEYS (The Muscles and Nerves of a Chimpansee [Troglodytes niger] and a Cynocephalus Anubis. Journ. of Anat. and Phys. 4874) monographische Darstellungen der Muskeln und Nerven einzelner Thiere gegeben und z. Th. auf die gegenseitigen Beziehungen beider hingewiesen.

⁴⁾ Die Muskeln der vorderen Extremitäten der Reptilien und Vögel. Gekröhlungen Preisschrift. Haarlem 1868.

²⁾ Der Vorwurf der Ungenauigkeit trifft auch die beigefügten allerdings zahreichen, aber wenig brauchbaren Abbildungen. Gleich auf der ersten Tafel z. ist bei Salamandra der transversale M. mylohyoideus als Längsmuskel, die (aller Ptychopleuren als wesentliches Merkmal zukommende) grosse Bauchseitenfalte versie Pseudopus Pallasii auf der einen Abbildung an die Bauchseite, auf der andern A. bildung an die Rückenseite gezeichnet.

Zur vergleichenden Anatomie der Schultermuskeln.

zuerst als ein zur Vergleichung der Muskeln wichtiges Moment deren Innervirung erkennt.

Für die Vergleichung der Schultermuskeln in den verschiedenen Klassen der Wirbelthiere sind von Bedeutung die Lage derselben in Beziehung zu den Knochen (Ursprung und Insertion), die Lage derselben in Beziehung zu den anliegenden Weichtheilen (Muskeln und Nerven) und die Art der Innervirung durch bestimmte Nerven. Alle drei Momente müssen sich gegenseitig ergänzen, keines genügt allein zu einer vollkommenen Bestimmung der Homologien.

Ursprung und Insertion können auserordentlichen Schwankungen unterworfen sein, ersterer grösseren als letztere 1), was wiederum eine grössere Variirung der (als Ursprungsfläche für die kräftigsten und zugleich veränderlichsten Muskeln dienenden) Knochen des Brustbeins und Brustgürtels im Vergleich zu denen des Oberarms und Vorderarms bedingt. Ein Uebergreifen oder Zurücktreten des Ursprungs von einem Knochen auf einen anderen von ihm ganz getrennten kommt häufig zur Beobachtung, ist aber wie meist noch zu erweisen und darnach deductiv als allgemein zu schliessen Folge einer ganz allmäligen, keinesfalls sprungweisen Vermehrung, resp. Verminderung der einzelnen Muskelbündel. Die vergleichende Anatomie bietet für die Beantwortung dieser Frage noch eine reiche, aber noch sehr wenig erschlossene Fundgrube dar. Beschränkter ist die Variabilität der Insertionstheile, doch können auch diese bei ganz einseitigen, durch eine abweichende Lebensart bedingten Differenzirungen eine grosse Fülle von Variirungen darbieten (so besonders bei den Vögeln). Eine Deutung der Muskeln, die lediglich Ursprung und Insertion derselben berticksichtigt, wird in einzelnen Fällen wohl richtige Resultate bringen, in der Regel jedoch wird sie zu Irrthümern verleiten, namentlich wo es sich um Vergleichung grosser Muskelgruppen oder entfernter stehender und in ihrer Lebensweise von einander abweichender Thiere handelt.

Die Lage zu den anliegenden Weichtheilen, ein in der Regel von den vergleichenden Anatomen wenig beachtetes Moment, ist geringeren Schwankungen unterworfen als Ursprung und Ansatz der Muskeln. Vor Allem sind von grosser Wichtigkeit die Beziehungen zu Gen vorbeilaufenden Nerven, von geringerer die zu den anliegenden Muskeln, von keiner die zu den ausserordentlich variabeln Gefässen.

⁴⁾ Die grössere Schwankung des Ursprungs der Muskeln im Vergleich zu ihren Ansätzen kann nicht als allgemeines Gesetz aufgestellt werden, sondern gilt zunächst blos für die Muskeln der Schulter. Die Muskeln der Hand z. B. bieten zum Theil sutgegengesetzte Verhältnisse dar, die mit einer grösseren Variation der Knochen der Hand im Gegensatz zu denen des Vorderarms übereinkommen.

Die vorsichtige¹) Berücksichtigung der ersten Beziehung kann oft Resultate bringen, wenn uns alle anderen Methoden in Stich lassen.

Die Innervirung der Muskeln durch bestimmte Nerven ist das wichtigste Moment für die Vergleichung. Es ist eine stets erweisbare Thatsache, dass jedem Muskel ein bestimmter Nerv zukommt, der wieder in bestimmter Weise entspringt. Alle Angaben einer verschiedenen Innervirung desselben Muskels bei verschiedenen Individuen bedürfen einer genauen Kritik und können in der Regel widerlegt werden. Das Nervensystem ist das conservativste, den geringsten Veränderungen (Anpassungen) unterworfene System. Es wird also eine Vergleichung der Nerven durch die Reihe der Wirbelthiere die geringsten Schwierigkeiten darbieten und darum eine die Innervirung berücksichtigende Vergleichung der Muskeln weit leichter und sicherer sein, als eine Vergleichung ohne diese Beziehung. Doch gilt es auch hier Wesentliches von Unwesentlichem zu sondern. Als unwesentlich von vornherein müssen bezeichnet werden die gegenseitigen Verhältnisse der Nerven in Bezur auf ihre frühere oder spätere Theilung oder Vereinigung (die sogenannterent Anastomosenbildung), Verhältnisse, die nicht von den Nerven selbst_ sondern nur von der verschiedenartigen Vertheilung ihrer Bindesubstanz abhängen, und deren unrichtige Abschätzung zu Irrthümern verleiter = kann. Eine grössere Constanz bieten die Austrittsstellen der Nerven au _____s den Intervertebrallöchern dar und damit die Beziehungen der Nerven 💵 👘 ihrem Centrum. Die Reinheit dieser Verhältnisse wird jedoch oft durc [--b die schwankende Zahl der Wirbel und die dadurch in primärer Weis 🛲 unmöglich gemachte Bestimmung der homologen Intervertebrallöche getrüht²). Von wesentlicher Bedeutung für die Vergleichung sind di- e Verhältnisse der Nerven bezüglich ihrer räumlichen Lagen zu einande und zu den umliegenden Weich- und Harttheilen. Das erstere Verhältnis- s spricht sich aus in einer Anordnung der Nerven des Plexus brachialis-immediation verschiedenen Schichten, die sich durch alle Wirbelthiere hindurch constant erweist, das letztere einerseits in bestimmten Beziehungen zu gewissen Muskelgruppen (z. B. den scaleni superiores, welche die N. thoracici superiores von den übrigen Nerven des Plexus brachialis abtrennenandererseits in einer gewissen Lage zum Brustgürtel (vor oder durc denselben verlaufen die Nn. supracoracoideus und suprascapulariseer

⁴⁾ Die Nerven können mitunter gespalten und durch sich einschiebende oft sehannen anschnliche Muskeltheile weit von einander getrennt sein. Eine falsche Schätzungen dieser Veränderung kann zu grossen Irrthümern führen.

²⁾ In diesen Fällen können umgekehrt nur die nach ihrem Verlaufe oft leic erkennbaren Nerven die directe Homologie der Wirbel bestimmen.

Zur vergleichenden Anatomie der Schultermuskeln.

hinter ihm die Nn. pectorales, coracobrachiales, brachiales longi etc.). — Die Bestimmung nach der Innervirung ist wegen der grossen Constanz der Nerven, die sich bei schon weit vorgeschrittener Differenzirung der Muskeln noch erhält, zur Vergleichung der einzelnen Muskeln weniger geeignet, dagegen lässt sie bei Vergleichung ganzer Muskelgruppen oder entfernter stehender Thiere nie im Stiche und gewährt die Möglichkeit, die Schultermuskulatur in bestimmte Muskelsysteme einzutheilen, Systeme, deren sonstige Beziehungen (Ursprung, Insertion, Lage zu den umliegenden Theilen) diese Eintheilung als eine natürliche rechtfertigen.

Die vorliegende Untersuchung beschränkt sich blos auf Amphibien, Reptilien, Vögel und Säugethiere. Die Fische sind ausgeschlossen, aus dem Grunde, weil erst nach eingehender Behandlung der Muskeln der ganzen vorderen Extremität der pentadactylen Wirbelthiere eine genaue und vollständige Vergleichung mit den Fischen gegeben werden kann. Eine Vergleichung ohne diese vorarbeitenden Untersuchungen bleibt Stückwerk 1). Von den Schultermuskeln selbst sind die zu dem Zungenbein resp. den Kiemenbogen gebenden, gemeinhin als hintere Zungenbeinmuskeln bezeichneten ebenfalls ausgeschlossen. Eine wirkliche vergleichende Anatomie derselben ist nur im Zusammenhang mit sämmtlichen Derivaten des unteren Längsmuskels (gerader Bauchmuskel, gerade centrale Kiemenmuskeln, vordere und hintere gerade Zungenbeinmuskeln) zu geben und dürfte sich in dieser Ausdehnung von einer Myologie der Schulter allzuweit entfernen. Auch auf eine durchgeführte metamere Vergleichung (Serial-Homology) der Schultermuskeln und der zu ihnen in Beziehung tretenden Nerven mit den übrigen Muskeln und Nerven des Körpers wurde Verzicht geleistet. Dieselbe ist allerdings das Hauptziel der vergleichenden Myologie, darf aber erst nach Jahren zu erwarten sein, wenn alle Muskel- und Nervengebiete gleichmässig genau durchforscht sein werden. Die in dieser Hinsicht mehrfach veröffentlichten Abhandlungen kennzeichnen allerdings ein anerkennenswerthes Streben, sind aber in ihren Ergebnissen sammtlich als ungentigend zu bezeichnen²). Einzelne für die metamere Myologic feststehende Thatsachen, welche die Untersuchung der Schultermuskeln ergab, sind angeführt.

^{. 4)} **Einzelne bel** einer Untersuchung des Brustgürtels der Selachier gewonnene **Ergebnisse von grösserer Bedeutung sind für die Vergleichung verwertbet worden**.

²⁾ Dieser Vorwurf trifft auch die neueste bedeutendere Arbeit auf diesem Gebiete, HUMPRAY'S Abhandlung: The Disposition of Muscles in Vertebrate Animals. JOurnal of Anat. and Phys. II. Ser. No. X. May 1872. Cambridge und London. S. 192-877.

Max Förbringer.

Der Stoff der Arbeit ist in sieben Capitel vertheilt worden; das erste Capitel behandelt die Urodelen, das zweite die Anuren, das dritte die Chelonier, das vierte die Saurier und Crocodile, das fünfte die Vögel, das sechste die Säugethiere. Das siebente Capitel enthält eine Zusemmenstellung der Ergebnisse und weitere vergleichende Ausführungen. Die Chelonier wurden mit Absicht zwischen Anuren und übrige Reptilien gestellt, weil die Untersuchung wenigstens für die Muskeln und Nerven der Schulter ergab, dass innerhalb der Reptilien die Chelonier den Amphibien am nächsten stehen, während die Grocodile den Vögeln am meisten genähert sind.

Jedes der ersten sechs Capitel enthält in drei Paragraphen eine Beschreibung, 4) der zu den Schultermuskeln in nächster Beziehung stehenden Knochen (Brustgürtel, Brustbein, Humerus), 2) der Nerven für die Schultermuskeln, 3) der Muskeln der Schulter und des Oberarms selbst. Eine kurze Darstellung des Knochensystems erwies sich als nothwendig für das Verständniss. Die betreffenden Paragraphen bieten wenig Originales und sind der Hauptsache nach nur für das specielle Bedürfniss ausgearbeitete Referate über GEGENBAUR's und PARKER'S Abhandlungen, neu ist blos eine eingehendere Beschreibung und Deutung der für die Darstellung der Muskulatur bedeutsamen Fortsätze, Kanten etc. an den Knochen des Brustgürtels und des Oberarms. Die Behandlung des Nervensystems ist der des Muskelsystems vorangestellt, weil die Nervenvortheilung als Grundlage für die Vergleichung der Muskeln dient. Die Beschreibung ist, da sie mit wenig Ausnahmen Neues darbietet, breiter ausgedehnt, berücksichtigt jedoch nur die Bildung des Plexus selbst und die zu den Muskeln der Schulter und des Oberarms gehenden Nerven. Die menschlichen Nervenbezeichnungen sind in der Regel, wo ein Vergleich möglich, aufgenommen; einzelne den vergleichenden Thatsachen nicht Rechnung tragende Benennungen (z. B. N. dorsalis scapulae, Nn. thoracici anteriores, Nn. subscapulares longi etc.) sind durch bessere und den von ihnen versorgten Muskeln gleichlautende Namen ersetzt. Eine Eintheilung der Nerven des Plexus brachialis in drei Schichten, Nn. thoracici superiores, Nn. brachiales superiores und Nn. brachiales et thoracici inferiores ist allenthalben durchgeführt. Die Darstellung des Muskelsystems ist so vollständig gegeben, als mit Weglassung des Unwesentlichen möglich war. Die Muskeln sind, wo nur irgend eine directere Homologie zu constatiren ist, nach denen des Menschen benannt. Eine vollständige Vermeidung von neu gebildeten, oft langen und schlechtklingenden Namen nach Ursprung und Ansatz war leider nicht zu vermeiden. Erst wenn eine vernünstigere, auf vergleichend anatomische Beziehungen gegründete

Reform der Nomenklatur der menschlichen Muskeln eingeführt ist, werden diese überflüssig. Am Eingange jedes Paragraphen ist eine Uebersicht der Muskeln gegeben. Auf die Beschreibung jedes einzelnen Muskels folgt eine Besprechung seiner vergleichend anatomischen Beziehung, die zugleich eine Kritik der früheren Deutungen und eine Begründung der hier gegebenen enthält. Im ersten Capitel war es behufs Anwendung der menschlichen Muskelnamen nöthig, das Verhältniss der Muskeln der Urodelen zu denen des Menschen zu besprechen. Hierbei war es auch unvermeidlich, einzelne vergleichende Bezichungen, die erst in späteren Capiteln ausführlich behandelt werden, vorausgreifend kurz anzudeuten. h den übrigen Capiteln ist dies möglichst vermieden und in der Regel die Vergleichung nur mit den bereits vorausgegangenen Classen ausgeführt. Der Darstellung der Schultermuskeln der Vögel ist ein kleiner Anhang, die Beschreibung der Muskeln der Flugmembran enthaltend nachgeschickt, der der Säugethiere ein grösserer, der eine Zusammenstellung der menschlichen Varietäten und deren Vergleichung mit den normalen Bildungen der übrigen Säugethiere, im Allgemeinen der übrigen Wirbelthiere, umfasst.

Die mir zugängliche Literatur wurde nach Kräften benutzt. Wesentlichere Differenzen zwischen den von den Autoren und den von mir gegebenen Darstellungen und Deutungen sind im Texte berücksichtigt, unwesentlichere die Untersuchung betreffende Abweichungen in die Anmerkungen verwiesen.

Die beigefügten Abbildungen betreffen Nerven und Muskeln. Erstere stellen die Plexus brachiales (und theilweise die Vagusgruppe) einer Anzahl von Wirbelthieren, letztere die Muskeln der Schulter und des Oberarms mit ihren Nerven in schichtenweiser Abtragung und mit vollkommener Erhaltung ihrer natürlichen Lage¹) dar. Die Ursprünge und Insertionen der bereits abgetragenen Muskeln sind durch rothe Punctlinien bezeichnet. Für jedes Capitel sind in der Regel nur Ab-

¹⁾ Dieses Moment halten wir für ein Haupterforderniss einer brauchbaren Abbildung. Die gewöhnlich angewendete Methode, auf einer einzigen Figur möglichst viel Maskeln abzubilden, d. h. die tiefer liegenden durch gewaltsames Auseinanderzerren der oberflächlicheren sichtbar zu machen, erschwert nicht nur die Erkenntniss der natürlichen Lage und gegenseitigen Beziehung der Muskeln, sondern giebt auch Zeugniss von der vollkommenen Verkennung der Zusammengehörigkeit der einzelnen Muskeln zu einem einheitlichen Systeme, das ebensowenig zertheilt und zerrissen werden darf wie das Knochensystem. Die gegenseitige Lagerung der Muskela zu einander und zu den anderen Weichtheilen ist mindestens ebenso wichtig, wie Ursprung und Insertion derselben, an deren alleiniger Darstellung sich die meislen Abbildungen genügen lassen.

1

bildungen der Muskulatur eines Thieres gegeben, diese aber in möglichster Vollständigkeit.

Herr Geh. Hofr. Prof. Dr. GEGENBAUR hat mich zu dieser Arbeit veranlasst, hat mir sämmtliches anatomische Material und sämmtliche literarischen Hülfsmittel gewährt und hat mich durch seinen Rath wesentlich in meinen Untersuchungen unterstützt. Es ist mir eine sehr angenehme Pflicht, ihm dafür meinen innigsten Dank auszusprechen.

Cap. I.

Geschwänzte Amphibien

(Urodela; --- Sozobranchia und Sozura).

§. 1.

Brustgürtel, Brustbein und Humerus¹).

(Vergleiche Taf. XV. u. XVI.)

Brustgürtel und Brustbein sind bei den geschwänzten Amphibien wenig entwickelt. Es findet sich nur der sogenannte primäre²) Brustgürtel, während von secundären Knochentheilen jede Spur fehlt.

4) Literatur:

Foux, de Salamandrae terrestris vita, evolutione, formatione tractatus. Berolini 1827. S. S. Tab. I. Fig. 4. Tab. II. Fig. 20.

Duchs, Recherches sur l'ostéologie et la myologie des Batraciens. Paris 1834. S. 164 f.

COVIER, Leçons d'anatomie comparée. II. éd. Paris 1835. S. 254 f. S. 365 f.

STARFIUS, Handbuch der Zootomie. II. 2. Zootomie der Amphibien. Berlin 1856. 8. 42 f. S. 72 f. S. 20 f.

GEREFAUR, Untersuchungen zur vergleichenden Anatomie der Wirbelthiere. II. Schultergürtel der Wirbelthiere. Leipzig 4865. S. 66 f.

OWER, Comparative Anatomy and Physiology of Vertebrates. 1. London 1866. S. 169 f.

PARCE, A Monograph of the Structure and Development of the Shoulder-Girdle and Sternum in the Vertebrata. London 1868. p. 58.

1) In Bezug auf die Bezeichnungen »primärer und secundärer Brustgürtel«, allgenein »primärer oder secundärer Knochen« folgen wir, lediglich um Verwechslagen in der Auffassung vorzubeugen, noch dem älteren ziemlich allgemein angenommenen Gebrauche. In Wirklichkeit »drücken diese Bezeichnungen keine landamentalen Verschiedenheiten aus, sondern nur bestimmte Zustände, die sich bezer als Entwickelungsphasen betrachten lassen«, und von denen gerade die frühere (primäre) der secundären, die spätere (secundäre) der primären Knochenbidung entspricht. Vergleiche GEGENBAUR, Bemerkungen über primäre und secundire Knochenbildung. Jenaische Zeitschrift. Bd. III. S. 54, und Grundzüge der Vergleichenden Anatomie. 3. Aufl. S. 641.

MECKEL, System der vergleichenden Anatomie II. 2. Halle 4824. S. 394 f. S. 438 f. S. 449 f.

Der Brustgürtel besteht aus zwei symmetrischen theilweise verknöcherten 1) Knorpelstücken, die auf der Brustseite entweder von einander ziemlich entfernt (Amphiuma) oder einander genähert sind (Proteus) oder sich in der Mittellinie berühren (Menobranchus etc.) oder sich so über einander legen, dass der rechte Brustgürtel mit seinem medialen Rande unter den linken zu liegen kommt (die Mehrzahl der Urodelen). Eine knorpelige oder knöcherne Verbindung beider mit einander existirt nicht, ebensowenig eine Anheftung an den Schädel oder die Wirbelsäule. Jedes Brustgürtelstück besteht aus einem vertical gerichteten (dorsalen) und einem horizontal liegenden (ventralen) Abschnitte. Ersterer geht an der untern Seitenkante des Körpers unmittelbar in letzteren über. An dieser Stelle, und zwar am hintern Rande, liegt die Gelenkhöhle für den Oberarm (bei Siren fehlend). Der dorsale Abschnitt, die Scapula (S) ist in der Regel in seinem unteren zumeist verknöcherten Theile schmal, in seinem oberen stets knorpelig bleibenden verbreitert. Letzterer wird nicht sehr passend als Suprascapulare²) von dem ersteren, der eigentlichen Scapula, unterschieden. Der obere Rand der Scapula (Suprascapulare) ist der Basis scapulae, der hintere dem hintern Rande der menschlichen Scapula homolog; dagegen kann der vordere Rand weder mit der Spina scapulae noch mit dem vordern Rand der Scapula des Menschen verglichen werden, sondern entspricht vielmehr der Grundlinie der Spina scapulae, von der sowohl die Spina selbst wie das mit ihr die Fossa supraspinata bildende Stück der Scapula ausgehen 3). Der ventrale Ab-

ł

4

8) Dass der Scapula der Urodelen jede Spur einer Fossa supraspinata abgeht, das demnach alles Auffinden von Homologen einer Spina auf der Fläche der Scapula auf

⁴⁾ Die Verknöcherung kann nur eine theilweise, die Oberfläche des Knorpels einnehmende, sein (Proteus etc.), oder sie kann durch die ganze Dicke des Brustgürtels erstreckt sein (die meisten Urodelen). In allen Fällen ist sie der Fläche nach nur über einen kleinen Theil des Brustgürtels ausgedehnt, der entweder oberhalb der Gelenkpfanne liegt oder ihre Umgebung bildet; nie ist letztere vollständig verknöchert. Viel Gewicht ist auf die Anordnung der Verknöcherung nicht zu legen und möchte ich darum mit PARKER nicht übereinstimmen, der nach diesem Principe drei Hauptgruppen unterscheidet, Brustgürtel mit ein em (Proteus, Menobranchus, Menopoma, Cryptobranchus, Siredon), mit z wei (Siren, Amphiuma) und mit d rei Verknöcherungspuncten (Phaenerobranchus, Lissotriton, Triton, Salamaadre).

²⁾ FUNK unterscheidet das Suprascapulare als Portio I. scapulae von der eigenlichen Scapula oder Portio II scapulae. Ueber die geringe Selbständigkeit des Suprascapulare, namentlich in jugendlichen Zuständen, vergleiche GREENBAUR a. s. O. S. 68. Das Suprascapulare steht bei den Urodelen zur Scapula in derselben Beziebung, wie die Knorpeltheile des Procoracoid und Coracoid zu deren Knochentheilen; für diese ist aber noch nie eine besondere Bezeichnung gehraucht worden.

h n itt¹) besteht aus einer vorderen schmäleren und einer hinteren eiteren Platte, dem Procoracoid (Pr)²) und dem Goracoid (C)³). side sind lateral vereinigt, medianwärts dagegen in zwei discrete artsätze ausgedehnt. Der dem Procoracoid angehörende ist nach vorn, ar zum Goracoid gehörige nach der Mitte zu gerichtet; ersterer ist lang ad achmal (am längsten bei Proteus und Siren, am kürzesten bei finden und Salamandra), letzterer ist stumpf und breit und geht die im beschriebenen Beziehungen zu dem der Gegenseite ein. Lateral ad Procoracoid und Coracoid in der Regel ohne gegenseitige Grenze anknöchert. Hier findet sich zwischen ihnen vor der Gelenkhöhle das ora m en cora coid eum (bei Proteus durch eine nach vorn offene trisura coracoidea vertreten), das für den Durchtritt von Gefässen und m N. supracoracoideus bestimmt ist.

Bin Brustbein (St)⁴) ist bei den Urodelen nur rudimentär vormeden und entbehrt jeder Verbindung mit Rippen. Bei Proteus fehlt svolkommen, bei Menobranchus existirt es spurweise als längliche Knorpelleiste, bei den übrigen bildet es eine rundliche Knorpelplatte mit oder ohne Fortsätze, welche vorn in zwei Lamellen gespalten ist md zwischen diese die hinteren Ränder der beiden Goracoide aufmmt.

Der Humerus (H) der geschwänzten Amphibien ist der längste isochen der vorderen Extremität. Der proximale Theil⁵) lenkt mit

f) Portio III. scapulae: FUNK; — Coracoid: DUGÈS, CUVIER, STANNIUS
 Adscapulum: DUGÈS. — Disque cleido-coracoidienne: CUVIER.
 S) Die richtige Deutung des vorderen Abschnittes als Procoracoid ist zuerst
 GEGENHAUT gegeben worden. Vorher wurde es bald als Clavicula (CUVIER 4. éd.
 Mais), hald als Acromion (CUVIER 2. éd. DUGÈS, STANNIUS, RÜDINGER) unterschieden.
 Mais and ihm folgend MIVART und HUMPHRY bezeichnen das Procoracoid als Praemenid.

8) Coracoid der Autoren, oder unbenannter Theil desselben.

4) Die Existenz der Brustbeinrudimente wird verschieden angegeben. Näheres de darüber bei STANNIUS, GEGENBAUR und PARKER. MECKEL unterscheidet bei Salaindra maculata zwei discrete Brustbeine; eine Beobachtung, die von keinom dissucher bestätigt worden ist. Dass das Brustbein der Urodelen dem ganzen menn der höhern Wirbeltbiere entspricht und nicht mit dem Processus ensiformis rannus und Ducks: Os xiphoideum) allein verglichen werden kann, wurde von menne machgewiesen.

i) Die Raumbezeichnungen »lateral, medial« etc. sind für diese und alle Senden Beschreibungen einer horizontalen Lage des an die Seite des

Extreme beruht, wurde bereits von GEGERBAUR nachgewiesen und kann durch eine **Hie von myologischem Detail erhärtet w**erden. Gegen eine directe Vergleichung **b vordern Randes mit der Spina scapulae** spricht vor Allem die auf die Aussen**iche der Scapula ausgedehnte Insertion des M.** levator scapulae der Urodelen.

Max Fürbringer.

seiner knorpeligen convexen Endfläche (Caput) in die Gelenkhöhle d Brustgürtels ein und hat hinter dieser zwei seitlich vorspringen Knochenfortsätze, den Processus lateralis (PL)¹) und medial (PM)²). Ersterer nimmt die Aussenfläche des proximalen Drittels d Humerus ein und ist nach unten gerichtet; er beginnt direct hinter de Gelenkende, erreicht in der Mitte die grösste Höhe und fällt nach hint allmälig ab. Letzterer liegt an der Innenfläche des Humerus, dem Pr cessus lateralis direct gegentiber und ist kleiner und spitzer als diese er ist von dem Caput humeri durch eine kleine Einschnürung getren und endet wie der Processus lateralis am Ende des ersten Drittels d Humerus. Der mittlere Theil des Humerus hat gleich hinter den Fort sätzen seine geringste Dicke, nimmt aber nach dem hinteren Ende stet an Breite zu. Der distale Theil ist in schräger Richtung zusammen gedrückt. Sein knorpeliges Ende auticulirt mit den Knochen des Vorder arms und zwar der mediale obere Theil desselben, Condylus ulnari s. medialis (CU) mit der Ulna (U), der laterale untere Theil, Gon dylus radialis s. lateralis (CR), mit dem Radius (R) 3).

Körpers gedrückten und nach hinten gerichteten Humerus entnommen. Die b dieser Stellung nach aussen gerichteten Theile werden als laterale (äusser von den nach innen d. h. nach der Bauchwand zugerichteten medialen (innerst Theilen unterschieden, die nach oben gerichteten und die nach unten sebesch Theile heissen obere (der Streckseite angehörige) und untere (der Beuge seite zugehörende), die der Gelenkhöhle des Brustgürtels genäherten und die w ihr entfernten Theile proximale und distale. Für den Rumpf gelten die B zeichnungen aussen (ausserhalb der knöchernen Rumpfhöhleneinfassung liegen innen (innerhalb derselben), dorsal (oben, rückenwärts liegend), ventri (unten, bauchwärts liegend).

2) Hintere Leiste (MECKEL); Trochanter (ohne nähere Bezeichnung, Ducki Tuberculum minus (STANNIUS); Ulnar tubercule (HUMPHNY). Von Owen, MIVM RÜDINGER u. a. A. nicht besonders unterschieden.

3) Ducks bezeichnet beide als Condylus ohne weitere Unterscheidung. Ow und MIVANT benennen die entsprechenden Theile als Ulnar und Radial side of 1 lower end of the humerus. HUMPHNY: Ulnar and Radial condyle.

⁴⁾ Die Fortsätze am proximalen Ende des Humerus der Urodelen sind mi wenig differenzirte Bildungen, die weder mit den Tubercula noch mit den Spin tuberculorum des Menschen vergleichbar sind. Diese sind vielmehr Differen zirungen, die den Amphibien noch fehlen, aber aus den indifferenten Bildung derselben sich entwickelt haben. Zur Bestimmung dieses Verhältnisses wurde d Bezeichnung Processus gewählt. Der Processus lateralis ist von den Autorm verschiedenster Weise benannt worden: Vordere Leiste (MECKEL), Trochanter (om nähere Bezeichnung, DUCES); Tuberculum majus s. anterius (STANKIUS); laterales m teres Tuberculum oder Vorsprung des Humerus (RÜDINGER); Crest of the Humer (OWEN, MIVART), Radial tubercule (HUMPHAN).

249

1

§. 2.

Nerven für die Schultermuskeln¹).

(Vergleiche Taf. XIV. Fig. 1-3.)

Die Muskeln der Schulter (mit Ausschluss der zu dem Zungenbein gehenden) werden von den Rr. accessoriin. vagi und von den 'unfersten Spinalnerven, und zwar, wie für sämmtliche Wirbelthiere gilt, von deren ventralen Aesten innervirt.

4) Literatur:.

Fonz, a. a. O. S. 14. Tab. III. Fig. 7^a. (Ganz dürftige Angaben über das Nervensystem von Salamandra maculata).

- **Bacasory**, Nervi accessorii Willisii anatomia et physiologia. Heidelbergae 4832. S. 47. (Accessorius von Salamandra maculata).
- Vocr, Beiträge zur Neurologie der Reptilien. Neufchatel 1840. S. 55 f. (Vagus von Selamandra maculata und Proteus auguineus).
- Fischen, Amphibiorum nudorum neurologiae specimen. Berolini 4843. S. 30 f. Taf. II. u. III. (Genaue Untersuchungen über die Hirnnerven von Salamandra maculata, Triton cristatus, Proteus anguineus).
- Burnz, Bidrag tel den Sammenlignende Anatomie af N. Glossopharyngeus, Vagus, Accessorius Willisii og Hypoglossus hos Reptilierne. Vid. Sel. naturvid. og mathem. Afh. X Deel. Kjöbenhavn 1843. S. 134 f. Taf. IX u. X (Gehirnnerven von Salamandra maculata, Triton punctatus).

Covnen, Leçons a. a. O. Tome III. Paris 1845. S. 226 f. S. 240 f. und S. 266 f. Stannos, a. a. O. S. 448.

Scarase, Versuch einer speciellen Neurologie der Rana esculenta. St. Gallen und Bern 1857. S. 20 f. (Mit Bemerkungen über den Vagus und Accessorius von Selamandre).

- FINCHER, Anatomische Abhandlungen über die Perennibranchiaten und Derotremen.
 I. Heft. Die Visceralbogen und deren Muskeln. Die Gehirnnerven. Hamburg 1864.
 S. 446 f. Tab. II—VI. (Vorzüglich genaue Untersuchungen über die Hirnnerven von Siren lacertina, Siredon pisciformis, Hypochthon Laurentii (Proteus anguineus),
- Menobranchus lateralis, Amphiuma tridactylum, Menopoma Alleghaniense, Cryptobranchus japonicus, Siphonops annulatus).

Owan, a. a. O. I. S. 842 f.

Mannav, The Muscles and Nerves of the Cryptobranchus japonicus. Journal of the Anatomy and Physiology. Vol. VI. Cambridge and London 1871. S. 1. f. Taf. I-III.

Die eigenen Untersuchungen beschräuken sich auf Proteus anguineus, Siredon pisciformis und Salamandra maculata.

Max Fürbringer.

I. Rr. accessorii n. vagi (α)¹).

Aus dem hinteren Theile der Medulla oblongata entspringen drei (obere) Wurzeln, die in der Regel zu einem Nervenstamm vereinigt durch das sogenannte Foramen jugulare aus dem Schädel heraustretet und hierauf zu einem ansehnlichen Ganglion anschwellen, von den aus eine beträchtliche Anzahl von Aesten sich im Pharynx (R. pharyngeus $[\varphi]$, im Zungengrund (R. lingualis $[\gamma \lambda]$), in den Kiemenbogen und ihren Weichtheilen (Rr. branchiales $[\beta \varrho]$), im M. capiti-dorso-scapulari (c ds) (Rr. accessorii $[\alpha]$), in den Hals- und Brusteingeweiden und im Magen (R. intestinalis c. R. recurrente [s]) und an der Haut der Seitenlinien des Körpers, bei niederen Zuständen in deren sogenannten Schleimkanälen (Rr. laterales) verzweigen und Anastomosen mit dem N. facialis (R. communicans c. n. faciali [x]) eingehen. Dieser Complex stellt de Vagus-Gruppe (V)²) dar und enthält in sich die Homologen des Glossopharyngeus, Vagus und Accessorius Willisii der höhern Wirbelthiere, die bei den Urodelen in der Regel nicht als besondere Nerven unterschieden werden können. Nur bei einzelnen zeigt sich eine mehr (Siren) oder weniger (Amphiuma) ausgesprochene Trennung in zwei Abtheilungen, eine vordere aus der ersten Wurzel hervorgehende (Glossopharyngeus) und eine hintere aus den beiden letzten Wurzeln gebildete

1) Nur von Fischer, BENDZ und HUMPHRY angegeben.

FISCHER beschreibt ihn bei einer grossen Anzahl von Urodelen in der Regel richtig als Versorger des M. dorso-scapularis (Levator scapulae inferioris in «Amphibiorum nudorum neurologiae specimen 4843«, Cucullaris in «Anatomische Abhandlungen über Perennibranchiaten und Derotremen 4864«), des dorso-trachealis und dorso-laryngeus. Nur für Menopoma giebt er an, dass der R. accessorius sich gleich nach seinem Ursprunge nach oben in die tiefen Nackenmuskeln schlinge und sich im M. intertransversarius capitis inferior (ЕСКЕВ) ausbreite, während er die tum Cucullaris abgehenden Zweige des Hauptstammes des Vagus nicht besonders be nennt. Ich möchte vielmehr letztere als Rr. accessorii ansprechen, ersteren dagegen (auch angenommen dass er in seinem Ursprunge mit den Rr. accessori gross Aehnlichkeit darbietet) wegen seiner Vertheilung in Rumpfmuskeln von einer Vergleichung mit dem Accessorius ganz auszuschliessen. Für die Deutung der Nervarist die Art ihrer Endausbreitung und Vertheilung in den von ihnen innervation Theilen von erster Wichtigkeit.

BENDZ lässt bei Salamandra einen äusserst feinen Faden sich in den Muskeln und der Haut des Halses ausbreiten. Diese Angabe ist ungenau. Bei Triton fehlt jede Beschreibung eines solchen Nerven.

HUMPHRY: large branch to the Trapezius.

2) Allgemeines über die Vagus-Gruppe giebt Gegenbaur, Grundzüge der vergleichenden Anatomic. 2. Auflage. Leipzig 1870 S. 740, und vor Allem: Beher die Kopfnerven von Hexanchus und ihr Verhältniss zur »Wirbeltheorie« des Schlidels. Jenaische Zeitschrift. Bd. VI. 4. Leipzig 1871. S. 497 f.

Vagus et Accessorius Willisii). Ob von den beiden hinteren Wurzeln lie kräftigere vordere dem Vagus, die schwächere hintere dem Accessorius direct entspricht, wie FISCHER als wahrscheinlich angiebt, ist durch die Untersuchung mit dem Messer nicht zu entscheiden ¹).

Von Bedeutung für die Muskulatur der Schulter sind allein die **R**r. accessorii (α)²), die einfach oder mehrfach auftreten können. Sie sind entweder repräsentirt durch einen selbständigen Ast der Vagusgruppe (Siredon) oder stellen einfache Nebenäste des R. intestinalis dar (Triton, Menobranchus, Menopoma) oder sind vertreten durch einen Hauptzweig der Vagusgruppe und zugleich einzelne Nebenzweige des R. intestinalis (s) (Salamandra). Sie gehen zwischen M. capiti-dorsoscapularis (Cucullaris) (cds) und M. basi-scapularis (Levator scapulae) (bs) schräg nach aussen, hinten und unten und vertheilen sich in ersterem Muskel, in seine Innenfläche eintretend. Ausserdem erhalten auch die zum Brustgürtel nicht direct gehörigen Mm. dorso-laryngeus (dl) und dorso-trachealis (dtr) feine Zweige von ihnen.

II. Nn. spinales.

Von den ventralen Aesten der Spinalnerven sind nur die der fünf (Proteus, Siredon, Salamandra) oder sechs ersten (Cryptobranchus nach HUMPHNY) von Bedeutung für die Muskeln der Schulter. Der erste ist von den übrigen getrennt, die sich in der Regel (Proteus ausgenommen) zum Plexus brachialis³) vereinigen.

⁴⁾ Die Selbständigkeit des N. accessorius Willisii ist nuch bei den andern Classen der Wirbelthiere angezweifelt worden und das mit Recht. Auch in seiner höchsten Differenzirung (beim Säugethier, speziell beim Menschen) gelingt es in sehr vielen Fällen nicht, seine Wurzeln von denen des Vagus abzugrenzen; ein in den meisten Lehrbüchern beschriebener grösserer Zwischenraum zwischen beiden ist durchaus nicht Regel. Die sofortige Verschmelzung des R. internus n. accessorii mit dem Vagus, noch bevor dieser den Plexus nodosus bildet, spricht ebenfalls gegen seine Selbständigkeit. — Die auf S. 458 gemachte Angabe FISCHER's »Menobranchus ist übrigens die einzige Gattung, bei der ich einen dem N. accessorius Willisii entsprechenden Nervon von ganz selbständiger Form fand« steht im Widerspruch mit seiner sonstigen Behauptung und der gegebenen Abbildung und dürfte wohl auf einem Schreibfehler beruhen.

³⁾ Die Rr. accessorii sind natürlich nur Homologa des R. externus n. accessorii Willisii.

³⁾ FUNK'S Angabe: »Nervorum intercostalium (?) priorum quatuor vel quinque paria superiora plexum conformant utrinque brachialem« ist mir unverständlich. CUTER, der wie OWEN mit Recht die Zusammensetzung des Plexus aus vier Spinalnerven angiebt, unterscheidet die beiden ersteren als Cervicalnerven, die beiden letzteren als Dorsalnerven. Eine solche Unterscheidung ist in Wirklichkeit nicht

Ventraler Ast des N. spinalis I. (I). Er vertheilt s seiner Hauptmasse (1) in der hinteren Zungenbeinmuskulatur den namentlich bei den Sozobranchiern sehr entwickelten hypaxor und ventralen Rumpfmuskeln (mit Einschluss der Längsmuske Zungenbeins) und giebt ausserdem ein feines Aestchen, das die hypaxone Muskulatur des Halses nach aussen und oben tri N. thoracious superior I. (2), an den vordern Theil des M scapularis (levator scapulae) (bs) ab.

Ventraler Ast des N. spinalis II. (II). Ausser den d paxonischen und ventralen Rumpfmuskeln mit Einschluss der l Zungenbeinmuskeln und die Haut des Halses versorgenden Zweij giebt er drei grösstentheils zur Schultermuskulatur gehende Ae Der erste, N. thoracicus superior II. (4), verzweigt sich in tern Theil des M. basi-scapularis (bs) und dem vordern des M. t scapularis (ths), der zweite, N. thoracicus inferior II. anter innervirt den M. pectori-scapularis internus (omo-hyoideus?) (psdritte geht entweder an der Innenseite des Plexus nach hinten z rectus abdominis (ra) (Proteus) oder er theilt sich in zwei Zweig denen der eine nach dem M. rectus abdominis verläuft (6) (N. tho inferior II. posterior), der andere sich früher (Salamandra, C branchus) oder später (Siredon)²) miteinem vom N. spinalis III. ab den Zweige zum N. supracoracoideus (spc) verbindet.

zu geben, da bei den Amphibien mit dem Mangel von wirklichen Brustbei auch jedes Criterium fehlt, eine Hals- und Brustregion zu unterscheider auch am Halse bewegliche Rippen vorkommen können (Reptilien), ist berei bekannt.

⁴⁾ Aus diesem Grunde wird der N. spinalis I. und II., oder auch der N. II. und III. (Menobranchus) von den meisten Autoren als Homologon des N glossus des Menschen gedeutet. Diese Vergleichung ist nur insofern gerech als sie sich auf den sogenannten N. descendens hypoglossi modificirt. Letz allerdings kein Gehirnnerv, sondern entsteht aus Aesten der beiden ersten nerven, die sich an den N. hypoglossus anheften, ohne mit ihm einen wi innern Zusammenhang zu besitzen. Dies beweist auch die nicht seltene dung mit dem N. vagus anstatt mit dem hypoglossus.

²⁾ Bei Siredon sind die aus dem zweiten und dritten Spinalnerv gehenden Theile des N. supracoracoideus innerhalb der Brusthöhle noch (und vereinigen sich erst beim Durchtritt durch das Foramen coracoideun innig diese Vereinigung 1st, konnte nicht ganz vollständig nachgewiesen v jedenfalls existirt keine Verflechtung der Elemente beider Theile und der a zweiten Spinalnerv hervorgehende innervirt grösstentheils den M. pro humeralis, der von dem dritten abstammende den M. supracoracoideus.

Ventraler Ast des N. spinalis III. (*III*). Er ist doppelt so stark und versorgt bis auf einige kleine Aeste, die an die hypaxonische (bei Cryptobranchus und Menobranchus auch an die ventrale) Rumpfmusculatur und die Haut des Halses gehen, die Schultergegend. Zuerst giebt er einen N. thoracicus superior III. (7) an den vordern Theil des M. thoraci-scapularis (Serratus magnus) (th s) ab und verbindet sich hierauf mit den Nn. spinales II. und IV. zu den Ansae inferiores II. und III. und der Ansa superior III. Die Ansa inferior II. fehlt bei Proteus. Bei Siredon geht von dem zur Ansa III. inferior sich verbindenden Theil noch ein feiner Ast an die Bauchmuskeln ab (N. thoracicus inferior III [8]).

Ventraler Ast des N. spinalis IV. (IV). Der stärkste Nerv des Plexus brachialis, aber nur wenig stärker als der N. spinalis III. Er bildet nach Abgabe eines N. thoracicus superior IV. (9) für den bintern Theil des M. thoraci-scapularis (Serratus magnus) (ths) mit den Nn. spinales III. und V. die Ansae inferiores und superiores III. und IV.

Ventraler Ast des N. spinalis V. (V). Meist kaum so stark wie der N. spinalis II., seltener (bei Cryptobranchus) ein kräftiger Nerv. Er giebt mehrere Aeste (11) an die Mm. obliqui und rectus abdominis $(a \ und \ ra)$ ab und geht schliesslich mit dem N. spinalis IV. die Ansa spinalis IV. ein, bei Cryptobranchus ausserdem mit dem N. spinalis VI. die Ansa spinalis V.

Ventraler Ast des N. spinalis VI. Bei Cryptobranchus geht ein kleines Aestchen desselben Beziehungen zum Plexus brachialis ein und bildet mit dem N. spinalis V. die Ansa spinalis V.

Der Complex aller dieser Ansae in Gemeinschaft mit den N. thoracici superiores und inferiores bildet den Plexus brachialis. Die aus ihm hervorgehenden Nerven lassen sich hier, überhaupt bei allen Amphibien, Reptilien, Vögeln und Säugethieren, indrei (resp. vier) Schichten sondern. Von diesen (bei Annahme von vier Schichten) werden die beiden äusseren von den Nerven, welche die nur am Brustgürtel inserirenden also lediglich auf den Rumpf (Thorax) beschränkten Muskeln versorgen, die beiden inneren von den Nerven, welche die mitirgend welchen Theilen der vorderen Extremität selbst in Verbindung stehenden Muskeln innerviren, gebildet. Die beiden ersteren sind als Nn. thoracici superio-^{res} und inferiores¹) zu bezeichnen, je nachdem sie die Muskeln

⁴⁾ Weit besser wären die Bezeichnungen: Nn. brachiales dorsales und ventrales. Da aber bereits für jeden Nerven dorsale und ventrale Aeste unterschieden werden, würde der wiederholte Gebrauch dieser Benennungen für Theile der ven-

am dorsalen (resp. lateralen) oder am ventralen Abschnitte des Rumpfes innerviren, die beiden letzteren als Nn. brachiale superiores und inferiores, je nachdem sie die dorsal gelegenet Streckmuskeln oder die ventral gelegenen Beugemuskeli der vorderen Extremität¹) versorgen. Von diesen Schichten existit eine deutliche Scheidung zwischen Nn. thoracici superiores, Nn. brachia les superiores und Nn. brachiales inferiores; erstere zweigen sich in de Regel sehr früh von den beiden anderen ab und sind meist durch da zwischen gelagerte hypaxone Rumpfmuskeln (System der Scaleni su periores bei den höheren Wirbelthieren) von ihnen abgetrennt. Wenige bestimmt hingegen ist die Scheidung der dritten von der vierten Schichtweshalb die letztere nicht als selbständiger Complex aufzufassen, sonder mit der dritten Schichte zu vereinen ist. Danach existiren dre Schichten, die von oben nach unten gerechnet die Reihenfolge er geben: 4) Nn. thoracici superiores, 2) Nn. brachiales su periores, 3) Nn. brachiales inferiores und Nn. thoraci inferiores²).

Die Nn. brachiales inferiores sind folgende:

a) N. supracoracoideus (12)³). Ein mittelstarker Nerv, der entwed von dem N. spinalis III. abgegeben wird (Proteus) oder aus der Ansal hervorgeht, dann zum kleinern Theile von N. spinalis II., zum grösse

4) Die Trennung in Streck- und Beugemuskeln kann sich durch verschiede artige secundäre Anpassungen derart verwischen, dass ursprüngliche Streckmuske die Functionen von Beugern ausüben und umgekehrt. Nach diesem Gesichtspunk sind alle abweichenden Verhältnisse zu erklären. Eine ursprüngliche Scheidung Strecker und Beuger ist nichts desto weniger festzuhalten.

S) Vorausgreifend meg folgendes bemerkt werden. Die Nn. thoracici su periores entsprechen den menschlichen N. dorsalis scapulae und N. thoracic posterior s. lateralis, die Nn. brachiales superiores sind Homologe d menschlichen Nn. subscapulares, N. cutaneus brachii internus minor (mit Beschrä kung), N. axillaris und N. radialis, die Nn. brachiales inferiores und N thoracici inferiores sind zu vergleichen den menschlichen Nn. thoracici pectorales anteriores, N. cutaneus brachii internus major s. medius, N. muscuk cutaneus, N. medianus und N. ulnaris (mit Beschränkung); von den Nn. thoraci s. pectorales anteriores kann der zum M. subclavius gehende Ast als specielly Homologon der Nn thoracici anteriores aufgefasst werden.

3) Der N. supracoracoideus der Urodelen ist seiner überwiegenden Hauptmann nach sicher als ein N. brachialis inferior aufzufassen, doch kann ein vollkommen:

tralen Aeste nur zu Verwechslungen führen. — Eine allerdings sehr mangelhe und von der hier gegebenen abweichende Eintheilung in Schichten wurde auch v CUVIER für die Nerven des Menschen gegeben (Léçons a. a. O. p. 253). CUVIER unte scheidet drei Schichten (faisceaux), eine mittlere, aus der Medianus und Ulnar eine hintere, aus der Radialis und Axillaris, und eine äussere, aus der die Thor cici, Scapulares, Cutaneus externus und internus (?) hervorgehen.

2.1.

von N. spinalis III. gebildet (Siredon, Cryptobranchus, Salamandra). Er geht in lateralem und etwas nach vorn gerichtetem Verlaufe nach dem Foramen coracoideum, durch das er nach aussen zu der Innenfläche des M. supracoracoideus (spc), coraco-radialis proprius (crp)(13) und des hinteren Theiles des procoraco-humeralis (ph) tritt (14), bei Proteus auch an die Haut zwischen Coracoid und Procoracoid (15).

Dieser Nerv ist keinem menschlichen Nerven direct zu vergleichen, steht aber in naher Beziehung zum N. suprascapularis, wie namentlich die Verhältnisse bei den Monotremen in einleuchtendster Weise ergeben (siehe unten Cap. VI). Sein Verlauf durch den Brustgürtel oder vor demselben (bei Proteus durch die Incisura coracoidea) schliesst jede Vergleichung mit Nerven aus, die hinter demselben (resp. hinter dem Processus coracoideus) nach aussen an den Oberarm treten. Aus diesem Grunde kann ich mit HUMPHAN's Deutung, als Homologon des N. musculo-cutaneus, nicht übereinstimmen, um so mehr nicht, als der N. supracoracoideus weder einen Hautast an den Arm schickt, der irgendwie mit dem R. cutaneus externus n. musculocutanei zu vergleichen wäre, noch zu den Mm. Coraco-brachiales und brachialis inferior in Beziehung steht.

b) N. pectoralis (17)¹). Ansehnlicher Nerv, der meist aus dem N. spinalis IV. und V., zu denen auch ein feines Fädchen aus dem N. spinalis III. treten kann, bei Cryptobranchus aus dem N. spinalis IV., V. und VI. hervorgeht und sich nach Bildung der Ansa IV. von dem hintern Theile des Plexus abzweigt. Er geht nach Abgabe eines inconstanten Hautästchens an die Brust (18) um den hintern Rand des Coracoid und seiner Muskeln nach der Innenseite des M. pectoralis (p), in dem er sich mit mehreren Zweigen (19) verästelt. Ausserdem findet sich bei Proteus ein kleines Aestchen an den M. obliquus abdominis externus (20).

Der Nerv ist ein Homologon der sogenannten Nn. thoracici anteriores des Menschen. Da diese Bezeichnung der menschlichen Anatomie wenig Werth hat und mit der hier eingeführten Eintheilung und Benennung der Nerven im Widerspruch steht und leicht zu Verwechslungen Anlass geben kann, wurde sie nicht angenommen.

Mangel von Elementen eines N. brachialis superior nicht nachgewiesen werden, Weil eine Trennung beider Schichten an seiner Ursprungsstelle noch nicht eingetreten ist. HUMPHAY lässt durch ihn die Mm. coraco-brachialis superficialis (= Supra-Coracoideus), Biceps (= Coraco-radialis proprius) und vielleicht auch den Coracobrachialis brevis versorgen und deutet ihn als N. musculo-cutaneus und als seriales Homologon des N. obturatorius.

⁴⁾ Von HUMPHRY beschrieben, aber nicht besonders bezeichnet.

Max Fürbringer.

c) N. brachialis longus inferior (21)¹). Der kräftigste Endast des Plexus, durch Verbindung von Theilen des N. spinalis III mit den vereinigten Nn. spinales IV. und V., bei Cryptobranchus durch Vereinigung von Aesten des N. spinalis IV., V. und VI. gebildet.

Der N. brachialis longus inferior ist ein Homologon aller der Nerven des Menschen, welche die Beugeseite der vorderen Extremität versorgen, er enthält also in sich die Elemente des N. medianus, ulnaris und musculo-cutaneus, die bei den Amphibien im Bereiche des proximalen Endes des Oberarms noch nicht getrennt und überdies auch in anderer Weise vertheilt sind. Er giebt vor seinem Austritte aus der Brusthöhle die Nn. coraco-brachiales ab und geht sodann in einer wenig gedehnten Spirale²) zwischen dem M. anconaeus coracoideus (ac) und M. anconaeus humeralis medialis (ahm) nach der Beugeseite des Oberarms. Zugleich theilt er sich früher oder später, bei Salamandra am proximalen Ende des Oberarms, bei Proteus und Siredon vor der Mitte, bei Cryptobranchus am distalen Ende, in zwei lange Endäste, den Ramus superficialis und profundus.

α) Nn. coraco-brachiales (22)³). Ein oder zwei Aeste, die vor dem N. pectoralis liegen, zwischen dem M. anconaeus cora-coideus und den Mm. coraco-brachiales verlaufen und sich im M. coraco-brachialis longus und brevis verzweigen.

Diese Nervenzweige entsprechen nur theilweise dem N. musculo-cutaneus; die diesem zugehörigen Hautäste und Aeste für den M. brachialis inferior werden vom R. superficialis n. brachialis longi inferioris abgegeben. Ein vollkommenes Homologon des N. musculo-cutaneus fehlt den Urodelen.

β) R. superficialis n. brachialis longi inferioris (23) 4). Ansehnlicher Nerv. Er giebt am Anfange des Oberarms ein feines Aestchen (24) an den M. brachialis inferior (hai) ab und theilt sich hierauf in mehrere Hautäste [Nn. cutanei inferiores mediales (25) et laterales (26) und einen Muskelast (27)], die vorzugsweise

4) HUMPHRY: The ulnar trunk of the median nerve.

⁴⁾ Von HUMPERV nach Abgabe der Muskeläste für die Mm. coraco-brachiales als Medianus beschrieben.

²⁾ Die Bildung dieser Spirale sowohl für den N. brachialis longus inferior wie superior ist Folge der Drehung des Humerus. Die spiralige Windung des letzteren ist meist deutlicher, weil auf die ganze Länge des Oberarms ausgedehnt, als die des ersteren, welcher blos in der Schultergegend und am proximalen Ende des Oberarms eine Spirale macht, während er in der Mitte und am distalen Theile desselben gerade verläuft.

³⁾ Von HUMPHRY beschrieben, aber nicht benannt.

die Haut der Beuge des Vorderarms und die oberflächlicheren Muskeln innerviren.

Nach Art seiner Vertheilung am Oberarm, Vorderarm und der Hand (deren detaillirte Beschreibung nicht hierher gehört) ist er einzelnen Elementen der Nn. musculo-cutaneus, ulnaris und medianus homolog, durchaus aber nicht dem Ulnaris, wie Humpuny will, zu vergleichen.

γ) R. profundus n. brachialis longi inferioris (28) ¹). Dem vorigen gleich starker Nerv. Er giebt in der Regel keinen Ast an den Oberarm ab, sondern versorgt gemeinsam mit dem R. superficialis Beugeseite des Vorderarms und der Hand, namentlich deren tiefere Muskelschichten.

Enthält in sich Elemente des N. medianus und ulnaris, besonders des N. interosseus internus, ist aber mit keinem von diesem direct vergleichbar.

Die Nn. brachiales superiores vertheilen sich in folgender Weise:

a) N. subscapularis (29)²). Ein (Salamandra, Cryptobranchus) oder zwei (Proteus, Siredon) dünne Nerven, die entweder noch vor Bildung der Ansa superior III. vom N. spinalis III. entspringen (Proteus, Siredon, Salamandra) oder von den vereinigten Nn. spinales III., IV. und V. abgehen, vom N. spinalis IV. vorzugsweise gebildet (Cryptobranchus), und in lateralem Verlaufe an die Innenseite des M. subscapularis oder M. subcoracoideus gehen und ihn innerviren.

Die Homologie dieses Nerven mit dem menschlichen N. subscapularis (anterior) ist klar.

b) N. dorsalis scapulae (axillaris.) (30)³). Ein (seltener zwei) ziemlich kräftiger Nerv, der entweder vom N. spinalis III., gleich hinter dem N. subscapularis vor oder nach Bildung der Ansa superior III. (Salamandra, Proteus) oder vom N. spinalis III. und IV. (Siredon) oder vom N. spinalis III., IV. und V. (Cryptobranchus) abgegeben wird und sich oberhalb (dorsal) vom M. anconaeus scapularis medialis (asm) und innen vom M. latissimus dorsi (dh) um

⁴⁾ HUMPHRY: The median trunk of the median nerve.

²⁾ HUMPHRY: Subscapular nerve.

³⁾ HUMPHAY: The nerves to the last two muscles (dorsalis scapulae and precoracobrachial) which must, in part any rate, answer to the muscles (infra- and supraspinatus), which are, in ourselves, supplied by the suprascapular nerve. It is interesting to observe the nerves in this animal taking a course, behind the scapula to supply the muscles on the dorsum of the scapula etc.

Max Fürbringer.

den hintern Rand der Scapula herumschlägt, auf deren Aussenfläche, vom M. dorsalis scapulae (ds) bedeckt und ihm mehrere kräftige Zweige (34) mittheilend, er nach vorn verläuft und sich am vordern Rande dieses Muskels in einen oder zwei Haut- und einen Muskelast theilt. Die Hautäste (Nn. cutanei laterales brachii superiores) (32) versorgen die Haut der Achsel und vordern Brust, der Muskelast (33) innervirt den grösseren vorderen Theil des M. procoraco-humeralis (ph).

Ein vollkommenes Homologon dieses Nerven fehlt beim Men-HUMPHRY hält eine Vergleichung mit dem N. suprascapularis schen. für wahrscheinlich (might be designated Suprascapular) wegen seiner Endigung in den Mm. dorsalis scapulae und procoraco-humeralis, die er mit den Mm. infra- und supraspinatus des Menschen homologisirt. Dagegen spricht als Hauptgrund sein von dem N. suprascapularis ganz abweichender Verlauf (hinter anstatt vor der Scapula), ein Umstand, den Humphny auch mit Recht betont, aber nur »interesting « findet, ohne ihn aufzuklären. Gerade dieser von den menschlichen Verhältnissen ganz abweichende Verlauf erregt auch Bedenken gegen die Homologie der Mm. dorsalis scapulae und procoracohumeralis mit den Mm. infra- und supraspinatus, eine Homologie, die durch die vergleichende Behandlung der andern Wirhelthierklassen vollständig widerlegt wird (vergleiche die folgenden Capitel). Eine Vergleichung mit dem N. suprascapularis ist also unbedingt auszuschliessen. Allein Berücksichtigung verdient das Verhältniss zum N. axillaris. Dieser hat mit dem N. dorsalis scapulae sowohl. nach der Richtung seines Verlaufes, als auch nach dem Bereiche seiner Vertheilung (an der Haut der Schulter und an Muskeln, deren nahe Beziehung zum Deltoideus nicht abgesprochen werden kann) grosse Aehnlichkeit. Wir würden nicht anstehen, ihn ohne Weiteres mit diesem zu vergleichen, wenn nicht seine abweichende Lage oberhalb des M. anconaeus scapularis (theilweises Homologon des Caput longum m. tricipitis hominis) dagegen spräche.

c) Nn. latissimi dorsi (34)¹). Ein oder zwei ziemlich dünne Nerven, die von den Nn. spinales III. und IV., bei Cryptobranchus von den Nn. spinales III., IV. und V. abgehen, der vordere meist gemeinsam mit dem N. dorsalis scapulae, und die in die Innenseite des M. dorso-humeralis (latissimus dorsi) (dh) eindringen.

Der Nerv ist ein Homologon des sogenannten N. subscapularis longus s. marginalis scapulae des Menschen. Die nahe Beziehung zu den den M. subscapularis innervirenden Nerven erscheint mir aber,

⁴⁾ Von HUMPHRY zu den Nn. subscapulares gerechnet.

such beim Menschen, ebensowenig klar gelegt, als eine Zurückführung des M. subscapularis und M. latissimus dorsi auf eine gemeinsame indifferente Grundform möglich ist. Vielmehr gehören beide Muskeln von Anfang an verschiedenen Systemen an, und darum dürfte von einer Bezeichnung der Nerven des M. latissimus dorsi als Nn. subscapulares abzuschen sein.

- Nn. brachiales longi superiores (Radialis). Ein oder in der Regel zwei kräftige Endäste der oberen Schichte des Plexus brachialis. Im ersteren (nur bei einem Exemplar von Salamandra maculata beobachteten) Falle ist der Nerv die directe Fortsetzung der Ansa super. IV. und theilt sich gleich hinter dieser in den vorderen stärkeren N. radialis profundus. (35) und den hinteren schwächeren N. radialis superficialis (38). Im letzteren Falle entsteht der N. radialis profundus aus der Ansa sup. III. der N. radialis superficialis allein aus dem keine Ansa eingehenden N. spinalis IV. oder V.
 - a) N. radialis profundus (35)¹). Dringt zwischen den Mm. anconaeus scapularis medialis (asm) und anconaeus humeralis lateralis (ahl) einerseits und dem M. anconaeus humeralis medialis (ahm) andererseits in die Streckmuskelmasse des Oberarms ein, giebt an die tiefere Lage oder bei schwach entwickeltem N. radialis superficialis an die ganze Masse derselben Muskeläste (36) ab und tritt nach gedehnt spiraligem Verlaufe durch diese Streckmuskeln vor dem Condylus radialis in die Ellenbogenhöhle und von hier aus wieder in die Streckmuskulatur des Vorderarms und an den Handrücken und zwar an dessen radialen Theil (37).

Der Nerv entspricht theilweise den tieferen Partien des menschlichen Radialis.

N. radialis superficialis (38)²). Giebt in der Achselhöhle einen kleinen Hautnerven (39) an den lateralen Theil der Streckseite des Oberarms ab³), verläuft hierauf neben dem N. radialis profundus durch die Streckmuskulatur des Oberarms, ihrer oberflächlichen Partie mitunter Aeste abgebend (40) und tritt auf dem Condylus radialis unter die Haut des Vorderarms. Bei geringer Entwickelung (Salamandra) ist er in dessen Bereiche lediglich

ì

3) HUMPHER: Posterior ulnar, or better, inferior musculo-spiral nerve.

^{•)} HUMPHRY: Musculo-spiral or Radial nerve.

Contained by the second sec

Hautnerv der Streckseite (N. cutaneus superior brachii et antibrachii [41] oder er versorgt auch (Cryptobranchus) die Muskulatur derselben und geht bis zur Ulnarseite der Streckfläche der Hand.

Dieser Nerv ist vorzugsweise den oberflächlicheren Theilen des N. radialis hominis zu vergleichen. Ob er auch, was nicht unwahrscheinlich ist, dorsale Elemente des N. ulnaris enthält, ist erst durch eine genaue vergleichende Bearbeitung des Vorderarms und der Hand zu entscheiden.

Neben dem Ursprunge des N. pectoralis zweigt sich von der Ansa IV. ein obere und untere Nervenelemente enthaltendes Fädchen ab, das sich an der Haut des medialen Theiles der Streckseite des Oberarms (N. cutaneus brachii superior medialis [42]) vertheilt. Nach Lage und Vertheilung ist es ein Homologon des menschlichen N. cutaneus brachii internus minor s. Wrisbergii.

§. 3.

Muskeln der Schulter und des Oberarms¹).

(Vergleiche Taf. XV u. XVI.)

Die Muskeln der Schulter und des Oberarms lassen sich einmal nach ihren Beziehungen zum Nervensystem, dann nach ihrer Lage (Ursprung und Insertion) in folgende Gruppen²) eintheilen:

Ducks, a. a. O. S. 486 f. (Triton).

CUVIER, a. s. O. I. S. 402. (kurze Bemerkung über den Deltoideus und Coracobrachialis der Salamandrinen.)

STANNIUS, a. a. O. S. 124 f. S. 124 f.

MIVART, Notes on the Myology of Menopoma Alleghaniense and Menobranchus lateralis. Proc. Zool. Soc. of London 4869. S. 264 f. u. S. 453 f.

HUMPERY, a. a. O. S. 30 f.

2) Ausser diesen werden von FISCHER noch drei zur Schulter in Beziehung stehende Muskeln angegeben, die zu untersuchen ich keine Gelegenheit hatte und die ich nicht mit Bestimmtheit deuten kann. Der erste, »Levator maxillae inferioris ascendens« (Anatomische Abhandlungen über Perennibranchiaten und Derotremen S. 64 und als Appressor maxillae inferioris in Amphibiorum nudorum neurologiae specimen I. S. 42), findet sich bei Amphiuma (und Caecilis). »Er

⁴⁾ Literatur:

FUNE, a. a. O. S. 11. Taf. II., Fig. 11. 12.

MECKEL, a. a. O. Band III. Halle 1828. S. 159 f. S. 174 f. S. 200 f. (Muskeln von Proteus anguineus, Triton cristatus und Salamandra maculata).

RÜDINGER, Die Muskeln der vorderen Extremitäten der Reptilien und Vögel. Haarlem 1868. S. 14 f. S. 95 f. S. 101. (Siredon, Proteus, Triton, Selamandra.)

OWER, Comparative Anatomy and Physiology of Vertebrales. Vol. I. London 4866. S. 247 f.

Zur vergleichenden Anatomie der Schultermuskeln.

A. Durch N. vagus innervirt :

Ursprung von der dorsalen Fläche des Hinterkopfes und Rückens.

Insertion am Brustgürtel:

Capiti-dorso-scapularis (Cucullaris).

entspringt mit zwei Portionen: 4) von der die Muskeln vor- und medianwärts vom Schultergerüst überziehenden Fascie, und zwar in einer Querlinie, die sich vom Oberarmgelenk bis zur ventralen Mittellinie des Körpers erstreckt, 2; von der äusseren Fläche des winzigen Oberarms nahe unter dessen Gelenk mit dem Schulterblatt. Seine Fasern laufen convergirend nach vorn und oben und inseriren sich an die Spitze des bei Amphiuma ungewöhnlich langen hinteren Unterkieferfortsatzes.« Dieser Muskel, der gemeinsam mit dem M. mylohyoideus posterior von dem R. jugularis n. facialis (S. FISCHER a. a. O. S. 436) versorgt wird, fehlt den andern untersuchten Urodelen in der beschriebenen Form. Doch ist der sogenannte Mylohyoideus posterior bei Proteus sehr ansehnlich nach hinten zu entwickelt und erstreckt sich nahezu bis zum Brustgürtel. Diese Beziehung und die gemeinsame Innervation mit dem Mylohyoideus posterior sprechen für eine nähere Zusammengehörigkeit beider Muskeln. Eine weitere Bestätigung dieser Vermuthung wird gewonnen durch die Vergleichung mit den Fischen, vorzugsweise den Selachiern und Chimären. Bei diesen liegt, nach den eingehenden Untersuchungen VETTER's (demnächst unter dem Titel »Untersuchungen zur vergleichenden Anatomie der Kiemen- und Kiefermuskulatur der Fische« erscheinend), direct unter der Haut in der Kiefer- und Kiemengegend eine mehr oder minder mächtige von Trigeminus, Facialis, Glossopharyngeus und Vagus innervirte Quermuskelmasse, die in ihrem vordern Theile den Raum zwischen den beiden Unterkiefern ausfüllt, in ihrem mittleren Abschnitte theilweise die äusseren Kiemenbogen umhüllt, theilweise durch sie Unterbrechungen erleidet und dann sehr complicirte Beziehungen eingeht, die zu beschreiben hier nicht der Ort ist, und die in ihrer hinteren dünneren und sehnigen Partie sich (bei Heptanchus, Scymnus, Chimaera) an die Oberfläche des Brustgürtels anheftet und sogar bis auf die Basis der Brustflosse erstreckt. Dieser Muskel, für den ich den Namen Constrictor arcuum visceralium vorschlagen möchte, findet sich, wenn auch etwas verändert, bei Lepidosiren und Ceratodus (s. HUMPHRY, the Muscles of Lepidosiren annectens and Ceratodus. Journal of Anatomy and Physiology. II. Ser. No. X. May 1872. Cambridge and London. S. 258 f. S. 279 f., von HUMPHRY als most or mesial portion of the cervicalis superficialis beschrieben). Bei der Mehrzahl der Amphibien sind die, bei Ceratodus noch vollständig gewahrten, Beziehungen zum Brustgürtel aufgegeben, der Muskel ist verkümmert bis auf vordere Theile zwischen dem Unterkiefer und dem ersten eigentlichen Kiemenbogen (da auch meistens reducirt) und einzelne tiefere zu Pharynx und Larynx in näherem Connex stehende Partien : es sind allein noch erhalten die Mm. mylohyoidei und constrictores pharyngis et laryngis. Nur bei Amphiuma (und Caecilia) existirt ein Zusammenhang des Muskels mit dem Brustgürtel als sogenannter Levator maxillae inferioris ascendens. Ob dieser wirklich genau homolog ist den hinteren mit dem Brustgürtel und der Brustflossenbasis verbundenen Partien des Constrictor arcuum visceralium der Selachier und Chimären, oder ob er eine vorwiegend nach hinten zu entwickelte Partie des vordern Abschnittes darstellt, kann zur Zeit nicht entschieden werden. Für die letztere Annahme spricht die Innervation durch den Facialis (die hintere Partie des

Max Fürbringer.

B. Durch Nn. thoracici superiores innervirt:

Insertion am dorsalen Abschnitt des Brustgürtels.

- a) Ursprung vom ventralen Theile des Hinterkopfes Basi-scapularis (Levator scapulae).
- b) Ursprung von Rippen: Thoraci-scapularis (Serratus magnus).
 - C. Durch N. thoracicus inferior II. anterior innervirt:

Ursprung von der ventralen Bauchmuskelmasse, Insertion an der Innenfläche des Brustgürtels:

Pectori-scapularis internus.

D. Durch Nn. brachiales inferiores innervirt:

a) Ursprung vom Rumpfe (Bauchfläche, Sternum), Insertion am Oberarm:

Pectoralis.

- b) Ursprung vom ventralen Theile des Brustgürtels (Coracoid).
 - a) Durch N. supracoracoideus innervirt, Insertion am Oberarm und Vorderarm :

Supracoracoideus mit Coraco-radialis proprius.

β) Durch Aeste des N. brachialis longus inferior innervirt, Insertion am Oberarm:

Coraco-brachialis longus und brevis.

 c) Ursprung vom Oberarm, Insertion am Vorderarm (Radius und Ulna).

Humero-antibrachialis inferior (Brachialis inferior).

Constrictor der Selachier wird vom Vagus versorgt), falls diese wirklich ausschließelich für den genzen Muskel gilt. — Die beiden andern Muskeln finden sich allein bei Menobranchus (s. FISCHER, Anatomische Abhandlungen etc. S. 1466.). Der eine, »M. om ophäryngeus«, »erstreckt sich vom vordern Rande der knöchernen Scapula nach vorn an dieselbe Inscriptio tendines, die dem dorsotrachealis zur Insertion dient, « und wird innervirt durch einen feinen Ast des N. vagus, der andere wird von FISCHER ohne weitere Ausführung als M. sterno-cleidomastoideus angegeben. Der Mangel einer eingehenden Beschreibung und beigefügten Abbildung lässt eine sichere Deutung nicht zu. Nach Lage und Innervation lassen sich in ihnen mit Wahrscheinlichkeit Verwandte des M. capiti-dorsoscapularis erkennen.

263

Zur vergleichenden Anatomie der Schultermuskeln.

E. Durch Nn. brachiales inferiores und superiores zuleich innervirt.

rsprung vom vorderen Theil des ventralen Abschnittes des Brustgürtels, Insertion am Oberarm: Procoraco-humeralis.

F. Durch Nn. brachiales superiores innervirt:

) Ursprung vom Rumpfe (dorsale Fläche des Rückens), Insertion am Oberarm:

Dorso-humeralis (Latissimus dorsi).

) Ursprung vom Brustgürtel, Insertion am Oberarm:

 α) Ursprung von der Aussenfläche der Scapula, Insertion am Processus lateralis:

Dorsalis scapulae.

β) Ursprung von der Innenfläche des Brustgürtels, Insertion am Processus medialis:

Subcoraco-scapularis.

) Ursprung vom Brustgürtel und Oberarm, Insertion am Vorderarm (Ulna):

Anconaeus.

1. Capiti-dorso-scapularis (Cucullaris) (cds) 1).

Omomastoideus: Funk (Fig. 44 h, Fig. 48 k).

Vorwärtszishen der Schulter: MECKEL (No. 4). Spini-sus-scapulaire, portion du trapèze; Masto-sus-

acromial ou sternomastoidien; Ex-occipito-sus-scapulaire, portion du trapèze: Ducks (No. 38. 80. 34).

Fasciculus of protractor scapulae: Owen (No. 19).

Römmern beschreibt bei Siredon eine von der bei Triton und Salamandra absichende Insertion (von ihm als Ursprung aufgefasst). Während er bei beiden zieren von der Scapula entspringt, soll er bei ersterem von »dem rundlichen sochen, welcher mit der Scapula in Verbindung tritt« (!) kommen. Diese Angabe mir unverständlich. Jedenfalls aber, es mag nun unter »dem rundlichen Knochen« s Procoracoid oder die knöcherne Scapula oder blos ein Theil derselben vernden sein, kann ich die Verschiedenheit nicht bestätigen.

⁴⁾ STANNIUS beschreibt an seiner Statt zwei Muskeln, von denen der eine »von r hinteren Schädelgegend zur Scapula und zum Processus acromialis erstreckt ist« r andere »von der Rückengegend abwärts zur Grenzo der Scapula und des Proc. romialis erstreckt ist«. Kine Deutung ist nicht gegeben.

Max Fürbringer.

Cucullaris et Sterno-cloido-mastoideus: Rüdingen. Trapezius: Mivart, Humpery.

Ein verschieden entwickelter Muskel. Bei den Sozobranchiern ist er schmal und klein (besonders bei Menobranchus und Amphiuma) und entspringt lediglich vom Rücken¹), von einer dünnen Aponeurose die sich über die mediale Längsmuskulatur hinwegzieht und mit der Haut verwachsen ist. Er ist also hier allein ein Dorso-scapularis. Bei den Sozuren ist er breiter und bis zum Kopfe ausgedehnt. Er entspringt hier muskulös vom Hintertheil des Os occipitale laterale, sowie von der dünnen auf der Längsmuskulatur des Rückens aufliegenden Aponeurose in der Höhe der zwei ersten Wirbel. Er ist hier ein Capitidorso-scapularis. Mit convergirenden Fasern geht er nach unten und hinten und inserirt kräftig am vordern Rande der an einander stossenden meist verknöcherten Theile der Scapula und des Procoracoids.

In n e r v i r t durch Rr. accessorii n. vagi (α).

Ueber die allgemeine Homologie dieses Muskels mit den zu einander in naher Beziehung stehenden Cucullaris und Sterno-cleido-mastoideus des Menschen kann kein Zweifel bestehen; Ursprung, Insertion und Innervation sind nur in unwesentlichen Puncten (z. B. Mangel einer clavicularen Insertion) verschieden. Mit geringerer Bestimmtheit dagegen ist die Frage zu beantworten, in wie weit Homologa des Sterno-cleido-mastoideus und in wie weit Homologa des Cucullaris im Capiti-dorso-scapularis der Urodelen enthalten sind. Bei den Sozobranchiern schliesst der Mangel aller vom Kopfe kommenden Partien eine Vergleichung des Dorso-scapularis mit dem Sterno-cleido-mastoideus vollkommen aus und gestattet nur eine Homologisirung mit dem Rumpftheil des Cucullaris. Bei den Sozuren dagegen entspricht der sehr weit lateral ausgedehnte Ursprung der Kopfpartie dem Ursprunge nicht allein des Kopftheils des menschlichen Cucullaris, sondern auch der lateralen Portion des Sterno-cleido-mastoideus, allein der weitere Verlauf dieser Partie, ihre Insertion²) und namentlich

⁴⁾ Dieser auf den Rücken beschränkte Ursprung bei den Sozobranchiern ist als ursprüngliches Verhältniss aufzufassen; die in der Kiemengegend entwickelten Mm. levatores branchiarum (übrigens nebst den von FISCHER sogenannten Mm. digastricus maxillae inferioris, dorso-laryngeus und dorso-trachealis metamere Homologe des M. cucullaris) gestatten keinen Raum für eine Entwickelung nach vorn; erst nach deren Verkümmerung bei den Sozuren ist diese möglich: der Ursprung des Muskels greift dann bis nach der Kopfgegend über.

²⁾ Das Verhältniss der Insertion ist übrigens mit grosser Vorsicht zu behandeln. Erkennt man in der Clavicula einen morphologisch ganz selbständigen Skelettheil des Brustgürtels und nimmt man als wesentliche Eigenschaft des M. cleido-mastol-

ihre (niemals wie beim Sterno-cleido-mastoideus des Menschen z. Th. durch Nn. spinales besorgte) Innervation erregen Bedenken gegen jede Vergleichung mit diesem Muskel. Beachtung verdient die von Humpunv als wahrscheinlich angeführte nähere Beziehung zu dem sogenannten Cervico-humeralis der Säugethiere (Näheres hierüber vergleiche Cap. VI und VII bei der Besprechung dieses Muskels). — Bei Triton (und Siredon und Salamandra (?) nach Rüdingen) ist der Muskel nicht ganz homogen, sondern zeigt eine leise Andeutung eines Zerfalles in zwei oder drei Partien. Ihn deshalb in zwei oder drei selbständige Muskeln zu trennen, wie STANNUS und Ducks thun, erscheint mir nicht berechtigt.

2. Basi-scapularis (Levator scapulae) (bs) 1).

Levator anguli scapulae: FUNK, RÜDINGER, MIVANT. Sous-occipito-adscapulaire, angulaire: Dugès (No. 32). Fasciculus of protractor scapulae: Owen (No. 49). Levator scapulae: HUMPHAY.

Ein bei den Sozobranchiern langer und schmaler, bei den Sozuren kurzerer und breiterer Muskel, der bei ersteren von den Kiemenbogen und ihren Weichtheilen bedeckt ist, bei letzteren direct unter dem Capiti-dorso-scapularis (cds) liegt. Er entspringt vom Os occipitale

deus an, dass er nur an der Clavicula und nicht am primären Brustgürtel inserirt, so ist die Ausschliessung einer Homologie desselben mit dem Capiti-spino-scapularis vollkommen gerechtfortigt; fasst man aber die Clavicula (zunächst der anuren Amphibien) nur als histologische Differenzirung des das Procoracoid umgebenden Bindegewebes (Perichondriums bei Rana, vergleiche Gegenbaun, Schultergürtel etc. 8.55) auf, sieht man also darin keinen wesentlichen Unterschied, ob der Cleidomastoideus an dem sogenannten primären Knochen (Procoracoid) oder an dem sogenannten secundären Knochenbeleg desselben (Clavicula) inserirt, so ist eine Vergleichung des Cleido-mastoideus und Capiti-dorso-scapularis (der wie oben erwähnt auch an den scapularen Theil des Procoracoids sich ansetzt) gestattet. Von der Thatsache ausgehend, dass die Clavicula ursprünglich ein ganz selbständiger, von dem sogenannten primären Brustgürtel getrennt entstehender Hautknochen ist (Accipenser), der erst später mit diesem sich verbindet, möchte ich ersterer Auffassung den Vorzug geben und nur dann eine Vergleichung mit dem menschlichen Sterno-cleido-mastoideus zulassen, wenn eine Insertion an clavicularen Elementen bestimmt nachweisbar ist.

⁴⁾ Entspricht vielleicht MECKEL's No. 3. Wegen ungenau angegebenen Ursprungs ist ein Vergleich nicht möglich.

STANNUS beschreibt ihn als Muskel »der von der hinteren Schädelgegend zur Vorderseite des oberen Randes der Scapula tritt«.

RÜDINGER lässt ihn vom hintern lateralen Theile des Schüdels entspringen und »die laterale Halsmuskelbewegung begrenzen« (!?).

basilare und geht breiter werdend nach hinten zum Brustgürtel an das sogenannte Suprascapulare. Bei den Sozobranchiern heftet er sich in der Regel nur an dessen Vorderrand an, bei den Sozuren greift seine Insertion auch auf den vorderen Theil der Aussenfläche desselben über.

Innervirt durch Nn. thoracici superiores (2, 4).

Der Muskel kann als Homologon des menschlichen Levator scapulae aufgefasst werden. Eine vollkommene Uebereinstimmung zwischen beiden existirt allerdings nicht : der menschliche Levator entspringt von den Querfortsätzen der Halswirbel und inserirt niemals an der Aussenfläche der Scapula. Beide Verschiedenheiten sind aber keine principiellen. Die ausserordentliche Variabilität der Ursprungszacken des menschlichen Levator scapulae, die einerseits auch von den Querfortsätzen der hintern Halswirbel, andererseits auch vom Hinterhaupte kommen können, zeigt, dass die Definition des Ursprungs des Levator scapulae nicht blos auf die Querfortsätze der vier ersten Halswirbel beschränkt werden darf, sondern vielmehr auf die Pars basilaris ossis occipitalis (deren lateraler Theil ein metameres Homologon der Processus transversi ist) und die Ouerfortsätze (d. h. die vereinigten Processus transversi und Costae) aller Halswirbel ausgedehnt werden muss. Die bei den Sozuren stattfindende Ausdehnung der Insertion auf die Aussenfläche der Scapula ist nur als eine diesen eigenthümliche Anpassung aufzufassen, die mit der schwachen Entwickelung der sonst mit derselben verbundenen Muskeln in Correlation steht.

3. Thoraci-scapularis (Serratus magnus) (ths) 1).

Depressor anguli scapulae inferioris: FUNK (Fig. 44 m). Grösserer Rückwärtszieher der Schulter: MECKEL (No. 3). Costo-sous-scapulaire ou grand dentelé: DUG2S (No. 39). Serratus anticus major: RÜDINGER. Levator scapulae und Serratus anticus major: OWEN (No. 49 u. 24).

Serratus magnus: MIVART, HUMPHRY.

4) MECKEL'S Angabe, dass der grössere Rückwärtszieher »auch an das obere Ende des Oberarms reicht« kann ich nicht bestätigen.

STANNUS giebt zwei Muskeln an, von denen der eine »den Hinterrand der Scapula etwas schräg abwärts gegen die Bauchseite zieht« der andere »die Unterfläcke der Scapula schräg abwärts zur Bauchselte zieht«.

Die Beschreibung MIVART's, wonach der Serratus magnus von der »laterales Muskelmasse« entspringt, ist nicht ganz exact. Ueberall lässt sich ein Zusammenhang mit den Rippen oder wenigstens Inscriptiones tendinese nachweisen.

Verschieden grosser Muskel. Bei Proteus sehr unansehnlich, bei Menobranchus und Menopoma etwas entwickelter aber noch ohne nachweisbare getrennte Zacken (nach den Angaben früherer Beobachter). Diese treten erst auf bei Cryptobranchus, wo sich zwei, und bei Siredon, wo sich drei, vielleicht auch vier, finden. Differenzirter ist der Muskel bei den Sozuren, namentlich bei Salamandra. Bei letzterer lassen sich eine untere und eine obere Partie unterscheiden.

a) Untere Partie (*ths*,). Besteht aus einem einzigen Muskelbundel, das von der Spitze der zweiten Rippe entspringt und an der Innenfläche des Knorpeltheils der Scapula (Suprascapulare) nahe der Grenze mit ihrem Knochentheil neben der Insertion des Capiti-dorsoscapularis sich ansetzt.

b) Obere Partie (ths,). Besteht aus vier discreten Muskelbündeln, die von den vier ersten Rippen, mit Ausnahme ihrer äusseren Enden entspringen und an der Innenfläche des Knorpeltheils der Scapula nahe ihrem oberen Rande inseriren. Das von der ersten Rippe entspringende Bündel ist breit und kräftig, wird in seinen unteren Theilen von der unteren Partie (a) gedeckt und geht in transversaler Richtung nach oben an den vordern Theil der Innenfläche des Suprascapulare; das zweite Bündel entspringt oberhalb der unteren Partie der zweiten Rippe und geht transversal an den hintern Theil der Innenfläche des Suprascapulare; die zwei hintern Bündel sind dünn und lang und gehen mit nach vorn gerichteten Fasern von der dritten und vierten Rippe an den Hinterrand des Suprascapulare.

Innervirt durch Nn. thoracici superiores (7, 8).

Der Muskel ist ein Homologon des menschlichen Serratus anticus major ¹), von dem er sich nur durch die geringere Anzahl seiner Zacken, leicht erklärlich durch die geringere Zahl der Rippen, und die Differenzirung in eine obere und untere Partie unterscheidet. Eine Vergleichung mit dem zu demselben System gebörigen Levator scapulae verbietet zwar nicht sein Rippenursprung (denn der Levator kann auch von Halsrippen entspringen und eine Unterscheidung dieser von Brustrippen fehlt bei den Urodelen), wohl aber sein transversaler und descendenter (von dem ascendenten des Levator verschiedener) Faserverlauf.

⁴⁾ Anstatt der Bezeichnung als Serratus anticus major wählen wir die von englischen Autoren eingeführte als Serratus magnus. Durch den Nachweis, dass der sogenannte Pectoralis minor s. Serratus anticus minor gar nichts mit dem Serratus anticus major gemein hat und nur dem Pectoralis zuzurechnen ist, fällt die im Namen liegende Unterscheidung von diesem selbstverständlich weg.

4. Pectori-scapularis internus (psi) 1).

Ein bei Salamandra mit Bestimmtheit nachweisbarer Muskel. Er entspringt, bedeckt vom Coracoid, ziemlich breit von der ventralen Bauchmuskelmasse (Rectus abdominis [ra] und hintere Zungenbeinmuskeln) und geht mit convergirenden Fasern an die Innenfläche der Scapula an die Grenze des Knochen- und Knorpeltheils.

Innervirt durch N. thoracicus inferior anterior (5).

Der Pectori-scapularis internus stellt einen den Urodelen eigenthümlichen ziemlich indifferenten Muskel dar, dessen hintere Portion sich bei keinem Wirbelthiere wiederfindet, während das Homologon seines vorderen Theils bei den Anuren durch Eingehen näherer Beziehungen zu dem vergrösserten Zungenbeine zum Omo-hyoideus derselben geworden ist. Ob er zum System des M. transversus abdominis oder des M. rectus abdominis gerechnet werden muss, kann nicht entschieden werden. Für ersteres spricht sein transversaler Faserverlauf, für letzteres der Uebergang einzelner Bündel in die Masse der hintern Zungenbeinmuskeln.

5. **Pectoralis** (*p*) ²).

Portio inferior m. pectoralis majoris, quam cum pectorali minori comparare possis: FUNK (Fig. 19: i).

Grosser Brustmuskel, Grand pectoral, Pectoralis major: Meckel (8ª), Cuvier, Stannius, Rüdinger.

Abdomino-coraco-huméral, portion du grand pectoral: Ducès (No. 84).

Pectoralis: Owen, MIVART, HUMPHRY.

Breiter Muskel auf der Unterfläche der Brust- und vorderen Bauchgegend. Er entspringt in seinem hinteren Theile von der oberflächlichen Schichte des M. rectus abdominis (ra) und der sie bedeckenden Aponeurose des M. obliquus externus abdominis (oae), in seinem vorderen von der Aussenfläche des Sternums und von der den M. supracoracoideus (spc) und das Coracoid in der Medianlinie deckenden lockeren Fascie, hier mit dem der Gegenseite durch eine Linea alba verbunden³),

⁴⁾ Scheinbar von keinem Autor beschrieben.

²⁾ Binen von MECKEL beschriebenen Ursprung »von dem kleinen Brustbeinarmmuskel« kann ich nicht bestätigen.

MIVARTS Angabe, dass der Pectorelis bei Menobranchus vom hintern Theile des Coracoid selbst komme, constatirt bei diesem einen principiellen Unterschied von den übrigen Urodelen, der wohl noch der weiteren Bestätigung bedarf.

³⁾ Auf dieses Verbundensein mit dem Muskel der Gegenseite ist mehr Gewicht zu legen, als auf die Anheftung an das lockere Bindegewebe der Brust, das nicht fest genug ist, um bei der Wirkung des Pectoralis als fixer Punct zu dienen.

und geht mit stark convergirenden Fasern an die Beugefläche des distalen Theiles des Processus lateralis humeri (*PL*). Bei Proteus und Menobranchus ist wegen Verkümmerung des Sternums der Ursprung von diesem weggefallen; der Muskel entspringt hier in seinem vordern Theile lediglich von dem auf dem Coracoid gelegenen lockern Bindegewebe. Mit dem vorderen Rande deckt er den hintern Theil der von dem Coracoid entspringenden Muskeln. Bei den Sozobranchiern ist er wenig selbständig und lang ausgedehnt, bei den Sozuren bildet er einen etwas kürzeren ziemlich discreten Muskel, der bei Salamandra eine beginnende Trennung in eine Pars sternalis und abdominalis zeigt.

Innervirt durch Nn. pectorales (14).

Der von Funk betonte Vergleich mit dem M. pectoralis minor braucht keine Widerlegung. Eine Entscheidung bedarf nur die Frage, ob der Muskel lediglich dem M. pectoralis major des Menschen oder ob diesem und dem M. pectoralis minor zugleich entspricht. Die Vergleichung innerhalb des Gebietes der Säugethiere ist bestimmend. Bei diesen existirt in den niederen Formen ein M. pectoralis der in verschiedener Weise zerfallen kann und dessen Differenzirung erst in den höheren Formen sich derart determinirt, dass ein grösserer oberflächlicherer Theil stets nur am Humerus inserirt (M. pectoralis major), ein kleinerer tieferer Theil bald an den Humerus allein, bald an den Humerus und Processus coracoideus, bald an letzteren allein sich anheftet (M. pectoralis minor). Es ist also die Bildung der Mm. pectoralis major und minor als ein auf die Classe der Säugethiere beschränkter Differenzirungsvorgang aufzufassen¹); bei den andern Wirbelthieren existirt nur ein gemeinsamer oder nach einem andern Typus zerfallener M. pectoralis.

6. Supracoracoideus (spc) und Coraco-radialis proprius $(crp)^2$).

a) Supracoracoideus:

Portio media m. pectoralis majoris, quam cum pectorali majore comparare possis: Funn (Fig. 43 i).

Einwärtszieher, Theil des grossen Brustmuskels, wenn auch völlig von ihm getrennt: MECKEL (No. 4).

⁴⁾ Ueber das Verhältniss dieser Behauptung zu den ihr widersprechenden Annahmen Rolleston's und Selenka's vergleiche Cap. V.

²⁾ Die Beschreibungen der Autoren stimmen sowohl untereinander, als auch mit meinen Untersuchungen ziemlich überein. Nur wird dem Coraco-radialis proprius, dessen Muskeltheil in Wirklichkeit nur künstlich vom Supracoracoideus zu trennen ist, zu grosse Selbständigkeit zuerkannt.

Max Fürbringer.

Clavi-huméral, portion du grand pectoral: Ducks (No. 35). Pectoralis secundus: STANNUS. Part of Pectoralis: OWEN.
Coraco-brachialis proprius: Rüdingen.
First part of Coraco-brachialis. Mivart.
E picoraco-humeral, not improbably the representative of the pectoralis minor of mammals: HUMPBRY (No. 4).
b) Coraco-radialis proprius: Coraco-radialis: STANNUS.
Biceps brachii: Rüdingen.
Part of Biceps: MIVART.
Coraco-radialis or biceps: HUMPERY (No. 7).

Breiter auf der Unterseite der Brust gelagerter, mit seinem hintern Rande vom Pectoralis (p) gedeckter, mit seiner übrigen Fläche freiliegender Muskel. Er entspringt von der ganzen Fläche des Coracoid's mit Ausnahme des medialen und bintern Randes und geht mit stark convergirenden Fasern an den proximalen Theil der Beugefläche des Processus lateralis humeri (Supracoracoideus [spc]). Die tiefere und hintere Partie geht in eine lange Sehne über, die mit einem Nebenzipfel am Processus lateralis, mit ihrem Haupttheile an der Beuge des Radius, gemeinsam mit dem M. brachialis inferior (hai) inserirt (Coracoradialis proprius [crp]). Der Muskel ist bei den Sozuren mehr entwickelt als bei den Sozobranchiern. Bei den letzteren ist er von dem vor ihm liegenden Procoraco-humeralis (ph) und den hinter ihm gelegenen Coraco-brachiales (cb) nur künstlich zu trennen.

Innervirt durch N. supracoracoideus (40).

Die Innervation durch den N. supracoracoideus schliesst jede Vergleichung des M. supracoracoideus mit dem M. pectoralis major, minor und coraco-brachialis, wie des M. coraco-radialis proprius mit dem M. biceps brachii aus. Der Supracoracoideus ist ein den Amphibien (ausserdem den Reptilien, Vögeln und Monotremen) eigenthümlicher Muskel, der allen Säugethieren mit reducirtem Coracoid fehlt, der aber, wie die Untersuchung der Monotremen ergiebt, mit den Mm. supraspinatus und infraspinatus in naher Beziehung steht. STANNUS hat seine Homologie mit dem Pectoralis secundus der Vögel, RÜDINGER seine Verschiedenheit vom Coraco-brachialis des Menschen richtig erkannt; beide haben jedoch ihre Behauptungen nicht bewiesen. Anstatt der von RÜDINGER gegebenen Bezeichnung Coraco-brachialis proprius möchte ich die Benennung Supracoracoideus einführen, die den Namen Supra- und Infraspinatus gleichgebildeter ist. — Die wahre Natur des Coraco-radialis proprius ist von allen Untersuchern verkannt worden. Dieser Muskel ist unter den

271

pentadactylen Wirbelthieren lediglich den Amphibien eigenthümlich und mit keiner Bildung bei den drei höheren Wirbelthierklassen zu vergleichen.

7. Coraco-brachialis longus (cbl) und brevis (cbb) ¹).

Hakenarmmuskeln: MECKEL (No. 8). Coraco-huméral: Ducks (No. 89). Coracobrachialis: Stannius, Rüdinger. Second part of Coracobrachialis: Mivart. Coracobrachialis longus und brevis: HUMPERY (No. 6).

Kräftige Muskelmasse, die vom hinteren Rand und der Aussenfläche des hinteren Theiles des Coracoid zu der medialen Seite des Humerus in seiner ganzen Länge geht. Namentlich bei den Sozuren ist sie deutlich in zwei selbständige Muskeln getrennt, den Coraco-brachialis longus und brevis.

a) Coraco-brachialis longus (cbl). Langer und nicht unkräftiger Muskel, der schmal vom hintern Rande des knöchernen Coracoidtheils, medial vom M. anconaeus coracoideus (ac), entspringt und an den distalen zwei Fünfteln des Humerus inserirt.

b) Coraco-brachialis brevis (cbb). Kurzer und kräftiger Muskel von grösserem Volumen als der Coraco-brachialis longus. Er entspringt breit von dem Hinterrande und der Aussenfläche des hinteren Theiles des Coracoid, medial wie lateral über die Ursprungsstelle des M. coraco-brachialis longus (cbl) überragend und theilweise vom M. supracoracoideus (spc) gedeckt, und geht an die Medial- und Beugeseite des zweiten und dritten Fünftels des Humerus und des distalen Endes der Beugefläche des Processus medialis (PM).

Innervirt durch Nn. coraco-brachiales (16). Beide Muskeln werden durch die Nn. brachiales longi inferiores (17, 22) von einander getrennt.

Die proximal inserirende Partie dieses Muskels (Coraco-brachialis brevis) entspricht dem M. coraco-brachialis hominis, die distal sich anheftende findet sich bei vielen Säugethieren wieder, fehlt aber dem Menschen. Der Ursprung vom hinteren Ende des Coracoid, das dem

⁴⁾ Von MECKEL wird die Insertionsstelle der Mm. coraco-brachiales auf die distale Hälfte des Humerus, von STANNIUS auf das Tuberculum minus (Processus medialis humeri) beschränkt. HUMPHAN'S Angabe, wonach der Coraco-brachialis brevis »perhaps« von dem durch das Foramen coracoideum gehenden Nerven (N. supracoracoideus) innervirt wird, kann ich für die hier untersuchten Urodelen nicht bestätigen.

Processus coracoideus kaum homolog ist, könnte Zweifel gegen diese Vergleichung erregen, allein die vergleichende Untersuchung dieses Muskels, dessen Ursprung ausserordentlich verschieden sich verhalten kann (bei den Crocodilen z. B. nimmt er fast die ganze Aussenfläche des Coracoids ein), ergiebt, wie geringfügig und haltlos dieses Bedenken ist.

8. Humero-antibrachialis inferior (Brachialis inferior) (hai).

Brachialis medius: FUNK. Oberer Beuger des Vorderarms: MECKEL (No. 4). Huméro-radial, biceps: DUGES (No. 4). Humero-radialis: STANNUS (No. 4). Brachialis internus: RÜDINGER. Biceps and brachialis internus: OWEN. Part of biceps: MIVART. Brachialis anticus: HUMPERY.

Mittelstarker Muskel an der Beugeseite des Humerus, lateral neben der Sehne des M. coraco-radialis proprius. Er entspringt von der Beugeseite des Humerus, distal vom Processus lateralis (PL) und inserirt am Anfange des Radius (R) und der Ulna (U), an letzterer meist mit einem sehr schwachen Sehnenzipfel. Bei allen Urodelen ziemlich constant, bei den Sozuren etwas ansehnlicher als bei den Sozobranchiern.

Innervirt durch einen oder zwei Muskelästchen des R. superficialis N. brachialis longi inferioris (18).

Ein Vergleich mit dem Biceps kann nur in soweit gestattet sein, als der Humero-antibrachialis inferior als theilweises Homologon des als Varietät auftretenden sogenannten Caput III. m. bicipitis hominis aufgefasst wird. Der Hauptsache nach ist er mit dem M. brachialis internus zu vergleichen.

9. Procoraco-humeralis $(ph)^{1}$).

Portio superior m. pectoralis majoris, quam cum deltoideo comparare possis: FUNK (Fig. 13 i).

Vorwärtszieher oder Heber des Oberarms, dreieckiger Muskel: MECKEL (No. 4).

4) Die theilweise Innervation des Procoraco-humeralis durch Zweige des N. supracoracoideus ist wahrscheinlich von Humphny überschen worden.

Acromio-huméral, déltoide: Ducès (No. 36). Deltoideus: Stannus, Rüdingen. Subclavius: Mivant. Precoraco-brachial: HUMPHRY (No. 3).

Schmaler und langer Muskel, der oben an den M. dorsalis scapulae (ds), hinten ohne deutliche Grenze an den M. supracoracoideus (spc) stösst. Seine Länge hängt ab von den Dimensionen des Procoracoid : er ist bei Proteus länger als bei den übrigen Sozobranchiern und den Sozuren. Der Muskel entspringt von der Aussenfläche des Procoracoid, mit Ausnahme von dessen vorderem und medialem Ende und geht an den proximalen Theil der Kante des Processus lateralis (PL), wo er zwischen M. supracoracoideus (spc) und dorsalis scapulae (ds) inserirt.

Innervirt zum grösseren vorderen Theile durch einen Endast des N. dorsalis scapulae (27), zum kleineren hinteren an den M. supracoracoideus grenzenden Theile durch einen Zweig des N. supracoracoideus (11).

FUNK'S Bezeichnung bedarf keiner Widerlegung. MIVART'S Deutung als M. subclavius beruht auf einem doppelten Irrthum, indem einerseits der Muskel der Urodelen dem »Epicoraco-humeral« der Saurier, Crocodile und Monotremen, anderseits dieser dem M. subclavius der monodelphen und didelphen Säugethiere verglichen wird. Der eine Fehler lässt sich leicht nachweisen durch eine genaue Berücksichtigung der Lage und Innervation beider Muskeln, wonach der »Epicoraco-humeral« der Saurier etc. mit Bestimmtheit als ein Homologon des Supracoracoideus der Urodelen, aber nicht des Procoraco-humeralis (der in seiner vom N. dorsalis scapulae innervirten Hauptmasse einem ganz andern Muskelsysteme zugehört) erkannt wird. Der, von Rollsston zuerst gegebene, Vergleich des »Epicoraco-humeral« mit dem Subclavius ferner, der auch von HUMPHRY mit Recht angezweifelt worden ist, wird bei Besprechung der Verbältnisse der Saurier, Vögel und Reptilien seine Widerlegung finden. - In Wirklichkeit ist der Muskel direct keiner Bildung des Menschen zu vergleichen. Seiner durch Aeste des N. supracoracoideus und N. dorsalis scapulae stattfindenden Innervation nach ist er als eine den Urodelen (allgemeiner den Amphibien) eigenthümliche Verschmelzung zweier ursprünglich getrennter Muskeln aufzufassen. Die beiden ihn zusammensetzenden Elemente lassen eine weitere (indirecte) Homologie, einmal mit den Mm. supraspinatus und infraspinatus (der vom N. supracoracoideus versorgte kleinere Theil), dann mit dem M. deltoideus (der vom N. dorsalis scapulae innervirte grössere Theil) erkennen.

10. Dorso-humeralis (Latissimus dorsi) (dh) ¹).

Latissimus dorsi, Grand dorsal: FUNK (Fig. 44^a), CUVIER, STANNIUS (No. 3), OWEN (No. 14), RÜDINGER, MIVART, HUMPHRY. Oberer Rückwärtszieher oder breiter Rückenmuskel MECKEL (No. 3). Vertébro-costo huméral, grand dorsal: DUGÅS (No. 33).

Breiter Muskel an der Seitenwand des Rumpfes, der mit seinem vorderen Rande den hintern des M. dorsalis scapulae (ds), mit seiner ganzen Breite die hintere Partie des M. serratus magnus (ths) deckt. Er entspringt, bei Proteus ziemlich schmal, bei den andern Urodelen breiter, von einer sehr dünnen Aponeurose, welche die mediale Längsmuskulatur des Rückens deckt und innig mit der Haut verwachsen ist, in der Höhe des dritten bis sechsten Wirbels und mit seiner hinteren Partie ausserdem noch von der vierten Rippe, gleich hinter dem letzten Bündel des M. serratus magnus. Mit stark convergirenden Fasern geht er nach unten und vorn in eine Sehne über, die bei Menobranchus und Cryptobranchus mit dem proximalen Theile des M. anconaeus scapularis medialis (asm) sich verbindet und mit ihm endet, bei Menopoma, Salamandra und Triton nur zum Theil zu diesem Muskel die erwähnten Beziehungen eingeht und übrigens an ihm lateral vorüberziehend an der Streckseite des Humerus gleich neben Processus lateralis (PL) inserirt.

Innervirt durch einen oder zwei Nn. latissimi dorsi (28).

Der Muskel ist ein Homologon des menschlichen Latissimus dorsi. Abgesehen von der ganz unwesentlichen Differenz des Ursprunges unterscheidet er sich von diesem durch seine Verbindung mit dem Anconaeus und durch seine von diesem Muskel lateral gelegene Insertion in der Nähe des Processus lateralis. Ersteres Verhältniss findet sich noch bei vielen Reptilien und ist eine Ueberkommenschaft aus einem früheren (selachierähnlichen) Zustande, letzteres ist den Amphibien eigenthümlich und beruht weniger auf einer besonderen Bildung des Latissimus dorsi als vielmehr auf einer abweichenden Differenzirung des Anconaeus.

⁴⁾ Die Angabe MECKEL's, dass der Latissimus von Proteus mit dem »Rückwärtszieher des Schulterblattes« (Serratus magnus) vereinigt sei, kann ich nicht bestätigen, ebenso wenig die Rühmeren's, wonach der Latissimus von Siredon, Triton und Salamendra von der zweiten und dritten Rippe entspringe. Des Letzteren Behauptung, dass der Muskel sich an der medialen Fläche des Humerus, zwischen dem langen und inneren Kopfe des Triceps brachii eindringend, festhafte, beruht auf ungenauer Untersuchung.

11. Dorsalis scapulae (ds).

Scapularis: FUNK (Fig. 44. 43. R).

Auswärtszieher oder oberer äusserer Schulterblattmuskel: Meckel.

```
Adscapulo-huméral, sous-épineux: Dugès (No. 87).
```

Sur-épineux et Sous-épineux conjoints: Cuvier.

Suprascapularis: STANNIUS.

- Supra-and Infraspinatus, and perhaps, also deltoides: Owen.
- Dorsalis scapulae (die zu einem Muskel vereinigten Supraspinatus, Infraspinatus und Teres minor): Rübingen.

Deltoid: MIVART.

Dorsalis scapulae (dem Infraspinatus, Deltoideus und Teres minor entsprechend): HUMPHRY.

Ansehnlicher Muskel an der Aussenfläche der Scapula, der hinten vom vorderen Theile des M. latissimus dorsi (dh) gedeckt wird und vorn an den M. procoraco-humeralis (ph) angrenzt. Er entspringt von der Aussenfläche der knorpeligen und knöchernen Scapula mit Ausnahme des vordern und obern Randes und geht mit convergirenden Fasern in eine kräftige, ziemlich breite Sehne über, die am distalen Theile der Streckfläche des Processus lateralis (PL), hinter dem M. procoraco-humeralis (ph), vor und neben dem M. latissimus dorsi (dh), mit beiden unverbunden, inserirt.

Innervirt durch Aeste des N. dorsalis scapulae.

Die Innervirung durch den vom Hinterrand der Scapula kommenden N. dorsalis scapulae schliesst jede Vergleichung mit den Mm. supra- und infraspinatus aus, während sie auf eine Homologie mit den (beim Menschen vom N. axillaris versorgten) Mm. deltoideus und teres minor hinweist. Beide Muskeln sind übrigens Differenzirungen einer gemeinsamen Muskelmasse, wie die Untersuchung der Wiederkäuer z. B. ergiebt. Der Dorsalis scapulae der Urodelen ist demnach als ein wenig differenzirter Zustand des grössten Theiles dieser Muskelmasse — der kleinere vordere Theil ist für die Bildung des M. procoraco-humeralis mit verwendet — aufzufassen. Dass der hier gebrauchte Name Dorsalis scapulae mit den von RÜDINGER und HUMPHRY angewandten gleichklingenden Bezeichnungen nichts gemein hat, bedarf keiner Auseinandersetzung.

12. Subcoracoscapularis 1).

Subscapularis: FUNK, STANNIUS, RÜDINGER, MIVANT. Sous-scapulo-humérál, sous-scapulaire: Dugès. Coraco-brachialis quartus (subscapularis): HUMPHNY.

⁴⁾ Von MECKEL nicht beschrieben.

Kleiner Muskel an der Innenfläche des Brustgürtels. Er entspringt entweder von dem unteren Theile der Scapula (Menobranchus, Menopoma, Triton) oder von dem lateralen hinteren Theile des Coracoid resp. Procoracoid (Siredon, Salamandra) oder von Scapula und Coracoid zugleich (Cryptobranchus). Im ersten Falle ist er ein Subscapularis, im zweiten ein Subcoracoideus (sbc), im dritten ein Subcoracoscapularis. Er geht mit convergirenden Fasern lateral vom M. Coracobrachialis longus (cbe) und M. anconaeus coracoideus (ac), von letzterem bei Menobranchus schwer trennbar, über die Innenseite des Schultergelenkes nach dem Processus medialis humeri (PM), wo er inserirt.

Innervirt durch N. subscapularis (23).

Der Muskel ist dem M. subscapularis des Menschen zu vergleichen. Die von der Innenfläche der Scapula entspringenden Theile sind directe Homologe desselben, während die von dem Coracoid kommenden Partien dem Menschen fehlen und nur eine mittelbare Vergleichung gestatten. Die wenig definitive und sehr variablo Bildung dieses Muskels lässt auf einen noch niederen Entwickelungszustand schliessen.

13. Anconaeus (a) ¹).

Anconaeus internus und externus: FUNK.

Strecker des Vorderarms: MECKEL.

Scapulo-huméro-olécranien, triceps: Ducks (No. 40).

Streekmuskelmasse, die aus einem Anconaeus longus und einem unter dem Tuberculum minus beginnenden Muskel zusammengesetzt ist: STANNUS.

Triceps brachii s. Anconaeus: Rüdinger, Mivart.

Triceps und Coraco-olecranalis: HUMPHRY.

Sehr kräftige Muskelmasse an der Streckseite des Oberarms, die sich aus vier Köpfen zusammensetzt, welche von dem Brustgürtel und Humerus entspringen und theilweise mit dem M. latissimus dorsi in Verbindung stehen.

⁴⁾ FUNK macht keine näheren Angaben über die Betheiligung des Brustgürtels oder des Humerus am Ursprunge der Anconaei.

Die Angaben der übrigen Autoren sind z. Th. sehr widersprechend; MECKEL z. B. lässt den Anconaeus von Proteus mit zwei Köpfen vom Humerus, den von Salamandra und Triton ausserdem mit einem oder zwei Köpfen von der Scapula entspringen, Rüdingen hingegen giebt für Salamandra und Triton nur zwei vom Humerus kommende, bei Proteus ausser diesen einen dritten vom Coracoid, bei Siredon noch einen vierten von der Scapula entspringenden Kopf an.

. .

a) An conaeus coracoideus (ac). Kleiner, ziemlich selbständiger Kopf¹), der vom Gelenktheil des Coracoid, in der Regel von dessen hinterem Rande, seltener (Menopoma) von seiner Innenfläche, entspringt, von dem Anconaeus humeralis medialis (ahm) durch die Nn. brachiales longi inferiores (17, 22) getrennt ist und ungefähr in der Mitte des Oberarms mit der übrigen Streckmuskelmasse sich verbindet.

b) An conaeus scapularis medialis (asm). Kräftiger in der Regel vom Anconaeus humeralis lateralis (ahl) wenig selbständiger Kopf. Er entspringt vom Hinterrande des Gelenktheils der Scapula und von der Gelenkkapsel des Schultergelenks und geht stets Beziehungen zu dem M. latissimus dorsi (dh) ein. Entweder (Cryptobranchus und Menobranchus) vereinigt er sich mit dessen ganzer Endsehne²) oder (bei den übrigen Urodelen) mit einem Theile derselben, während der andere Theil lateral von ihm an den Humerus geht. Nie liegen Theile des Anconaeus scapularis medialis lateral vom M. latissimus dorsi.

c) Anconaeus humeralis lateralis (ahl). Ansehnlicher von den distalen drei Vierteln des Humerus entspringender Kopf, der an der lateralen Streckseite desselben liegt und von dem Anconaeus humeralis medialis (ahm) durch die Nn. brachiales longi superiores (29, 32) getrennt ist.

d) Anconaeus humeralis medialis (ahm). Er liegt nehen dem Anconaeus humeralis lateralis (ahl) an der medialen Hälfte der Streckseite des Oberarms und entspringt von dessen ganzer Länge hinter dem Processus medialis.

Alle vier Köpfe vereinigen sich spätestens in der Mitte des Oberarms zu einem ansehnlichen Muskel, der am proximalen Ende der Ulna (Olecranon) inserirt.

Der Muskel entspricht dem menschlichen Anconaeus, aber nicht vollkommen. Ein Homologon des A. coracoideus fehlt beim Menschen,

Innervirt durch Aeste der Nn. brachiales longi superiores (radiales) (30, 34).

⁴⁾ Diese, namentlich durch den Verlauf der Nn. brachiales longi inferiores bedingte Selbständigkeit, hat HUMPARY veranlasst, in dem Anconaeus coracoideus, von ihm Coraco-olecranalis benannt, einen ursprünglichen Beugemuskel zu erkennen, der Streckmuskelfunctionen angenommen hat. So bestechend auch diese Ansicht ist, wird sie doch nicht durch die Verhältnisse der Innervirung, die (wenigstens bei den hier untersuchten Thieren) bestimmt vom N. brachialis longus superior besorgt wird, unterstützt.

²⁾ Bei Menobranchus fehlt sogar (nach Mivant's Beschreibung und Abbildung) jeder Ursprung des A. scapularis medialis von der Scapula, der Muskel geht direct aus dem Latissimus dorsi hervor.

ebenso wie ein dem A. scapularis medialis direct vergleichbarer Theil: das Caput longum m. anconaei hominis unterscheidet sich von letzterem durch seine Lage zum Latissimus dorsi, der sich medial an ihm vorbeizieht. Doch stehen wir nicht an, im A. scapularis medialis ein weiteres (indirectes) Homologon des Caput longum anzuerkennen; die niederen Formen der Urodelen (Menobranchus etc.) bieten in ihrer Beziehung zum Latissimus dorsi, der ganz im A. scapularis aufgeht noch ein wenig differenzirtes Stadium dar, von dem zwei verschieden entwickelte Bildungsformen ausgegangen sind, deren eine (mediale Lage von der Sehne des Latissimus dorsi) den Amphibien, deren andere (laterale Lage von der Sehne des Latissimus dorsi) den höheren Wirbelthieren zukommt.

Cap. II.

Ungeschwänzte Amphibien.

(Batraohia; — Anura.)

§. 4.

Brustgürtel, Brustbein und Humerus¹).

(Vergleiche Taf. XVII u. XVIII.)

Der Brustgürtel und das Brustbein zeigt bei den Anuren eine ausserordentliche Mannichfaltigkeit der Differenzirung. Während die niederen

- BREVER, Observationes anatomiae circa fabricam Ranae pipae. Diss. inaug. Berol.1811. GEOFFROY-ST. HILAIRE, Philosophie anatomique. 1818.
- MERTENS, Anatomiae batrachiorum prodromus sistens observationes nonnullas in osteologiam batrachiorum nostratium. Halae 1820.
- ZENKER, Batrachomyologia. Diss. inaug. Jenae 4825. S. 20 f.

MECKEL, System d. vergl. Anatomie. II. 4. a. a. O.

Ducks, Récherches etc. S. 60 f.

CUVIER, Lécons etc. II. éd. Tome I. S. 254 f. S. 360 f. S. 389 f.

COLLAN, Jemförande Anatomisk Beskrifning öfver Muskelsystemet hos Paddan (Bufo cinereus Schneid.) Diss. inaug. Helsingfors 1847.

POUCHET, cf. Comptes rendues. Tome XXV, 4847. p. 764.

PFEIFFER, Zur vergleichenden Anatomie des Schultergerüstes und der Schultermuskeln bei Säugethieren, Vögeln und Amphibien. Giessen 1854. S. 46 f.

STANNIUS, 8. 8. 0. S. 17. S. 73 f. u. S. 81.

ECKER, Die Anatomie des Frosches. Braunschweig 1864. I. S. 44 f.

GEGENBAUR, Schultergürtel etc. S. 52 f.

OWBN, a. a. O. S. 474.

⁴⁾ Literatur:

CUVIER, Vorlesungen über vergleichende Anatomie, übersetzt von FRORIEP u. MECKEL. 1809. I. S. 226.

Formen den Bildungen bei den Urodelen nahe stehen, erlangen die höber stehenden einen bedeutenden Grad der Entwickelung. Diese spricht sich nicht sowohl aus in einer ausserordentlichen relativen Grösse, als namentlich in dem Auftreten sogenannter secundärer Knochentheile und in einer sehr ungleichen Ausbildung und gegenseitigen Beziehung der einzelnen Abschnitte.

Der Brustgürtel besteht aus zwei paarigen Stücken, die sich in der Mittellinie der Brust entwoder wie bei den meisten Urodelen übereinander legen und nur locker durch Bandmasse verbunden sind (Bufones, Hylae, Calamitae, Pelobatus etc.)¹) oder mit ihren medialen Rändern an einander stossen und mit einander ohne Grenze verschmelzen (Pipa, Rana, Cystignathus, Phryniscus etc.)²). Eine blosse Berührung ohne gegenseitige Verschmelzung findet sich nur bei Microps, der in dieser Beziehung an die niedersten Formen der Urodelen erinnert. Wie bei den Urodelen unterscheiden wir einen dorsalen und horizontalen Abschnitt, die an der Seite der Brustfläche mit einander einen rechten Winkel bilden. Am hinteren Rande dieser Stelle liegt die Gelenkhöhle für den Humerus. Während diese Stelle bei den Urodelen den Ausgangspunct der Verknöcherung repräsentirte, hat sie bei den Batrachiern ihren ursprünglichen knorpeligen Zustand bewahrt, ein Verhalten, das eine besondere Selbständigkeit des dorsalen und ventralen Abschnittes bedingt³). Der dorsale Abschnitt ist meist in seinem

KLEIN, Beiträge zur Anatomie der ungeschwänzten Batrachier. Stuttgert 1850. konnte ich, wenigstens für die Knochen, nicht vergleichen.

4) Die genaueren Details und eine vollständigere Aufzählung der Gattungen für diesen und alle folgenden Fälle siehe bei STANNIUS, GEGENBAUR und PARKER.

2) Dieses Verhältniss hat die meisten Autoren zu dem Irrthum verleitet in den medialen verschmolzenen Theilen des ventralen Abschnittes Theile des Brustbeins zu sehen, ein Irrthum, der namentlich durch die knorpelige Bildung dieser Theile im Gegensatz zu der Verknöcherung der lateral daran stossenden Abschnitte erleichtert wurde. Erst GEGENBAUR hat diese Verhältnisse aufgeklärt.

3; Dieser den ventralen und dorsalen Abschnitt des Brustgürtels trennende Knorpelstreif, von Ducks als Paraglénale bezeichnet, findet sich bei allen Anuren (mit Ausnahme von Systoma cf. PARKER Tab. VII. Fig. 9. 40). Erst im späteren Alter verkalkt der vordere, an Procoracoid und Clavicula anstossende Theil, während der hintere in der Gelenkhöhle endende und an das Coracoid grenzende eine deutliche Trennungslinie zwischen Scapula und Coracoid herstellt.

PARKER, a. a. O. S. 68 f.

CUVIER, Vorlesungen, GEOFFROY ST. HILAIRE, MERTENS, POUCHET kenne ich nur aus den Angeben GEGENBAUN'S und ECKER'S.

VAN ALTENA, Commentatio ad quaestionem Zoologicam in academia Lugduno-Batava a. 1829 propositam, qua desideratur, ut systematice enumerentur species indigenae reptilium ex ordine batrachiorum addita unius seltem speciei anatomia et praesertim osteographia accurata. Lugd. Bat. 1829. 40. und

unteren Theile ziemlich schmal und nimmt nach oben ansehnlich an Breite zu. Nur in den niedersten Formen zeigt er eine allenthalben gleiche Breite, die zugleich mit einer gewissen Dicke verbunden ist und an die primitiven Bildungen der Selachier erinnert. Dieses Verhalten zeigt Microps; den Uebergang zu den höher entwickelten und differenzirteren Formen bildet Systoma¹). Stets ist er durch eine horizontale Grenze in zwei Theile getrennt, in ein oberes Suprascapulare und eine untere Scapula. Beide, obschon aus einer homogenen Knorpelgrundlage hervorgegangen, haben eine grosse Selbständigkeit erlangt, die sich bei ausgebildeter Knochenstructur beider in der scharfen aus hyalinen Knorpel gebildeten Grenzlinie und der dadurch bedingten grossen Beweglichkeit gegen einander äussert²). Das Suprascapulare (SS)³) zeigt sich in zwei verschiedenen Formen. Die eine bietet Microps dar. Hier ist das Suprascapulare ein nur am äussern Rande knorpeliges, sonst verknöchertes Stück von einer gewissen Dicke, das an Länge die Scapula nicht erreicht, an Breite höchstens ihr gleichkommt. Die an dere Form repräsentiren alle übrigen Anuren. Hier ist das Suprascapulare eine in verschiedenem Masse verknöcherte, meist am ganzen obern und hintern Rande knorpelig bleibende Platte, welche die Scapula in der Breitendimension stets übertrifft. Das gegenseitige Verhältniss der Längen beider ist schwankend : das Suprascapulare ist kurzer als die Scapula (Systoma, Ceratophrys), es ist ebenso lang oder wenig länger (Rana, Bufo, Pipa, Cystignathus etc.) es ist bedeutend länger (Dactylethra). Bei letzterem hat das Suprascapulare eine mindestens 15-20 mal grössere Fläche als die Scapula. Die Scapula (S)⁴) besteht bei den ausgewachsenen Batrachiern stets aus Knochen. Sie ist durch einen feinen Knorpelstreif oberhalb von dem Suprascapulare, unterhalb von dem ventralen Theile des Brustgürtels getrennt. Bei den niedersten Formen (Microps) überwiegt sie das Suprascapulare an Grösse, bei den entwickelteren tritt sie gegen dieses zurück, namentlich bei Dactylethra,

⁴⁾ Vergleiche PARKER, Taf. VII. Fig. 9. 40. u. 44.

²⁾ Die Trennung in Suprascapulare und Scapula (Infrascapulare) zeigt sich ausserordentlich früh, zugleich mit dem ersten Auftreten von Ossificationen am Brustgürtel. Ueber die näheren Verhältnisse vergleiche GEGENBAUR.

³⁾ Omolita: GEOFFROY. — Scapula primaria s. major: BRETER. — Scapula: MERTENS, ZENKER. — Adscapulum: DUGÈS. — Öfra Skulderbladet: Collan. — Pars suprascapularis s. Omolita: STANNIUS. — Oberes Schulterblatt, P. suprascapularis scapulae, Scapula superior s. Omolita: Ecker. — Suprascapulare, Suprascapula: GEGENBAUR, PARKER.

⁴⁾ Scapula secundaria s. minor: BREYER. — Scapula: GEOFPROT, DUGÈS, STANNIUS, ECKER, GEGENBAUR, OWEN, PARKER. — Acromium: ZENKER. — Nedra Skulderbladet: Collan.

wo sie eine sehr geringe relative Ausdehnung besitzt. Bei einzelnen Batrachiern (Microps, Dactylethra) bietet ihre untere Grenze gegen den ventralen Abschnitt des Brustgürtels ganz einfache Beziehungen dar, während bei der Mehrzahl sich ursprünglich ein Spalt (Scapular-foramen PARKER) findet, der sich zwar später mit verkalktem Knorpel ausfüllt, der aber die ersten Anlagen einer bei höheren Wirbelthieren sich entwickelter findenden Pars glenoidalis (Collum scapulae) und Pars acromialis scapulae (Acromion [A]) trennt¹). Der ventrale Abschnitt zeigt eine grosse Mannichfaltigkeit der Entwicklung. Vorzüglich zwei Hauptformen sind zu unterscheiden, von denen die eine auf wenig niedrig stehende Batrachier beschränkt, die andere auf die Mehrzahl derselben ausgedehnt ist. Die eine Form findet sich bei Microps und Hylaedactylus²). Hier stellt der ventrale Abschnitt eine einfache Knochenplatte dar, die lateral an die Scapula stösst, median bei Microps die der Gegenseite berührt, bei Hylaedactylus mit ihr verwachsen ist. Diese Knochenplatte ist das Coracoid (C). Die andere viel complicirtere Bildungsform findet sich bei allen übrigen Batrachiern. Hier bildet der ventrale Abschnitt eine sehr breite Platte, die in der Mitte durch eine grosse Oeffnung in einen vorderen, einen hinteren und einen medialen Theil getrennt wird. Ersterer, das Procoracoid (Pr)³) bleibt zumeist knorpelig und ist in der Regel schmäler als der hintere Theil (mit Ausnahme von Dactylethra, wo er eben so gross und von Systoma, wo er weit breiter als dieser ist). Das Coracoid (C) 4), der hintere Theil, verknöchert in der Regel bis auf geringe mediale Reste. Es überwiegt in seiner Breite das Procoracoid bedeutend, mit Ausnahme der oben angeführten Bildungen von Dactylethra und Systoma. Das Epicoracoid (Ec) 5),

¹⁾ Von Ducks wird die Pars glenoidalis als Processus coracoideus, die P. acromialis als Acromion oder Spina scapulae unterschieden.

²⁾ Siehe PARKER, Taf. VII, Fig. 44. u. Taf. VI, Fig. 9.

³⁾ Clavicula: Cuvier (Leçons 4. éd.), ZENKER, PFEIFFER, STANNIUS, ECKER, OWEN. — Furcula s. clavicula anterior: BREYER, DUGÈS. — Främre nyckelbenet: Collan. — Procoracoid: Gegenbaur. — Praecoracoid: PARKER.

CUVIEB, GEOFFROY, MERTENS, PFEIFFEB, STANNIUS etc. verstehen unter der Bezeichnung Clavicula (Furcula) die vereinigten Procoracoid und Clavicula, PARKER thut dasselbe unter der Bezeichnung Procoracoid. Ducks und GEGENBAUR allein trennen Clavicula und Procoracoid.

⁴⁾ Clavicula vera s. posterior: BREYER. — Clavicula: CUVIER (Lecons 4. éd.), MEBTENS. — Pars sternalis scapulae (processus coracoideus): ZENKER. — Coracoid: GEOFFROY, DUGÈS, CUVIER (Lecons 2. éd.), PFEIFFER, STANNIUS, ECKER, GEGENBAUR, OWEN, PARKER. — Bakre nyckelbenet: Collan.

⁵⁾ Des Epicoracoid wird von allen früheren Autoren ausger ZENKER als Theil des Sternums aufgefasst (Sterni ossa media: BREYER. — Entosternal:

der mediale Theil, bleibt stets knorpelig. Es ist breit bei Pipa, Bombinator, schmal bei Phyllomedusa, Bufo etc. und kann vollkommen als Knorpeltheil fehlen bei Dactylethra, wo es dann durch Band ersetzt wird. Seine Beziehungen zu dem der Gegenseite sind bereits oben erwähnt worden.

Bei der Mehrzahl der Batrachier (mit Ausnahme von Microps und Hylaedactylus) findet sich eine die Unterfläche und den Vorderrand des Procoracoid umschliessende Platte von sogenannten secundären (in der Regel aus dem perichondralen Bindegewebe des Procoracoid hervorgehenden) Knochengewebe. Dieselbe repräsentirt die Clavicula (Cl)¹), welche innig mit dem Procoracoid verwachsen ist und wenig Selbständigkeit zeigt. Lateral ist sie mit dem Processus acromialis scapulae durch verkalkten Knorpel verbunden, medial läuft sie am medialen Rande des Procoracoid's spitz aus, ohne mit dem Episternum verbunden zu sein.

Brust beingebilde kommen allen Anuren, aber in sehr verschiedener Entwicklung zu. Die Einen haben nur ein hinteres Brustbein (Sternum), die Anderen haben ausser diesem auch ein vorderes (Episternum). Das Sternum $(St)^2$) ist ein ausserordentlich verschieden differenzirtes Gebilde, das bei einigen (Microps, Systoma) nur rudimentär als winzig kleine Knorpelplatte vorhanden ist, bei andern (Pipa, Acrodytes, Rana) eine bedeutende relative Grösse erreicht. Zwischen diesen beiden Extremen finden sich alle Abstufungen. Auch die Art und Weise der Verknöcherung ist verschiedenartig³). Bei den Gattungen mit übergreifenden, nicht verschmolzenen Coracoiden hat es an seinem Vorderrande ähnlich wie bei den Urodelen zwei unsymmetrische Falze, welche die hintern Ränder der Coracoide aufnehmen. Bei knorpeliger Vereinigung der beiderseitigen Brustgürtel sind diese Beziehungen ver-

GEOFFROT. — Sternum: CUVIER und MERTENS. — Corpus sterni: ECKER). Erst durch GEGENBAUR und PARKER sind die wahren Beziehungen dieses Theiles aufgeklärt worden.

⁴⁾ Von den Autoren gemeinsem mit dem Procoracoid als Clavicula beschrieben. Nur Dugès und GEGENBAUR unterschieden ihn als besonderen Knochen von diesem, Dugès als Acromiale, GEGENBAUR als Clavicula.

²⁾ Appendix sterni: BRETER. — Xiphosternal: GEOFFROY. — Processus xiphoideus, Pars xiphoidea: MERTENS, STANNIUS. — Sternum inferius, Bakre bröstbenet: ZENKER, COLLAN. — Sternum: Ducks, GEGEN-BAUR. — Pièce osseuse postérieure du stérnum avec son disque xiphoïde: CUVIER. — Hyposternum: ECKER. — PARKER bezeichnet bei knorpeliger Persistenz das ganze Sternum als Sternum, bei theilweiser Verknöcherung den knöchernen Theil als Sternum, den knorpeligen als Xiphisternum.

³⁾ Nähere Details siehe bei STANNIUS, GEGENBAUR und PARKER.

wischt: das Sternum ist hier dem mittleren Theile desselben angeheftet. Das Episternum (Est)¹) mangelt der Mehrzahl der Anuren²). Spurweise auftretend findet es sich bei Pipa und Pseudes an der Spitze der median sehr ansehnlich nach vorn entwickelten und vereinigten Procoracoide. Selbständigkeit erlangt es erst bei Acrodytes, Calamites, Cystignathus, Pleuroderma, Plectropus, Megalophrys, Rana, Bufo Lechenaultii. Bei den ersten beiden und dem letzten bleibt es knorpelig, bei den übrigen verknöchert es an seinem hinteren mit dem Procoracoid zusammenhängenden Theile³). Besondere Beziehungen zur Clavicula bietet es nicht dar.

Der Oberarm (H) der Anuren ist Differenzirungen eingegangen. die ihn ebensowohl von dem der Urodelen als der höhern Wirbelthiere unterscheiden. Das in die Gelenkhöhle des Brustgürtels einmündende Gelenkende bildet eine überknorpelte Halbkugelfläche, von der lateral und oben ein Segment abgeschnitten ist. Der Processus lateralis (PL)⁴) beginnt gleich hinter dem Gelenkende und stellt eine scharfe nach unten und aussen gerichtete Leiste dar, welche bis über die Mitte des Oberarms ausgedehnt ist. Der distale Theil desselben kann als Crista lateralis (CrL) unterschieden werden. Dem Anfange des Processus lateralis gegenüber, gleich hinter dem Gelenkende, liegt an der Medialseite des Humerus ein kleiner Höcker, der ein Rudiment des Processus medialis (PM) darstellt⁵). Das distale Ende bildet die Gelenkfläche, die mit den zum Os antibrachii verbundenen Ulna und Radius articulirt. Diese Gelenkfläche ist eine Trochlea, welche aus einem grössern in der Mitte des Oberarmendes liegenden und einem kleinern medialen (oberen) Theile zusammengesetzt ist. Ersterer ist Theil eines Rotationssphäroid's, das ausser auf das hinterste Ende auch auf die laterale und mediale Seite des anstossenden hintern Sechstels

⁴⁾ Episternal, Episternum: GeoFFROY, MERTENS, DUGÈS, ECKER, GEGEN-BAUR, OWEN. — Sternum superius, Främre bröstbenet: ZENKER, COLLAN. — Pièce antérieure du sternum: Cuvier. — Manubrium sterni: Stan-Nius. — Omosternum: Parker.

²⁾ Vergleiche die genaueren Angaben von STANNIUS, GEGENBAUR und PARKER.

⁸⁾ Knorpel- und Knochentheil des Episternums werden von Ducks und Ecken als separate Theile unterschieden.

⁴⁾ Vordere Leiste: MECKEL. — Crête bicipitale: Ducës. — Spina tuberculi majoris: Collan. — Tuberculum majus, das abwärts in eine starke Spina ausgezogen zu sein pflegt: STANNIUS. — Crista deltoidea: Ескен.

⁵⁾ Von den Autoren zumeist nicht beschrieben. Nur STANNIUS giebt an, dass bei Pipa an der Innenseite des Tuberculum majus ein Höckerchen liege, das zur Fizirung des Ligamentes bestimmt ist, unter welchem die Sehne der M. coracoradialis hindurchtritt, dass aber dieses Höckerchen den übrigen Anuren fehle.

des Oberarms ausgedehnt ist und mindestens einen Bogen von drei Quadranten umfasst¹), letzterer ist nur klein und umfasst höchstens einenBogen von zwei Quadranten. Während der erstere mit der Hauptfläche des proximalen Antibrachialendes articulirt, lenkt der jetztere nur in das Olecranon ein. Zu beiden Seiten der Gelenkbegrenzungen (Condylus radialis s. lateralis s. inferior und Condylus ulnaris s. medialis s. superior²)) finden sich zwei Höcker für den Ursprung der Strecker und Beuger der Hand und der Finger, der Epicondylus radialis (lateralis) (EL)³) und der Epicondylus ulnaris (medialis) (EM)⁴). Beim männlichen Geschlechte, namentlich zur Brunstzeit, findet sich vor dem Epicondylus medialis eine auf die ganze distale Hälfte des Humerus ausgedehnte und sehr kräftig entwickelte Knochenleiste, die Crista supracondyloidea medialis⁵), die den voluminösen Beugemuskeln zum Ursprunge dient.

§. 5.

Nerven für die Schultermuskeln⁶).

(Vergleiche Taf. XIV.)

Die Nerven für die Schultermuskeln der Anuren bieten mehrfache Abweichungen von den Verhältnissen bei den Anuren dar. Diese be-

4) ECKER, der ellein hiervon eine genauere Beschreibuug giebt, scheint den auf die Streckseite des Humerus ausgedehnten Theil der Gelenkfläche überschen zu haben. Er erwähnt nur eine fast vollkommene Kugelfläche, die auf dem hintern Ende des Mittelstückes gleichsam aufgesetzt ist.

2) Die räumlichen Beziehungen der Condylen wechseln je nach dem Drehungswinkel des Humerus ausserordentlich. Daher sind die Bezeichnungen Condylus lateralis s. inferior und medialis s. superior nicht geeignet für die Vergleichung durch alle Wirbelthiere. Da der Drehungswinkel des Humerus von einem halben Quadranten an (niederste Urodelen) bis zu zwei Quadranten (Mensch) alle Stufen durchläuft, so wird der Condylus lateralis des einen Thieres C. laterali-inferior des andern, C. inferior des dritten sein. Constant sind nur die Beziehungen zu dem Vorderarm, wesshalb die von Owzw zuerst gebrauchten Bezeichnungen Condylus radialis und ulnaris vor allen andern den Vorzug verdienen.

8) Epicondylus lateralis: ECKER.

4) Epicondylus medialis: Eckes.

5) Crista medialis: ECKER. Ducks fasste die Verschiedenheit ihrer Entwickelung als Unterscheidungsmerkmal der verschiedenen Species auf. Poucast (Compt. rend. Tome XXV. 1847, p. 761) betonte zuerst ihre Beziehungen zur Brunstzeit.

6) Literatur:

CUVIER 8. a. O. S. 226. S. 240. S. 264.

VOLKMANN, Von dem Bau und den Verrichtungen der Kopfnerven des Frosches. MÜLLER'S Archiv für Anstomie und Physiologie. Band V. 1838. S. 70 f. (Vagus von Rana esculenta).

stehen einerseits in dem Vorkommen eines den Batrachiern eigenthümlichen R. scapularis n. vagi, der zum R. accessorius desselben Nerven hinzukommt, andererseits in einer Verminderung der Anzahl der die Schultermuskulatur versorgenden Nn. spinales. Die in grösserer Ausdehnung bestehende feste Verkittung der Elemente der Nn. brachiales superiores und inferiores muss als unwesentlicher Unterschied bezeichnet werden.

I. R. accessorius (α) und scapularis (σ) n. vagi.

Die wie bei den Urodelen zu einem gemeinsamen Complexe, der Vagus-Gruppe (V), vereinigten Homologe der Nn. glossopharyngeus, vagus und accessorius Willisii des Menschen entspringen entweder mit drei (Pipa, Bufo, Pelobates) oder mit zwei (Hyla, Pelobates) oder mit einer Wurzel (Rana, Bombinator)¹) aus der Medulla oblongata, treten durch das sogenannte Foramen jugulare aus dem Schädel heraus und schwellen gleich darauf zu einem anschnlichen Ganglion an, von dem eine grosse Anzahl Aeste abgehen, die sich im Pharynx (R. pharyngeus $[\varphi]$), im Zungengrund (R. lingualis $[\gamma\lambda]$), in den Muskeln der Zungenbeinhörner (Homologe der Zungen- und Kiemenbogen), in der sogenannten Parotis und der Haut des Nackens und Rückens²) (R. cutaneus FISCHER's, wahrscheinlich, wie auch STANNUS angiebt, Homologon des R. auricularis $[\omega]$), in Kehlkopf, Lunge, Pericard, Oesophagus und

Schiess, a. a. O. S. 842 f.

Zu eigenen Untersuchungen dienten Rana esculenta und Bufo cinereus.

4) Die Zahlenverhältnisse der Wurzeln der Vagusgruppe sind keine constanten, sie können sogar bei demselben Individuum an der rechten und linken Seite wechseln (Pelobates). Von den drei Wurzeln bei Pipa zeigen die zwei letzten Andeutungen einer Treunung, die wohl als eine neue Differenzirungserscheinung aufzufassen sind. Dem ursprünglichen Zustande entspricht auch bei den Anuren (wie bei den Urodelen) die Dreizahl. Untersuchungen von Larven, z. B. von Rana, zeigen dies deutlich, wie die übereinstimmenden Beobachtungen von FISCRER und mir ergeben. In einem gewissen Stadium hat die Vagusgruppe der Larve von Rana esculenta drei Wurzeln, von denen später die beiden hintern und endlich beim ausgewachsenen alten Thiere alle drei verschmelzen können.

2) Bei Rana esculents gehen die Zweige bis zur Haut der Brust. Bd. VII. 3.

49

VOGT, a. a. O. S. 52 f. (Vagus von Bufo pantherinus und cinercus).

FISCHER, Amphibiorum nudorum neurologiae specimen primum a. a. O. S. 9 f. Taf. I. II. (Genaue Beschreibung der Kopfnerven von Bufo palmarum, Rana esculenta,

Hyla arborea, Pipa dorsigera, Bombinator igneus, Pelobates fuscus).

BENDZ, a. a. O. S. 132 f. Taf. VIII. (Kopfnerven von Bufo cinereus).

WYWAN, Anatomy of the Nervous system of Rana pipiens. Washington 1853. S. 33 f. 44 f. Taf. I. II. (Wenig eingehende Beschreibung der Nerven von Rana pipiens). STANNIUS, a. a. O. S. 149 f.

Magen (R. intestinalis mit R. recurrens $[\varepsilon]$), in der Seitenlinie (Rr. laterales)¹), in dem M. capiti-scapularis (R. accessorius $[\alpha]$) und im M. interscapularis (R. scapularis $[\sigma]$) verzweigen und ausserdem mit dem N. facialis und hypoglossus Anastomosen (Rr. communicantes $[\varkappa]$) eingehen.

Der R. accessorius $(\alpha)^2$, in der Regel einfach, seltener in der Mehrzahl auftretend, ist meist ein sich sehr früh abzweigender Ast des R. intestinalis n. vagi (ε) , seltener ein selbständig aus dem Ganglion n. vagi hervorgehender Nerv. Er verläuft zwischen den kurzen Kopfmuskeln und dem M. capiti-scapularis (Cucullaris) (cs) nach unten und hinten und endet in der Innenfläche des letzteren Muskels.

Der R. scapularis (σ)³) wird repräsentirt durch ein sehr feines gleich neben dem R. accessorius vom R. intestinalis n. vagi (ε) abgehendes Aestchen, das an der Innenfläche des M. cucullaris (cs) vorbei zur Innenfläche des M. interscapularis (is) geht und sich in diesem verzweigt.

II. Nn. spinales.

Abweichend von den Urodelen betheiligen sich blos drei Spinalnerven, der zweite, dritte und vierte⁴), an der Innervirung der Muskeln der Schulter und der vorderen Extremität. Von diesen vereinigen sich

1) Diese Rr. laterales lassen sich in doppelter Zahl nur bei Larven nachweisen. Von erwachsenen Formen bietet nach FISCHER's Untersuchungen nur Pipa dorsigera einen R. lateralis dar, während bei den andern Gattungen der Endast des R. cutaneus (auricularis) functionell dafür eintritt. Die näheren Verhältnisse vergleiche bei FISCHER, STANNIUS, WYMAN und KROBN (FROMEP'S Notizen 1838. No. 187).

2) Von CUVIER im Allgemeinen angegeben, dagegen von WYMAN geleugnet. Ebenso scheint der Nerv BENDZ entgangen zu sein. SCRIESS und FISCHER beschreiben ihn, ohne ihn zu benennen; ersterer giebt ihm einen zu grossen Verbreitungsbezirk (er soll auch einen Theil des Serratus, den Transverso-adscapulaire Ducks' innerviren), letzterer bezeichnet hingegen bei Pipa einen höchst wahrscheinlich dem N. spinalis II. entsprechenden Nerv, der weder in den Zungenbeinmuskeln noch in dem M. capitiscapularis endet, sondern lediglich die an den Kopf gehenden tiefen Längsmuskeln des Halses versorgt, fälschlich als N. accessorius.

3) Diesen sehr feinen, für die vergleichende Anatomie höchst wichtigen Nerv, hat nur FISCHER bei Pipa dorsigera allein beschrieben, ohne ihn zu deuten und zu benennen. Allen andern Untersuchern ist er entgangen. Er findet sich, wie ich mit Bestimmtheit behaupten kann, bei allen von mir untersuchten Anuren.

4) Bei den von mir untersuchten Anuren existirt ein zwischen Schädel und erstem Halswirbel oder durch letzteren gehender Nerv nicht. Der zwischen den beiden ersten Halswirbeln durchtretende Nerv ist daher der erste wirklich vorhandene Spinalnerv, muss aber nach seinem Durchtritte durch die Wirbelsäule und in Vergleichung mit den andern Wirbelthieren als N. spinalis II. aufgefasst werden. Dasselbe gilt für die beiden folgenden Nerven, die als Nn. spinales III. und IV. zu bezeichnen sind.

287

stets die beiden letzten, mitunter (vielleicht auch immer) alle drei zur Bildung des Plexus brachialis¹).

Ventraler Ast des N. spinalis II. (II). Er tritt zwischen dem ersten und zweiten Wirbel nach aussen und geht mit seiner Hauptmasse (3) an ventralen Rumpfmuskeln (mit Einschluss der Muskeln des Zungenbeins und der Zunge selbst, wo er sich neben den sensiblen Vagusästen verzweigt) vorüber ²). Nicht weit hinter seinem Austritte aus der Wirbelsäule giebt er einen N. thoracicus superior II. (4) ³) ab, der sich in dem M. basi-suprascapularis (*bss*) vertheilt. Vor oder hinter demselben entspringt das feine Verbindungsästchen mit dem N. spinalis III., das sich entweder einfach mit diesem vereint, oder vorher sich in zwei Zweige spaltet, von denen der eine in dem N. supracoracoideus, der andere (N. thoracicus inferior H.) in dem die Mm. obliqui abdominis und rectus abdominis versorgenden Nerven aufgeht.

Ventraler Ast des N. spinalis III. (III). Er ist der stärkste Nerv, nicht allein des Plexus brachialis, sondern des ganzen Körpers. Unweit des Austritts aus dem Zwischenwirbelloch giebt er einen ziemlich kräftigen N. thoracicus superior III. (7) ab, der sich mit weit auseinander tretenden Aesten im M. rhomboideus anterior (rha), petrososuprascapularis (pss), thoraci-suprascapularis (thss) und rhomboideus posterior (rhp) verzweigt⁴). Der Hauptstamm bildet mit dem N. spi-

1) Nach CUVIER, SCHIESS, WYMAN und OWEN besteht der Plexus brachialis nur in der Vereinigung des dritten und vierten Spinalnerven. Wiederholte Untersuchungen bei Rana esculenta haben mir gezeigt, dass auch der zweite Spinalnerv durch ein äussorst feines und in seiner Lage sehr veränderliches Födchen sich mit diesen verbindet. Bei Bufo einereus gelang mir dieser Nachweis nicht, doch möchte ich diesem die erwähnte Verbindung nicht absprechen und eher die Schuld auf die durch den sehr schlechten Erhaltungszustand der Exemplare bedingte mangelhafte Untersuchung schieben. — Ob die im Verhältniss zu den Urodelen verminderte Anzahl der den Plexus zusammensetzenden Nerven bei den Anuren durch Ausfall eines Wirbels und darauf eintretende Verschmelzung zweier Nerven bedingt ist, möchte, wenn auch wahrscheinlich, doch kaum mit Sicherheit zu entscheiden sein.

2) Bei den Anuren (mit Ausnahme von Pipa cf. FISCHER) kann der N. spinalis II. als Hypoglossus aufgefasst werden, sicher wenigstens der in der Zunge selbst endende Theil. Diese Auffassung gewinnt noch dadurch an Gewicht, dass dem Vagus alle, die Zunge bewegenden Elemente abgehen. Hinsichtlich dieses Verhaltens entfernen sich die Anuren von den Urodelen und schliessen sich näher an die höhern Wirbelthiere an.

3) SCHIESS erwähnt diesen Nerv ohne ihn zu benennen.

4) CUVIER: il s'en détache une branche qui ve au-dessus de l'épaule et qui se perd dans les muscles de cette partie.

SCHIESS lässt ihn zu den Muskeln des Schulterblattes gehen und diese versorgen, ohne einen auszunchmen.

nalis IV. die Ansa III. und hierauf mit dem feinen Verbindungsästchen des N. spinalis II. die Ansa II.

Ventraler Ast des N. spinatis IV. (IV). Mindestens viermal schwächer als der vorhergehende. Er giebt zunächst ein oder zwei Aestchen ab, die nach hinten zu den Mm. obliqui abdominis gehen, und bildet hierauf mit N. spinalis III. die Ansa spinalis III. Gleich nach der Vereinigung geht ein kleiner N. thoracicus superior IV. $(9)^{1}$ (für den M. thoraci-scapularis [ths]), ein Aestchen an die schiefen Bauchmuskeln und ein dem ursprünglichen N. spinalis IV. gleich starker und hauptsächlich aus dessen Fasern gebildeter Stamm (10) ab, der sich ebenfalls an die schiefen Bauchmuskeln verzweigt und mit einem selbständigen Nebenästchen den M. abdomini-scapularis (as) versorgt. Dieser der unteren Schicht zuzurechnende und daher N. thoracicus inferior IV. (10) zu benennende Nerv kann in einzelnen Fällen auch vom N. spinalis II. ein Fädchen bekommen²).

Nach Bildung aller Ansen resultirt ein einfacher kräftiger Hauptstamm, der anfangs ziemlich homogen gebildet erscheint, sich aber später in eine untere und obere Schichte spaltet, die Nn. brachiales inferiores und superiores.

A. Die Nn. brachiales inferiores sind folgende:

a) N. supracoracoideus (12)³). Kräftiger nach unten und vorn sich wendender Nerv, der von der Vorderseite des N. spinalis III. entsteht, mitunter auch durch ein vom N. spinalis II. direct kommendes sehr dünnes Fädchen verstärkt wird. Er giebt noch in der Brusthöhle ein sehr feines weit nach hinten verlaufendes und im Rectus abdominis endendes Fädchen (16) (N. thoracicus inferior posterior) ab⁴). Sodann geht er durch die von Coracoid, Epicoracoid und Procoracoid umschlossene grosse Oeffnung im ventralen Abschnitt des Brustgürtels und zwar an deren lateraler Grenze, seitlich vom M. sterno-hyoideus sublimis (sth), und verzweigt sich in dem M.

⁴⁾ Von keinem Autor als selbständiger Nerv erwähnt. Er enthält in sich Elemente des N. spinalis III. und IV.

²⁾ Dieses Verhalten vermittelt eine gewisse Zusammengehörigkeit zum N. supracoracoideus und ist von Bedeutung für die Vergleichung mit den Reptilien.

³⁾ Von CUVIER gar nicht erwähnt. Von SCHIESS ungenau beschrieben als Muskelzweig zum Pectoralis major (!) Deltoides und Biceps. — An der Abzweigungsstelle des N. supracoracoideus vom Plexus ist die Trennung in eine obere und untere Schicht noch so wenig angedeutet, dass der Mangel jeglicher Elemente eines N. brachialis superior nicht mit Bestimmtheit nachgewiesen werden konnte.

⁴⁾ Dieses Fädchen scheint nicht constant zu sein; frühere Beobachter erwähnen es nicht.

coraco-radialis proprius (crp) (13) und den ventralen und hintern Theilen des M. episterno-cleido-acromio-humeralis (eclah) (14). Bei Bufo zweigt sich von ihm ein dünnes Füdchen ab, das zwischen den beiden erwähnten Muskeln und vor dem M. pectoralis an die Haut der Brust tritt¹). — Der Nerv entspricht bis auf den diesen fehlenden Hautast vollkommen dem N. supracoracoideus der Urodelen.

Nach Abzweigung des N. supracoracoideus ist die obere und untere Schichte des in einen starken Ast zusammengezogenen Plexus noch innig vereint und verbleibt dies während des ganzen Verlaufes in der Brusthöhle. Erst nach dem Austritt aus derselben am hintern Rand der Scapula trennen sich beide Theile. Der die untere Schichte repräsentirende Theil ist der kräftige N. brachialis longus inferior.

b) N. brachialis longus inferior (21)²).

Seine Aeste sind:

a) Nn. pectorales und coraco-brachiales $(19, 22)^3$). Beide entspringen bald nach der Abtrennung von dem N. brachialis longus superior mitzwei Stämmen. Der eine (19 + 22) dringt durch den M. coraco-brachialis brevis internus (cbbi), diesen versorgend, hindurch und endet in dem M. coraco-brachialis longus (cbl) und der Pars epicoracoidea des M. pectoralis $(pec)^4$). Der andere (19) tritt binter dem M. coraco-humeralis longus an die Pars sternalis (pst) und abdominalis des M. pectoralis (pa) und giebt noch einen anschnlichen Hautast (18) ab, der sich um den Aussenrand des Pectoralis herum an den untern Theil der Brust wendet.

Diese Nerven entsprechen im Allgemeinen den gleichbenannten der Urodelen. Abweichungen von der Bildung bei diesen sind die Durchdringung des M. coraco-brachialis brevis durch einen Nervenast und der tiefe Abgang der Nn. pectorales, die nicht direct aus dem Plexus entstehen. sondern sich erst von dem N. brachialis longus inferior abzweigen. Beide Unterschiede sind unwesentlich. Ersterer beruht nur auf einer excessiven Vermehrung der Muskelbündel des Coracobrachialis über die durch den Nerven bestimmte hintere Grenze hinaus⁵), letzterer ist

4) In einem einzigen Falle gab der Nerv auch ein äusserst dünnes Fädchen an die hintern Fasern des M. supracoracoideus ab.

5 Derartige durch die Muskeln bedingte Veränderungen der gegenseitigen Beziehungen zwischen diesen und den Nerven, sei es eine Umwachsung oder sei es

¹⁾ Bei Rana trotz wiederholter Bemühungen nicht aufgefunden. Auch weder von Cuvier noch von Schless beschrieben.

 ²⁾ Nerf médian: CUVIER. — N. radialis: SCHIESS (1). — Median: OWEN.
 3) SCHIESS erwähnt nur einen N. thoracicus longus zum M. abdomino-humeralis und einen Zweig zur Haut.

lediglich bedingt durch eine abweichende Vertheilung der Neuroglia.

- β) N. cutaneus brachii inferior medialis (25)¹). Ansehnlicher Hautnerv, der in der Mitte des Oberarms sich abzweigt und an die Gegend des Ellenbogens und der Ulnarseite des Vorderarms geht. — Der Nerv ist ein Homologon des N. cutaneus internus major s. medius.
- γ) N. cutaneus brachii inferior lateralis (26)²). Geht an dem untern Drittel des Oberarms vom N. brachialis longus inferior ab, und läuft ulnar neben der Sehne des M. coraco-radialis proprius (crp) nach der Beuge der Radialseite des Vorderarms.

Dieser Nerv ist dem die Haut versorgenden Endaste des N. musculo-cutaneus vergleichbar.

Der Hauptstamm verläuft neben der Sehne des M. coraco-radialis proprius (crp) an den Vorderarm und verzweigt sich, zuerst in zwei, dann mehr Aeste getheilt, in den Muskeln und der Haut der Beuge des Vorderarms und der Hand.

Dieser Theil des Nerven entspricht den Vorderarm- und Handpartien der Rr. superficialis und profundus n. brachialis longi inferioris der Urodelen oder theilweise den Nn. medianus und ulnaris des Menschen. Eine durch die Vertheilung der Neuroglia bedingte, also unwesentliche Abweichung von den Bildungen bei den Urodelen ist gegeben in der regelmässig erst in der Ellenbogenkehle erfolgenden Theilung in die beiden Rr. superficialis und profundus.

B. Nn. brachiales superiores. In der Brusthöhle noch fest mit den Nn. brachiales inferiores vereinigt. Ihre Aeste sind folgende :

a) Nn. latissimi dorsi (34) und dorsales scapulae $(30)^{3}$. Zwei ansehnliche Aeste, die am hintern Rand der Scapula noch vor der Trennung in N. brachiales superiores und inferiores sich abzweigen. Der eine geht von der Hinterseite des Hauptstammes ab und vertheilt sich entweder im M. latissimus dorsi (dh) (34) und dem kleinern hinteren Theile des M. dorsalis scapulae (ds) (34) oder (seltener) in ersterem Muskel allein (34). Der andere zweigt sich etwas weiter unten von der Vorderseite des Hauptstammes ab, innervirt mit einer Anzahl von Aesten in der Regel den grössern vordern Theil

eine Zertheilung der letzteren durch die ersteren, kommen fast in allen Classen der Wirbeltbiere zur Beobachtung.

⁴⁾ SCHIESS: Hautzweig zum Ellenbogen.

²⁾ Von Schiess überschen.

³⁾ Von CUVIER und Schless nicht beschrieben, von Owen als »axillary nerv« gedeutet.

ч.

des M. dorsalis scapulae (ds) (31) oder seltener den ganzen Muskel und geht dann, zwischen dessen Insertionssehne und dem hintern Rande demnächst der Aussenfläche der Scapula nach der Hauptmasse des M. acromio-humeralis (ah) (33) und mit einem sehr feinen Hautästchen (N. cutaneus brachii superior lateralis) (32) an die Haut der Schulter.

Der den M. latissimus dorsi innervirende Theil entspricht dem N. latissimus dorsi, die übrigen Aeste dem N. dorsalis scapulae der Urodelen. Die Vereinigung von Elementen des letzteren Nerven mit denen des ersteren in eine gemeinsame Bahn ist lediglich durch eine abweichende Vertheilung des Nervenkitts bedingt. Keineswegs darf das mit dem Stamme des N. latissimus dorsi verbundene und zu dem hintern Theile des M. dorsalis scapulae gehende Aestchen als Homologon eines N. teres major (subscapularis medius) aufgefasst werden. Dagegen spricht einmal die auch zur Beobachtung kommende vollkommene Trennung der Nn. dorsales scapulae von den Nn. latissimi dorsi, ferner die vollkommene Homogenität des M. dorsalis scapulae, endlich die bei den Reptilien bestimmt nachweisbare Entstehung des M. teres major aus zum System des M. subscapularis gehörenden Elementen.

 b) N. cutaneus brachii et antibrachii superior (41)¹) zweigt sich dem zweiten N. dorsalis scapulae gegenüber von der Hinterseite des Hauptstammes ab und versorgt die Haut der Streckseite des Oberund Vorderarms. Zum Theil dem bei den Urodelen beschriebenen kleinen Hautnerven des N. radialis superficialis, zum Theil einzelnen Partien des N. radialis superficialis selbst entsprechend. — Ein directes Homologon fehlt beim Menschen.

Erst nach Abgabe des letzten Astes trennt sich die obere Schicht vollständig von der untern als N. brachialis longus superior.

c) N. brachialis longus superiors. radialis $(35, 38)^2$). Schr kräftiger Stamm, der dem N. brachialis longus inferior an Stärke beinahe gleich kommt. Er giebt an der Trennungsstelle ein oder zwei Rr. musculares (40) an den M. anconaeus scapularis medialis (asm) und den medialen und mittleren Theil des M. anconaeus humeralis $(ahm, ahl)^3$) ab, geht dann zwischen M. anconaeus

⁴ Weder von Cuvier noch von Schiess erwähnt.

²⁾ Nerf radial: CUVIER. — Nervus ulnaris: SCHESS (1). — Musculospiral: OWEN. — Die Deutung von Schiess bedarf keiner Widerlegung.

³⁾ SCHIESS: »Zwischen dem radialis und ulnaris aus ihrem Theilungswinkel entsteht ebenfalls ein ziemlich beträchtlicher Muskelnerv, der die Muskulatur des Ellenbogens auf sich nimmt«. Diese Rr. musculares für den M. anconacus können

scapularis medialis (asm) und a. humeralis lateralis (ahl). crsteren median, letzteren lateral lassend, in die Tiefe der Streckmuskulatur des Oberarms, innervirt die noch nicht versorgten Theile derselben und tritt nach gedehnt spiraligem Verlaufe vor dem Epicondylus radialis nach aussen und von da an die Streckseite des Vorderarms und der Hand (37).

Der Nerv ist als ein Homologon der Nn. radialis superficialis und profundus der Urodelen (mit Ausnahme des von ersterem abgehenden kleinen Hautastes) aufzufassen. Ein auffallender Unterschied liegt in seiner veränderten Lage zum a. scapularis medialis: während er bei den Urodelen diesen Muskel lateral lässt, geht er bei den Anuren lateral an ihm vorbei. Dieses Verhalten ist bedingt durch den von dem der Urodelen abweichenden Ursprung dieses Muskels (vergleiche unten in §. 6 die Beschreibung des M. anconaeus scapularis medialis).

§. 6.

Muskeln der Schulter und des Oberarms¹).

(Vergleiche Taf. XVII u. XVIII.)

Die Muskeln der Schulter und des Oberarms der Anuren zeigen, theilweise entsprechend der Ausbildung der Knochen, eine viel grössere Ent-

4) Literatur:

KUHL und von HASSELT, Beiträge zur Zoologie der Rana esculenta. KUHL's Beiträge zur Zoologie. Frankfurt a. M. 1820. S. 115 f.

ZENKER, Batrachomyologia. Jenae 1825.

ANONYMUS, über d. Schultergerüst der Schildkröten mit den daren sitzenden Muskeln. Jsis 1827. p. 429 (enthält Bemerkungen über die Schultermuskeln der Frösche).

MAYER, Beitrag zur anatomischen Monographie der Rana pipa Nova acta soc. Carol. Leop. nat. cur. 1828. S. 534 f.

MECKEL, a. a. O. III. S. 168 f. S. 177 f. S. 201 f. (Pipa, Bufo, Rana, Hyla.)

Dugès, a. a. O. S. 128 f.

CUVIER, a. a. O. I. S. 379 f. S. 404 f. S. 424 f.

VOLEMANN, a. a. O. S. 72.

verschieden entspringen. Regel ist das im obigen Text beschriebene Verhalten. Sehr selten ist eine Abzweigung vom N. radialis hinter der Theilungsstelle. Häufiger gehen sie von dem Anfangstheile des N. brachialis longus inferior ab. Dieses Vorkommen kann eine Versorgung des M. anconaeus durch der untern Schichte angehörende Nerven vortäuschen. Die genauere Untersuchung und Abtrennung der genannten Zweige von dem longus inferior ergieht jedoch, dass nur eine zufallige Verbindung durch Neuroglia vorliegt, und dass der Nerv wirklich von der oberen Schichte entspringt. Jedenfalls zeigt dieses (auch bei Säugethieren beobachtete) Verhalten, wie wenig Werth auf die Bildung von Anastomosen, wie auf die Unterschiede einer höhern oder tiefern Abzweigung zu legen ist.

wickelung als bei den Urodelen. Diese zeigt sich einmal in einer sehr weit gehenden Differenzirung der von den Nn. thoracici superiores versorgten Muskelmassen und einer hiermit verbundenen Neubildung von Mm. rhomboidei, ferner in einem Zerfall der Mm. pectoralis und episternocleido-acromio-humeralis in einzelne getrennte Partien, endlich in einer ansehnlichen Volumensvergrösserung einzelner Muskeln (Mm. coracoradialis proprius und coraco-brachialis brevis), zu der eine beträchtliche Reduction bis vollständige Verkümmerung anderer (Mm. supracoracoideus und subcoracoscapularis) in Correlation steht. Eine den Batrachiern eigenthümliche Bildung ist der M. interscapularis.

Aehnlich wie bei den Urodelen lassen sich die Muskeln der Anuren in folgender Weise eintheilen.

A. Durch N. vagus innervirt :

Insertion an dem dorsalen Abschnitte des Brustgürtels (Scapula).

 a) Ursprung vom Kopfe, Innervatioń durch den R. accessorius n. vagi:

Capiti-scapularis (Cucullaris).

 b) Ursprung vom Suprascapulare, Innervation durch den R. scapularis n. vagi: Interscapularis.

PFEIFFER, a. a. O. S. 47 f.

STANNIUS, a. a. O. S. 124 f. S. 125 f.

ECKER, a. a. O. S. 84 f. S. 84 f. S. 89 f.

Die Abhandlungen von

ALTENA, a. a. O.

MARTIN ST. ANGE, Annales des Sciences naturelles. Tome XXIV. 1881. p. 398. konnte ich nicht vergleichen.

Die Untersuchung beschränkte sich auf Rana esculenta und Bufo cinereus. Jüngere Frösche zeigten keine Besonderheiten. Junge Larven wurden in Bezug auf die Entwicklung nur vorübergehend beachtet. Duess und STERNHEIM (Entwicklung des Froschembryos, insbesondere des Muskel- und Genitalsystems. Abhandlungen des naturwiss. Vereins zu Hamburg 1846. S. 17 f.) bieten über diesen Punct nur Dürftiges. — Eine myologische Untersuchung von Microps (oder Hylaedactylus) dürfte werthvolle Aufschlüsse über die Verwandtschaft mit den Urodelen einerseits und den Cheloniern anderseits ergeben und ist sehr wünschenswerth

COLLAN, a. a. O. S. 28 f.

KLEIN, Beiträge zur Anatomie der ungeschwänzten Batrachier. Jahresheft des Vereins für vaterländische Naturkunde in Würtemberg. 6 Jahrg. 4850. S. 4 f. (Myologie von Bufo agua, margaritifera, variabilis, Cystignathus ocellatus, Rana temporaria, Hyla palmata und arborea, Pipa americana.)

RÜDINGER, a. a. O. S. 26 f. S. 96. S. 402 f. (Bufo cincreus, Rana temporaria, esculenta mugiens, Pipa americana, Hyla, Rana paradoxa Rana bufo [?]).

Max Fürbringer.

B. Durch Nn. thoracici superiores innervirt:
Insertion am dorsalen Abschnitte des Brustgürtels.
a) Ursprung vom Hinterkopfe, Insertion am Supra-
scapulare.
α) Vom ventralen Theile des Hinterkopfes :
Basi-suprascapularis (Levator scapulae inferior).
β) Vom lateralen Theile des Hinterkopfes:
Petroso-suprascapularis (Levator scapulae superior).
γ) Vom dorsalen Theile des Hinterkopfes:
Occipiti- suprascapularis (Rhomboideus anterior).
b) Ursprung vom Rumpfe (Processus transverso-costales).
α) Insertion an der Scapula:
Thoraci-scapularis (Serratus magnus inferior).
$\boldsymbol{\beta}$) Insertion an dem Suprascapulare :
Thoraci–suprascapularis (Serratus magnus superior mit Rhomboideus posterior).
C. Durch N. thoracicus inferior innervirt:
Ursprung von der Bauchfläche, Insertion an der Scapula: Abdommi-scapularis.
D. Durch Nn. brachiales inferiores innervirt:

a) Ursprung vom Rumpfe (Bauchfläche, Sternum, auch auf die Verbindung der Epicoracoide übergreifend), Insertion am Oberarm:

Pectoralis.

÷

- b) Ursprung vom ventralen Theile des Brustgürtels (auch auf Sternaltheile übergreifend):
 - α) Durch N. supracoracoideus innervirt, Insertion am Vorderarm: Coraco-radialis proprius.
 - β) Durch Aeste des N. brachialis longus inferior innervirt, Insertion am Oberarm:

Coraco-brachialis longus. Coraco-brachialis brevis internus.

E. Durch Nn. brachiales inferiores und superiores zugleich innervirt:

Episterno-cleido-acromio-humeralis.

Ursprung vom vorderen Theile des Brustgürtels (Clavicula, Acromion, auch auf das Episternum übergreifend), Insertion am Oberarm:

295

F. Durch Nn. brachiales superiores innervirt:

a) Ursprung vom Rumpfe (dorsale Fläche des Rückens), Insertion am Oberarm:

Dorso-humeralis (Latissimus dorsi).

b) Ursprung von der Aussenfläche des dorsalen Abschnittes des Brustgürtels (Suprascapulare), Insertion am Oberarm:

Dorsalis scapulae.

c) Ursprung vom dorsalen Abschnitte des Brustgürtels (Scapula) und Oberarm, Insertion am Vorderarm: Anconaeus.

1. Capiti-scapularis (Cucullaris) $(cs)^{-1}$.

Protractor acromii: ZENKER (No. 97. 98), ANONYMUS. Scapulo-mastoïdien, sterno-mastoïdien (Cuvien): Dugès (No. 65). Sternomastoïdien: Cuvien. Levator scapulae inferioris: Volkmann, Fischen. Sternocleidomastoideus: Collan, Klein, Pfeiffen, Ecken (No. 44). Scapulo-mastoideus s. Sternocleidomastoideus: Rü-Dingen.

Er entspringt von dem lateralen Theile des Os occipitale externum, von dem Os tympanicum, vom hintern Rande des Trommelfells und von dem lateralen Theile des Os petrosum und geht, bedeckt von dem sogenannten Digastricus maxillae inferioris (dg) nach hinten und unten, wo er an der Unterfläche des vorderen Randes der Scapula (oberhalb des Acromion) zwischen dem M. interscapularis (is) und acromio-humeralis (ah) inserirt.

lnnervirt durch den R. accessorius n. vagi (α) .

Der Muskel entspricht dem vorderen Theile des M. capiti-dorsoscapularis der Sozuren und ist aus den bereits bei diesen angegebenen Gründen mit dem menschlichen M. cucullaris zu vergleichen. Für die von den meisten Untersuchern vorgeschlagene Homologie mit dem M. sternocleidomastoideus des Menschen spricht allerdings der sehr weit lateral-

¹⁾ Von MECKEL unter No. 4. S. 164 angegeben, aber nicht benannt. STANNIUS beschreibt ihn als Muskel, »der vom Schädelquerfortsetze an den Vorderrand der Scapula über dem Acromion erstreckt ist«.

wärts liegende Ursprung; allein die nur auf die Scapula beschränkte Insertion (obwohl eine Clavicula bei den Anuren existirt) schliesst ohne Weiteres eine Vergleichung mit diesem Muskel aus, falls die oben (bei den Urodelen) gegebene Bestimmung desselben, wonach die Insertion an der Clavicula sein wesentlichstes Merkmal ist, festgehalten wird. Die Abweichung des Ursprunges von der Mittellinie des Hinterhauptes ist als eine durch die kräftige Entwickelung der an den Schädel gehenden Längsmuskelmasse des Rumpfes und des M. rhomboideus anterior bedingte Anpassung zu erklären. - Von Bedeutung ist die Veränderlichkeit des Muskels in der Classe der Amphibien. Bei den Sozobranchiern ist er auf die Rumpfgegend beschränkt, bei den Sozuren hat er sich nach vorn bis zum Hinterkopfe entwickelt und entspringt sowohl von Kopf als von Rumpf, bei den Anuren endlich fehlt jegliche Rumpfpartie, der Muskel entspringt lediglich vom Kopfe. Durch dieses Verhalten, das durch die Annäherung des Brustgürtels an den Kopf und durch die vorwiegende Entwickelung des Suprascapulare und der vom Rücken her an sie tretenden Muskeln bedingt ist¹), bilden die Anuren einen Endpunct der Entwickelungsreihe innerhalb der Amphibien, der weder an Reptilien und Vögel noch an Säugethiere Anknüpfungen erlaubt.

2. Interscapularis (is) 2).

Subscapularis: ZENKER (No. 87. 88), ANONYMUS. Interscapularis, Interscapulaire: DUGÉS (No. 64), KLEIN, PFEIFFER, ECKER, RÜDINGER. Flexorscapulae: CollAN (No. 62).

Mittelgrosser Muskel an der Innenfläche des dorsalen Abschnittes des Brustgürtels. Er entspringt unterhalb des Verlaufes und der Insertion des M. basi-suprascapularis (bss) von der untern Hälfte und den vorderen zwei Dritteln des Suprascapulare und geht mit convergirenden Fasern an die Scapula wo er schmal zwischen M. capiti-scapularis (cs), omohyoideus (oh) und thoraci-scapularis (ths) inserirt.

į

¹⁾ Danach ist wahrscheinlich, dass bei den Anuren mit sehr kleinem Suprascapulare z. B. Microps, Systoma, Ceratophrys auch eine Rumpfpertie des Cucullaris existirt. Untersuchungen dieser Thiere müssen das Weitere unterscheiden.

²⁾ Von MECKEL unter No. 8. S. 466 beschrieben. — CUVIER giebt an: Il y a de plus à l'omoplate un muscle propre, situé à la face interne, entre les deux portions etc. — STANNUS sagt: »Scapula und Pars suprascapularis sind verbunden durch einen Muskel, der von der untern Fläche der einen zu der der andern tritt«. — FISCHER giebt bei Pipa einen M. interscapularis an, während KLEIN ihn ableugnet.

Innervirt durch den R. scapularis n. vagi (σ) .

Eine Vergleichung dieses Muskels mit dem M. subscapularis (ZENKER) rd ohne Weiteres durch seine Versorgung durch einen Vagusast ausschlossen. Der Muskel ist eine den Batrachiern eigenthümliche Bildung, e bei keinem Wirbelthiere ein directes Homologon hat. Die Innervation urch den N. vagus trennt den M. interscapularis ebenso wie den M. cuculris von allen andern Muskeln des Brustgürtels und der vordern Exremität und giebt ihm eine nähere Beziehung zu den übrigen vom agus innervirten Muskeln, speciell den Muskeln der hintern Zungeneinhörner. Aber weder diese, noch die ihnen homologen der Kiemenwen bei den Sozobranchiern bieten Bildungen dar, die nach Ursprung, nsertion und sonstiger Lage mit dem Interscapularis irgend welche, venn auch fernere, Vergleichung gestatten. Erfolgreicher erweist sich le Untersuchung der im Vagusgebiete liegenden Muskeln der Kiemenwen bei den Selachiern. Bei diesen (nach VETTER's Untersuchungen uch bei den Chimaeren und Ganoiden, jedoch nicht bei den Telestiern) liegen an der Innenseite der Kiemenbogen kleine Muskeln, die m dem untern Ende des oberen Kiemenbogens entpringen und an dem bern Ende des untern inscriren, die in übereinstimmender Weise wie ier M. interscapularis der Anuren von ähnlich sich abzweigenden Aesten les N. vagus versorgt werden und die nach ihrer Function die oberen und mærn Kiemenbogen einander zu nähern, Mm. adductores branbiarum oder nach ihrer Lage Mm. interbranchiales benannt werden können. Diese Muskeln, die übrigens den Adductoren des Palato-quadratum und Mandibulare (theilweise den Kaumuskeln entprechend) homodynam sind, müssen als metamere Homologe les M. interscapularis der Anuren angesehen werden. Diese Thatsache ist ein weiterer Beitrag zur Erkenntniss der nahen eichungen des Brustgürtels und seiner Weichtheile zu dem Gebiete 🛤 N. vagus, einer Erkenntniss, die auf myologischem Gebiete bisher Mr durch das nicht strict beweisende Verhältniss des M. cucullaris (md M. sternocleidomastoideus) zum N. accessorius¹) gestützt wurde; ^{he} zwingt uns zugleich, in dem Brustgürtel (Brustbogen) ein metameres belegen der Kiemenbegen anzuerkennen, das seine ursprüngliche Ab-

⁴⁾ Die Anheftung des M. cucullaris und sternocleidomastoideus an den Brustiriel kann von Gegnern dieser Ansicht für eine secundäre Anpassungserscheinung rührt werden, ohne dess dieser Einwurf erfolgreich widerlegt werden könnte. möglich ist dies bei dem M. interscapularis, der mit seiner ganzen Masse lediglich if den Brustgürtel beschränkt ist.

hängigkeit vom N. vagus nur in vereinzelten Residuen (deren wichtigstes der M. interscapularis der Batrachier ist) gewahrt hat¹).

3. Basi-suprascapularis (Levator scapulae inferior) (bss)²).

Protractor scapulae: Zenker (No. 95, 96), Anonymus, Klein, Preiffer.

Schulterblattheber: MECKEL (No. 3).

Sous-occipito-adscapulaire: Ducks (No. 60).

Le premier grand dentelé: CUVIER.

1) Diese Annahme ist übrigens nicht neu. Die metamere Homologie des Brustgürtels (und Bauchgürtels) mit den Kiemenbogen wurde (abgesehen von früheren noch ganz unverarbeiteten Hypothesen) bereits von Owen als möglich angenommen und von GEGENBAUR durch gewichtige aus der Untersuchung des Visceralskelets der Selachier gewonnene Beweise unterstützt. Diese Homologie ist nicht aufzufassen, als ob der Brustbogen sich aus einem Kiemenbogen entwickelt habe oder umgekehrt die Kiemenbogen durch Verkümmerung aus ursprünglichen Extremitätenbogen entstanden seien, sondern es ist vielmehr eine ursprüngliche möglichst indifferente, jedenfalls ungegliederte Anlage anzunehmen, aus der sich in differenter Weise einerseits die Kiemenbogen mit ihren Radien anderseits Brust- und Bauchbogen mit ihren Extremitäten entwickelt haben. Diese Annahme wird ebenfalls durch die gegenseitigen Beziehungen der Mm. interbranchiales und des M. interscapularis unterstützt. Sowohl Kiemenbogen (der Fische und Amphibien) wie Brustbogen der Batrachier zeigen an bestimmten Stellen eine Unterbrechung des festeren Gewebes durch ein mehr lockeres, wodurch eine Theilung der Bogen in zwei gegeneinander bewegliche Stücke bedingt wird. Diese Gewehsdifferenz ist keine ursprüngliche, sic tritt vielmehr erst im Laufe der embryologischen Entwickelung auf: sie muss daher phylogenetisch erworben sein und zwar durch einen auf den ursprünglich homogenen Bogen ungleich wirkenden Druck, das ist durch die Wirkung eines an demselben Bogen zugleich entspringenden und inserirenden Adductors (Mm. interbranchiales, M. interscapularis), dessen Druckkraft die am meisten betroffene Stelle nicht widerstehen kounte. Diese Stelle findet sich bei allen Kiemenbogen in gleicher Weise : sie bildet die Grenze zwischen oberem und unterem Kiemenbogen. Nun entspricht nach OWEN's und GEGENBAUR'S Nachweisen die Scapula des Brustbogens einem oberen, das Coracoid etc. einem unteren Kiemenbogen. Wäre der Brustbogen aus einem bereits differenzirten Kiemenbogen entstanden, so müsste seine lockere Stelle zwischen Scapula und Coracoid liegen und der M. interscapularis die Fähigkeit haben, beide einander zu nähern. Dies ist in Wirklichkeit nicht der Fall, der Locus minoris resistentiae liegt bei den Anuren vielmehr im Bereiche der Scapula selbst. Der M. interscapularis hat also in einem ganz andern (mehr dorsalen) Niveau auf den Schulterbogen gewirkt, als die Mm. interbranchiales auf die Kiemenbogen. Beiderlei Bogen müssen daher als selbständige differente Bildungen aus ursprünglichen indifferenten Bogen angesehen werden.

2) KLEIN lässt diesen Muskel von Processus II. u. III. entspringen. Ein derartiges Verhalten beschreiben weder frühere Beobachter, noch kann ich es bei den von mir untersuchten Thieren bestätigen. STANNUS benennt den Muskel nicht, beschreibt ihn aber als »tieferen Muskel, der von der Hinterbauptsgegend an die Pars suprascapularis tritt«.

Compressor scapulae inferior: Volkwann. Levator s. attractor scapulae: Collan (No. 60). Levator anguli scapulae: Ecker (No. 48). Portio anterior serrati majoris s. levator scapulae proprius: Rüdinger.

Ziemlich kräftiger von dem M. capiti-scapularis (cs) und vom Suprascapulare bedeckter Muskel. Er entspringt vom Os occipitale basilare und dem untern Theil des Os petrosum und geht nach unten und hinten an die Innenfläche des Suprascapulare, wo er hinter dem Ursprung des M. interscapularis (is) am untern und hintern Theil inserirt.

Innervirt durch den N. thoracicus superior II. (2).

Unstreitig gehört der Muskel zu einem und demselben System wie der M. serratus. Eine directe Vergleichung mit diesem, wie CUVIER und RÜDINGER befürworten, erlaubt jedoch sein Ursprung vom Kopfe nicht. Er ist ein theilweises Homologon des M. basi-scapularis (Levator scapulae) der Urodelen, ist aber weit kleiner als dieser und entspricht nur der grösseren unteren Hälfte desselben. Ein wesentlicher Unterschied dieses und des folgenden Muskels von dem ihnen vergleichbaren der Urodelen liegt in jeglichem Mangel einer auf der Aussenfläche der Scapula befindlichen Insertion. Diese Differenz ist nicht nur durch eine Reduction von Homologen der oberflächlichen Schichte des Levator scapulae der Urodelen, sondern auch durch eine bedeutende Ausdehnung des Suprascapulare nach vorn bedingt. Für letztere Annahme spricht der Umstand, dass die Insertionen an der Innenfläche auch entfernt vom vorderen Rande liegen.

4. Petroso-suprascapularis (Levator scapulae superior) $(p s s)^{-1}$).

Levator scapulae profundus: ZENKER (No. 94. 92), ANONYMUS. Releveur ou angulaire de l'omoplate: Cuvier. Compressor scapulae superior: Volkmann. Levator anguli scapulae: Collan (No. 59). Protrahens scapulae: Ecker (No. 45).

Gleich oberhalb des vorigen gelegener Muskel. Er entspringt von der Hinterfläche des Os petrosum und geht in horizontaler Richtung nach hinten an die Unterfläche des obersten Theiles des Suprascapulare

⁴⁾ Von MECKEL, DUCES, KLEIN, PFEIFFER und STANNUS nicht als selbständiger Muskel angeführt und wahrscheinlich dem vorhergehenden zugerechnet. ECKER's und Rüdinger's (von ECKER abgeschriebene) Angabe, wonach DUCEs und ZENKER diesen Muskel M. protractor acromii genennt haben sollen, ist falsch.

zwischen die Insertion des M. rhomboideus anterior (oss) und serratus magnus superior (thss).

Innervirt durch Theile des N. thoracicus superior III. (4).

Der Muskel ist als ein ziemlich selbständig differenzirtes Homologon der oberen tieferen Partien des M. levator scapulae der Urodelen aufzufassen. Sein Ursprung, am Os petrosum, lässt schliessen, dass der ursprünglich homogene Levator scapulae der Anuren (aus dem No. 3, 4 und 5 sich entwickelt haben) eine ausgedehntere Bildung dargestellt hat als das Homologon bei den Urodelen. Dieses Verhalten steht wiederum in Beziehung zu der voluminöseren Entwickelung der Scapula und des Suprascapulare bei den Anuren.

5. Occipiti-suprascapularis (Rhomboideus anterior) (rha) 1).

Levator scapulae sublimis: ZENKER (No. 89. 90), ANONYMUS. Oberer Vorwärtszieheroder Kappenmuskel: MECKEL (No. 4). Protrahens scapulae accessoriae: HASSELT u. KUHL. Sus-occipito-adscapulaire, portion du trapèze: DUGÈS (No. 58). Protractor scapulae supremus: VolkMANN. Cucullaris: Collan (No. 53), KLEIN, PFEIFFER, ECKER, RÜDINGER.

Breiter aber wenig kräftiger Muskel, der über dem vorigen am Anfange des Rückens gelegen ist. Er entspringt am hintern Rande des Os occipitale laterale (Linea semicircularis superior), median mit dem der Gegenseite zusammenstossend, und geht nach aussen und hinten an die Unterfläche des vorderen oberen Winkels des Suprascapulare.

Innervirt durch Theile des N. thoracicus superior III. (4).

Der vollkommene Mangel von Elementen eines R. accessorius n. vagi in diesem Muskel schliesst jede Vergleichung mit dem M. cucullaris aus, die schon durch die Insertion an der Innenfläche des Suprascapulare fraglich gemacht wird. Nach Ursprung und Insertion, sowie nach Innervirung (durch einen dem N. dorsalis scapulae des Menschen homologen homodynamen N. thoracicus superior) ist er dem grossen vorderen M. rhomboideus vieler Säugethiere, der auch vom Kopf entspringt, zu vergleichen. Dem Menschen fehlt dieser Muskel oder existirt nur in unansehnlichen Rudimenten (Rhomboideus minor). Das gleichzeitige Vorkommen eines Rhomboideus anterior bei Anuren und Säugethieren,

⁴⁾ Von CUVIER nicht erwähnt. STANNUS beschreibt ihn als »oberen Muskel, der von der Hinterhauptsgegend an die P. suprascapularis tritt«.

und Waala diese Dildung shash

301

während den Urodelen, Reptilien und Vögeln diese Bildung abgeht, ist von Bedeutung für deren gegenseitige Verwandtschaft.

6. Thoraci-scapularis (Serratus magnus inferior) (ths) 1).

Depressor acromii: ZENKER (No. 408. 404), ANONYMUS. Transverso-interscapulaire: Dugès (No. 63). Le troisième grand dentelé: Cuvier. Retractor scapulae u. Serratus anticus major: Collan (No. 56. 57). Depressor scapulae: KLEIN, PPEIFFER. Serratus: STANNIUS. Transverso-scapularis major u. minor: ECKER (No. 46. 47). P. posterior serrati antici majoris s. P. tertia m. serrati: Rüdinger.

Ziemlich langer Muskel. Er entspringt von dem dritten und vierten Processus transverso-costalis und geht mit convergirenden Fasern nach unten und vorn an die Innenfläche des hintern Randes der Scapula, oberhalb der Insertion des M. omohyoideus (oh) und hinter der des M. interscapularis (is). Er ist bei Pipa und Bufo sehr ansehnlich entwickelt, bei Hyla und Rana dagegen schwächer. Eine Trennung in zwei Theile ist angezeigt (besonders bei Hyla), aber nicht vollkommen durchgeführt.

Innervirt durch N. thoracicus superior IV. (5).

Dieser Muskel ist dem System des M. serratus magnus zuzurechnen. Bei den höheren Wirbelthieren (mit Ausnahme der Chelonier) wie bei den Urodelen entspringt der Serratus von beweglichen Rippen, hier bei den Anuren von fest mit den Wirbelkörpern verbundenen Fortsätzen, die von den Einen als Processus transversi, von den Andern als vereinigte Elemente von Querfortsätzen und Rippen (Processus transverso-costales) gedeutet werden. Letztere Auffassung wird durch die Ursprungsverhältnisse des Serratus magnus (und Latissimus dorsi, s. unten) unterstützt. — Eine directere Homologie bietet die untere Partie des M. serratus magnus der Urodelen dar. Der M. thoraci-scapularis der Anuren zeigt aber ein grösseres Volumen und eine breitere Ursprungsfläche als dieser, sowie eine beginnende Differenzirung in zwei Partien, die von einigen Autoren (COLLAN, ECKER) als zwei separate Muskeln aufgefasst worden sind.

÷

⁴⁾ Von MRCKEL unter No. 7 beschrieben.

7. Thoraci-suprascapularis (Serratus magnus superior mit Rhomboideus posterior) (th s s) 1).

a Serratus magnus superior:

- Depressor scapulae und Theil des Omoplateus rectus: ZENKER (93. 94. 104. 102), ANONYMUS.
- Transverso-adscapulaire, portion du grand dentelé: Ducès (No. 61).
- Le deuxième grand dentelé: Cuvier.
- Serratus anticus minor: Collan (No. 58).
- Serratus: KLEIN, PFEIFFER, STANNIUS.
- Transverso-scapularis tertius s. Serratus: ECKEN (No. 48,. Pars medialis m. serrati antici majoris: Rüdingen.
- b) Rhomboideus posterior:
 - Theil des Omoplateus rectus: ZENKER (No. 404. 402), Ano-NYMUS.
 - Lombo-adscapulaire, partie postérieure du trapèze: Ducès (No. 59).
 - Rhomboideus: Cuvier, Klein, Pfeiffer, Stannius.
 - Retrahens scapulae: Ecker (No. 33).
 - Pars medialis m. serrati antici majoris: Rüdinger.

Breiter, aber kürzer als voriger Muskel. Er entspringt von dem zweiten, dritten und vierten Processus transverso-costalis, bei den verschiedenen Gattungen verschieden²), und geht mit parallelen Fasern nach oben und vorn an die hintere Hälfte des oberen Randes der Innenfläche des Suprascapulare. Während bei den niedriger stehenden Gattungen (Pipa) der obere Theil sehr unansehnlich ist, erlangt er bei den höheren durch Jebergreifen seines Ursprungs über die Längsmuskulatur des Rückens (Hyla, Bufo) und bis auf die Processus spinosi (Cystignathus, Rana) eine besondere Entwicklung. Der dadurch entstandene Theil kann in seiner vollkommensten Ausbildung als Rhomboideus posterior (rhp)unterschieden werden.

Innervirt durch einen Zweig des N. thoracicus superior II. (4).

Der Muskel ist ein Homologon der oberen Partie des M. serratus magnus der Urodelen. Neu und den Anuren eigenthümlich ist die Ausdehnung des Muskels nach oben über das Niveau der Processus transverso-costales, wodurch die Neubildung eines M. rhomboideus posterior,

⁴⁾ MECKEL beschreibt ihn unter No. 6. ECKER läugnet die Homologie des oberen Theiles mit dem Rhomboideus und befürwortet die Vergleichung mit dem Serratus.

²⁾ Bet Pipa vom zweiten und dritten, bei Bufo vom dritten oder vierten, bei Cystignathus, Rana und Hyla vom dritten und vierten Wirbel.

ſ

dessen Entwickelung in allen Stadien von Pipa und Hyla bis zu Cystignathus und Rana verfolgt werden kann, bedingt wird. In seiner vollkommensten Ausbildung ist dieser Muskel dem menschlichen Rhomhoideus major, dem hintern Rhomboideus vieler Säugethiere, zu vergleichen. Eine Homologie mit dem Cucullaris, welche Ducks belürwortet, wird durch den Mangel von jeglichen Elementen des R. accessorius n. vagi unmöglich gemacht.

8. Abdomini-scapularis $(as)^{1}$.

Depressor abdominalis: ZENKER .No. 99. 400), ANONYMUS. Xipho-adscapulaire s. portion du grand dentelé: DUGÈS (No. 62). Pectoralis minor: Collan. Portio abdominalis m. obliqui externi: KLEIN, PFEIFFER. Portio omo-abdominalis m. obliqui externi: Ecker (No. 296). Omo-abdominalis: Rüdinger.

Von dem M. obliquus abdominis externus (*oae*) abgelöster vorderster Theil. Er entspringt von der Linea alba und geht nach oben und vorn, wo er sich sehnig an den Hinterrand der Scapula inserirt. Bei Bufo am anschnlichsten entwickolt.

Innervirt durch den N. thoracicus inferior IV. (6).

Eine Homologie mit Theilen des M. serratus magnus (DUGES) sowie mit dem M. pectoralis minor (COLLAN) ist durch die abweichende Innervirung ausgeschlossen. Letzterer ist überdies, wie bei den Urodelen bereits erwähnt worden, eine auf die Säugethiere beschränkte Differenzirung aus dem M. pectoralis. Der M. abdomini-scapularis ist als eine den Batrachiern eigenthümliche Bildung aufzufassen, die jedoch wie sich später zeigen wird) zu dem M. plastro-coracoideus der Chefonier, dem M. sterno-coracoideus der Saurier, Crocodile, Vögel und Monotremen und dem M. subclavius der marsupialen und placentalen Säugethiere in fernerer Homologie steht.

I) Von MECKEL nicht erwähnt. STANNUS sagt: "Von der Aussenfläche des M. obiquas externus tritt ein Muskel an den Hinterrand der Scapula".

Max Fürbringer.

9. Pectoralis $(p)^{1}$.

- a) Portio abdominalis:
 - Brachio-abdominalis: ZENKER (No. 409. 440), ANONYMUS.
 - Theil des grossen Brustmuskels, Portion du grand, pectoral: MECKEL, CUVIER.
 - Obliquus abdominis externus: MAYER.
 - Abdomino-huméral, portion costale du grand pectoral: Ducks (No. 69).
 - Portio abdominalis m. pectoralis majoris: Collan (No. 68), Rüdingen.

Portio humero-abdominalis m. pectoralis: KLEIN, PFRIFFER: Schräg aufsteigender Theil des M. pectoralis: STANNUS. Portio abdominalis m. pectoralis: ECKER (No. 52°).

b) Portio sternalis:

Pars pectoralis majoris, Theil des grossen Brustmuskels, Portion du grand pectoral: ZENKER (No. 407. 408), ANONYMUS, MECKEL, CUVIER.

Sterno-huméral, portion du grand pectoral: Ducès.

Portio sternalis posterior m. pectoralis majoris: Col-LAN (No. 67).

- Portio sternalis m. pectoralis: KLEIN, PFEIFFER.
- Querer Theil des Pectoralis: Stannius.

Portio sternalis posterior m. pectoralis: Eckem (No. 52^b). Portio sternalis media m. pectoralis majoris: Rüdingen.

c) Portio epicoracoidea:

Pars pectoralis majoris, Theil des grossen Brustmuskels, Portion du grand pectoral: ZENKER (No. 407. 408), ANONYMUS, MECKEL, CUVIER.

Claviculo-brachialis: KUBL U. VAN HASSELT.

Clavi-huméral, portion du grand pectoral: Dugès (No. 70). Pars sternalis anterior et pars clavicularis posterior

m. pectoralis majoris: Collan (No. 65. 68).

Pars accessoria m. pectoralis (nurbei Pipa): KLEIN, PFEIFFER. Schräg absteigender Theil des Pectoralis: Stannius.

Portio sternalis anterior m. pectoralis: ECKER (No. 52ª).

Portio sternalis anterior m. pectoralis majoris: Rüdingen.

Grosser und breiter Muskel auf der Vorderseite des Bauches und der Brust, der in drei neben einander liegende Theile, die Pars abdominalis, sternalis und epicoracoidea m. pectoralis, zerfallen ist.

⁴⁾ STANNUS lässt den schräg absleigenden Theil des Pectoralis von dem Manubrium sterni, oder bei Mangel desselben von der Clavicula entstehen. Ein feruer erwähnter vom Coracoid ausgehender Pectoralis II. ist vielleicht auch sein Homologon.

a) Pars abdominalis m. pectoralis (pa). Kräftigster und breitester Theil. Er entspringt mit sehr zarter Aponeurose gemeinsam und verwachsen mit der des M. obliquus abdominis externus (aae) von der Linea alba, in der ganzen Länge des Bauches, die äussere Scheide des Rectus abdominis (ra) mit bildend¹). An der lateralen Grenze des Rectus wird er muskulös und geht nun mit convergirenden Fasern, die nach aussen und vorn verlaufen, an die Beugefläche der Crista lateralis humeri, distal gleich neben der Insertion der Pars epicoracoidea.

b) Pars sternalis m. pectoralis (pst), mittlerer Theil des Pectoralis, von der Pars abdominalis durch einen Spalt getrennt. Er entspringt von der untern Fläche des Sternums (bei muskelschwachen Individuen dessen Ränder freilassend) und geht mit convergirenden Fasern lateralwärts an den Oberarm, wo er am Grunde der Grista lateralis von der Pars abdominalis (pa) durch die Sehne des M. coracoradialis proprius (crp) getrennt, inserirt. Besonders ansehnlich bei Pipa.

c) Pars epicoracoidea m. pectoralis (pe). Vorderster Theil, direct an die Pars sternalis angrenzend. Er entspringt bei den Anuren mit nicht verbundenen Epicoracoiden von dem medialen Rande derselben und zwar der rechte vom rechten, der linke vom rechten und linken Epicoracoid, bei den Anuren mit verbundenen Epicoracoiden von der Vereinigungslinie derselben. Bei den Bufoncs ist er breit und kräftig, deckt den ganzen M. coraco-radialis proprius (crp) und ist vorn mit dem M. cleido-acromio-humeralis (clah) verwachsen, bei den Raninae ist er schwächer, deckt nur den hintern Theil des M. coracoradialis proprius (crp) und ist von dem M. episterno-cleido-acromiohumeralis (eclah) durch einen breiten Spalt getrennt. Er geht mit queren und absteigenden Fasern an die Beugefläche des Processus lateralis proximal von der Insertion der Pars abdominalis (pa), mit der er mitunter verwachsen ist.

Innervirt durch Nn. pectorales (49).

Der Muskel ist ein Homologon des gleichbenannten der Urodelen und also dem gesammten M. pectoralis und nicht blos dem M. pectoralis

⁴⁾ Von STANNUS, ECKER, RÜDINGER wird angegeben, dass die P. abdominalis eine unmittelbare Fortsetzung des lateralen Theils des M. rectus abdominis bilde. Diese Angabe ist ebenso zu modificiren wie die entgegengesetzte MAYER's, derzufolge die Portion identisch mit dem M. obliquus externus abdominis ist. In Wirklichkeit existirt allerdings ein durch eine vordere Inscriptis tendinea vermittelter Zusammenhang vorderer und medialer Theile der P. abdominalis mit dem M. rectus abdominis. Die überwiegende Masse des Muskels hingegen entspringt in der oben angegebenen Weise.

major, wie Rühngen noch neuerdings angiebt, vergleichbar. Eine Differenz von der Bildung bei jenen zeigt sich einerseits in dem Aufgeben (oder dem ursprünglich bestehenden Mangel) verbreiteterer Beziehungen zu dem M. rectus abdominis, anderseits in dem Eingehen inniger Verbindungen zu dem Brustgürtel und zwar zu dem Epicoracoid. Letzteres Verhältniss ist als eine den Anuren eigenthümliche Anpassung aufzufassen. — Die drei Theile des M. pectoralis lassen sich nicht direct mit denen der Urodelen oder anderer Wirbelthiere vergleichen; von Bedeutung ist ihr verschiedenes Verhalten zur Sehne des M. coraco-radialis proprius.

10. Coraco-radialis proprius (crp).

```
Pectoralis minor: Kum.
```

- Sterno-radialis, Sterno-radien: ZENKER (No. 115. 116), ARO-NYMUS, CUVIER.
- Vorderarmbeuger, Analogon des zweibäuchigen Vorderarmbeugers: MECKEL (No. 4).
- Pré-storno-clavi-radial, biceps Ducks (No. 74).
- Biceps: Collan (No. 74).
- Sterno-radialis s. Biceps: Klein, Preifren, Ecken, Rudingen.
- Flexor, adductor des Vorderarms: Stannius.

Breiter und kräftiger Muskel, entweder ganz oder am hintern Theil von der Pars epicoracoidea m. pectoralis (pe) bedeckt und auf der Unterseite des Brustgürtels liegend. Er entspringt bei allen Anuren vom medialen Theil des Coracoid's und der Clavicula, sowie von dem Epicoracoid, lateral vom Ursprunge der Pars epicoracoidea m. pectoralis. Bei den mit ausgebildetem Episternum versehenen Batrachiern (Raninae etc.) greift sein Ursprung auch auf dessen hinteres Ende über (bei Rana auf das Ende der Knorpelplatte und das ganze Knochenstück). Seine stark convergirenden Fasern gehen in der Höbe des Schultergelenks in eine kräftige Sehne über, die an den Humerus durch eine von der Crista lateralis (CL) nach der Beuge des Humerus (bei Bufo gleich neben dem Processus medialis [PM], bei Rana davon entfernter) ausgespannte Schnenbrücke angelagert erhalten wird. Sie verläuft zuerst zwischen der Pars abdominalis (po) et epicoracoidea (po) und der P. sternalis m. pectoralis (pst). durchbohrt am Anfange des vierten Fünftels des Oberarms den M. acromiohumeralis (a h) und geht dann lateral an diesem vorbei nach dem Antibrachium, wo sie am proximalen Abschnitte der Beugefläche des dem Radius entsprechenden Theiles inserirt.

307

Innervirt durch den N. supracoracoideus (12), in einem einzigen Falle (unter zehn) wurden seine hintersten Fasern von einem feinen Zweig des N. coraco-brachialis versorgt.

KURL'S Deutung als M. pectoralis minor ist bereits von früheren Untersuchern hinreichend zurückgewiesen worden. Eine Vergleichung mit dem M. biceps des Menschen ist nicht zulässig. Einerseits spricht die Innervirung durch den N. supracoracoideus vollkommen dagegen, anderseits seine Lage am Oberarm, namentlich seine Beziehungen zum M. pectoralis, zwischen dessen Portionen er hindurchtritt, und zum M. aeromio-humeralis (Deltoideus inferior), den er so durchbohrt, dass der Endtheil seiner Sehne lateral vom Deltoideus zu liegen kommt. Der Muskel hat kein directes Homologon beim Menschen, dagegen entspricht er dem M. coraco-radialis proprius der Urodelen. Eine Abhängigkeit vom M. supracoracoideus, wie bei diesen, ist nicht vorhanden, da dieser Muskel bei den Anuren fehlt und räumlich grösstentheils vom M. coracoradialis vertreten wird.

11. Coraco-brachialis longus $(cbl)^{1}$.

Alterum caput m. deltoidei: ZENKEN (No. 105. 106), ANONYMUS. Einwärtszieher oder Hakenarmmuskel: MECKEL (No. 5). Coraco-huméral, Coraco-humeralis: Ducés (No. 73), STAN-NUR, ECKER. Coraco-brachial, Coraco-brachialis: CUVIER, COLLAN.

Coraco-humeralis und Adductor humeri: KLEIN, PFEIFFER. Coraco-humeralis proprius: Rüdinger.

Langer, von der Pars sternalis m. pectoralis (pst) bedeckter Muskel. Er entspringt vom hintern Rande des medialen Theiles des Coracoid (bei den Anuren mit am Coracoid festgehefteten Sternum auch mit einzelnen Fasern vom Anfang desselben) und geht an den Humerus, wo er distal hinter der Pars sternalis m. pectoralis (pst) an dem Anfange der distalen Hälfte des Humerus, medial vom M. acromio-humeralis (ah), inserirt.

⁴⁾ Ducks unterscheidet die in ihrem Ursprunge auf das Sternum übergreifenden Bündel des Coraco-huméral als Xipho-huméral ou Petit pectoral. Einen ausserdem erwähnten schr kleinen Scapulo-post-huméral, veritable analogue du petit rond (KLOETSKE) habe ich nicht gefunden. RÜDINGEN's Beschreibung stimmt nicht vollkommen mit denen früherer Untersucher überein. Einen ausserdem unterschiedenen M. coraco-brachialis s. pars profunda m. pectoralis kann ich nicht vom M. pectoralis trennen.

Innervirt durch einen Ast des N. coraco-brachialis (22).

Der Muskel ist ein Homologon des gleich benannten der Urodelen und unterscheidet sich von diesem nur durch unwesentliche Abweichungen, die einerseits in einem Uebergreifen seines Ursprungs auf sternale Elemento, anderseits in dem Mangel von Fasern bestehen, die am distalen Ende des Humerus inseriren.

12. Coraco-brachialis brevis internus (cbbi).

```
Pronator brachii: ZENKER (No. 444. 442), ANONYMUS.
Unterschulterblattmuskel, Sous-scapulaire, Subsca-
pularis: Meckel (No. 6), Cuvier, Collan (No. 72), Klein, Pfeiffer,
Stannius, Ecker (No. 50), Rüdinger.
Sous-scapulo-huméral, sous-scapulaire: Dugés (No. 72).
```

Kurzer aber kräftiger Muskel, am Anfange neben dem M. coracobrachialis longus (cbl) liegend, an der Insertion weit von ihm getrennt. Er entspringt vom hintern Rande des lateralen Theiles des Coracoid und von der Innenfläche desselben und des daran stossenden Theiles der Scapula, wobei er den innern Ursprung des M. acromio-humeralis (ah)nach hinten begrenzt. Mit convergirenden Fasern geht er an den rudimentären Processus medialis (PM) und an die Beugefläche des Humerus zwischen Processus medialis (PM) und lateralis (PL).

Innervirt durch den Hauptstamm der Nn. coraco-brachiales (22).

Dieser Muskel täuscht in seiner Lage, im Ursprung und in der Insertion vollkommen einen M. subcoracoscapularis vor. Allein seiner , Innervirung nach gehört er zu dem ganz andern Systeme der Mm. coraco-brachiales. Er ist aufzufassen als ein indirectes Homologon des M. coraco-brachialis brevis der Urodelen; während jener aber den Schwerpunct seiner Entwickelung auf der Aussenfläche des Coracoid liegen hat, ist er hier auf die Innenfläche dieses Knochens versetzt; ebenso ist auch die Insertion medialwärts verschohen. Der Muskel vortritt insofern räumlich und functionell vollkommen den M. subcoracoscapularis, der den Batrachiern abgeht.

Ein M. brachialis inferior fehlt den Anuren ¹).

,

⁴⁾ Die von CUVIEN und STANNUS angeführten Homologa des M. brachialis inferior (anticus) erscheinen ihrer Lage nach als weit nach unten geschobene und namentlich auf den Vorderarm ausgedehnte Theile dieses Muskels. Sie sind jedoch durch Aeste des N. radialis innervirt und darum nicht als M. brachialis inferior, sondern als Homologa des M. brachio-radialis (Supinator longus) aufzufassen. Von andern Untersuchern ist auch mit Recht die Verschiedenheit vom Brachialis inferior betont worden.

13. Episterno-cleido-acromio-humeralis (eclah) 1).

- Primum caput m. deltoidei: ZENKER (No. 405. 406), ARONYNUS, Vorwärtsdreher oder Heber des Arms (Deltoides): MECKEL (No. 4).
- Pré-sterno-scapulo-huméral, deltoide et sur ópineux reunis: Dreżs (No. 68).
- Deltoïde, Deltoideus: Cuvien, Ecker (No. 55), Rüdingen.
- Deltoideus und Pars clavicularis anterior m. pectoralis majoris: Collan (No. 69 u. 64).
- Cleido-humeralis (= a + b) und Deltoideus (= c): KLEIN, PFEIFFER.
- Deltoideus und ein von ihm bedeckter tieferer Muskel, der oberhalb des Tuberculum endet: STANNIUS.

Ansehnlicher Muskelcomplex, der bei den Anuren ohne Episternum (als Cleido-acromio-humeralis) von der Clavicula und dem Acromion, bei den Anuren mit Episternum (als Episterno-cleidoacromio-humeralis) ausserdem noch vom Episternum entspringt und an die ganze Länge des Humerus geht. Nach seinem verschiedenen Ursprunge zerfällt er bei ersteren in einen Cleido-humeralis und Acromiohumeralis, bei letzteren in einen Episterno-humeralis, Cleido-humeralis und Acromio-humeralis. Bei Hyla ist die Trennung nur angedeutet, bei Rana sehr vollkommen ausgebildet.

a) Caput episternale s. M. episterno-humeralis (eh). Nur bei den mit einem Episternum versehenen Batrachiern. Langer aber schwacher Muskel, der vom Rande der hintern Hälfte des Episternums, lateral vom M. coraco radialis proprius (crp), entspringt und mit convergirenden Fasern an die Streckseite des Oberarms geht. Hier vereinigt er sich mit oberflächlichen Theilen des M. acromio-humeralis (ah) und inserirt mit ihnen am distalen Ende des Humerus neben dem Epicondylus ulnaris (EU). Im Bereich des Brustgürtels ist er mit Ausnahme des vorderen Randes vom M. coraco-radialis proprius gedeckt.

b) Caput claviculare s. M. cleido-humeralis (clh). Sehr kleiner vom M. coraco-radialis proprius (crp) bedeckter Muskel. Er entspringt von dem lateralen Theile der Aussenfläche der Clavicula und verbindet sich nach kurzem Verlaufe mit den tieferen Partien des M. acromiohumeralis (ah) um mit diesen an der Streckfläche des proximalen Theiles des Processus lateralis (PL) gegenüber der Pars sternalis m. pectoralis (pst) zu inseriren.

⁴⁾ CUVIER unterscheidet drei Partien, die mit den hier aufgestellten ziemlich vollkommen übereinstimmen. ECKER und ihm folgend RÜDINGER fassen die beiden ersten Köpfe als P. clavicularis zusammen und bezeichnen den letzten als P. scapularis m. deltoidei.

Max Fürbringer.

c) Caput acromiale s. M. acromio-humeralis (Deltoideus inferior) (ah). Sehr kräftiger Muskel. Er entspringt von der Aussen- und Innenseite des Processus acromialis Scapulae (A) und geht an die ganze Länge des Humerus von dem distalen Theile der Streckfläche des Processus lateralis (PL) bis herunter zu dem Epicondylus ulnaris (EU). Iu seiner Mitte wird er von der vereinigten Sehne der Mm. dorsalis scapulae (ds) und latissimus dorsi (dh), in seiner unteren Hälfte von der des M. coraco-radialis proprius (crp) durchbrochen.

In ner vation. Das Caput episternale und claviculare wird lediglich von Aesten des N. supracoracoideus (14), das Caput acromiale nur zum kleinsten Theil von diesen, zur Hauptmasse von einem Endaste des N. dorsalis scapulae (33) versorgt.

Der Muskel ist ein weiteres Homologon des M. procoraco-humeralis der Urodelen. Er unterscheidet sich jedoch von diesem durch Aufgeben seiner alten Beziehungen zu dem Procoracoid und Eingehen neuer zu sogenannten secundären Theilen, Clavicula und Episternum¹). Mit dicser Vergrösserung des Ursprunges ist ein Zerfall verbunden, der zur Bildung von drei ziemlich distincten Partien führt. Die von Episternum und Clavicula kommenden Mm. episterno- und cleido-humerales sind nach ihrer Innervirung dem Systeme der Mm. supracoracoidei zuzurechnen und lassen sich indirect mit den Mm. supra- und infraspinatus vergleichen, der von dem Acromion entspringende M. acromio-humeralis hingegen gehört nur zum kleinsten Theile dieser Muskelgruppe an und ist als Homologon ventraler Partien des M. deltoideus als M. deltoideus inferior aufzufassen. - Jedweder Vergleich des Muskels mit Elementen des M. pectoralis ist vollkommen ausgeschlossen. Den Anuren eigenthümlich ist die nahezu auf die ganze Länge des Humerus ausgedehnte Insertion des M. episterno-cleido-acromio-humeralis und die hierdurch bedingten Beziehungen zu den Schnen der Mm. coraco-radialis proprius, dorsalis scapulae und latissimus dorsi.

14. Dorso-humeralis (Latissimus dorsi) (dh).

Depressor brachii: ZENKER (No. 85. 86), ANONTHUS. Breiter Rückenmuskel, Grand dorsal, Latissimus dorsi: Meckel (No. 4), Cuvier, Collan, Klein, Preipper, Ecker (No. 49) Rüdinger. Lombo-huméral, grand dorsal: Ducés (No. 66). Accessorischer Theil des M. suprascapularis: Stannics.

⁴⁾ Dass diese Beziehungen nicht ursprünglich, sondern erst durch Differenzirung aus einem einfacheren Zustand entstanden sind, zeigt die Untersuchung sowohl niederer Formen als auch niederer Larvenzustände höherer Formen.

Ziemlich schwacher Muskel an der Seite des Rückens gleich hinter der Scapula, deren hintersten Rand mit seiner vordersten Partie deckend. Sein Ursprung wie seine Breite ist bei den einzelnen Gattungen sehr verschieden ¹). Er entspringt entweder muskulös von Processus transversocostales (Bufo, Hyla, Pipa) oder dünn aponeurotisch von Processus spinosi (Cystignathus, Rana). Mit convergirenden Fasern geht er nach unten und inserirt, lateral an dem M. ancouacus vorbeilaufend, an der Mitte der Streckfläche des Processus lateralis (PL). Nur bei einzelnen Anuren "Pipa) besitzt er vollkommene Selbständigkeit, bei der Mehrzahl (Bufo, Rana) ist seine Sehne mit der des M. dorsalis scapulae (ds, verbunden.

Innervirt durch den N. latissimus dorsi (34).

Der Muskel ist dem Latissimus dorsi der Urodelen zu vergleichen. Bemerkenswerth ist die Veränderlichkeit des Ursprunges, der bald von Processus spinosi, bald von theilweisen Homologen der Rippen, den Processus transverso-costales stattfinden kann. Constantere Bezichungen bieten die Verhältnisse der Insertion dar. Während bei den Urodelen bald ein vollkommenes Eingehen in den M. anconaeus scapularis medialis, bald nur eine theilweise Vereinigung mit diesem Muskel zur Beobachtung kam, indessen die übrigen Theile lateral an ihm nach dem Humerus verliefen, ist bei allen untersuchten Anuren jedwede Beziehung zum M. anconaeus aufgegeben und der von diesem laterale Verlauf des ganzen M. latissimus dorsi unzweifelhaft ausgeprägt. Zu dieser vollkommenen Emancipation von dem M. anconacus steht in Correlation die in der Regel stattfindende Vereinigung der Insertionstheile mit denen des neben ihm liegenden M. dorsalis scapulac, ein Verhältniss, das einzelne Autoren (ZENKER, STANNIUS) verführt hat, in dem Latissimus dorsi einen accessorischen Theil des M. dorsalis scapulae zu erkennen. Durch diese Beziehungen bieten die Anuren den Endpunct einer von den Urodelen her verfolgbaren Entwicklungsweise, die keine Anknüpfungen an die Verhältnisse bei den höheren Wirbelthieren darbietet²).

ł

⁴⁾ Er entspringt bei Bufo und Hyla schmal vom Processus tranverso-costalis II., bei Cystignathus von der Aponeurose, welche die Rückenmuskeln deckt und bis an die Processus spinosi geht, bei Rana vom Processus spinosus III-V., bei Pipa von der breiten Platte des letzten Processus transverso-costalis (KLEIN). — Ueber seine Beziehungen zum M. obliquus abdominis externus, die nur secundärer Natur sind, vergleiche KLEIN, ECKER etc.

²⁾ Theilweise auszunehmen sind die Chelonier, bei denen auch eine Vereinigung des M. latissimus dorsi mit dem M. deltoideus zur Beobachtung kommt.

Max Fürbringer.

15. Dorsalis scapulae (ds) 1).

Scapularis: Zenker (No. 85. 86), Anonymus.

Auswärtsroller oder äusserer Schulterblattmuskel: Mecket (No. 2).

Adscapulo-huméral, sous épineux etgrand rond: Dugès. Sous-épineux et sur-épineux, Supra-et Infraspinatus: Cuvien, Rüdingen.

Scapularis (Supra- u. Infraspinatus): KLEIN, PFEIFFER.

Suprascapularis: Stannius.

Infraspinatus, Homologon des Infraspinatus, Teres minor und major: ECKER (No. 51).

Breiter und anschnlicher Muskel auf der Aussenfläche des dorsalen Brustgürtels. Er entspringt von dem ganzen Suprascapulare mit Ausnahme des oberen Randes und geht mit stark convergirenden Fasern senkrecht nach unten. Seine kräftige Endsehne verbindet sich (mit Ausnahme von Pipa) mit der des M. latissimus dorsi (dh) und geht gemeinsam mit dieser zwischen der oberflächlichen und tiefen Partie des M. acromiohumeralis (ah) sich einschiebend, an die laterale (Streck-) Fläche des Processus lateralis (PL).

Innervirt durch zwei Nn. dorsales scapulae, von denen der vordere zugleich den M. acromio-humeralis, der hintere den M. latissimus dorsi mit versorgt (31).

Der Muskel ist ein Homologon des gleichbenannten der Urodelen, von dem er sich durch seine, nicht stets bestehende, Vereinigung mit der Sehne des M. latissimus dorsi und durch seine Beziehungen zu dem M. acromio-humeralis unterscheidet; seine Betheiligung an letzteren ist übrigens nur passiver Art. Eine Vergleichung mit den Mm. supra- und infraspinatus ist daher wie bei den Urodelen vollkommen ausgeschlossen, und nur eine Homologisirung mit Elementen des M. deltoideus (M. deltoideus superior) und teres minor zulässig. Gegen eine Homologie mit Elementen des M. teres major sprechen die schon bei der Beschreibung und Deutung des N. dorsalis scapulae angeführten Gründe.

⁴⁾ MECKEL giebt bei Pipa eine Trennung in zwei Hälften (Ober- und Untergrätenmuskel) an.

16. Anconaeus (a) ¹).

```
Anconaeus: ZENKER (No. 443. 444), ANONYMUS.
Dreibäuchiger Strecker, Triceps brachial, Triceps
brachii: MECKEL (No. 6), CUVIER, KLEIN, PFEIFFER, ECKER, RÜDINGER.
Scapulo-bi-buméro-olecranien: DUGÉS (No. 75).
Streckmuskelmasse des Vorderarms: STANNUS.
```

Kräftige Muskelmasse an der Streckfläche des Oberarms, die theilweise vom Brustgürtel, theilweise vom Humerus entspringt und folgende Theile unterscheiden lässt:

a) Anconaeus scapularis medialis (asm). Kräftiger von dem hintern Rande der Scapula entspringender Kopf, der medial von der Sehne der vereinigten Mm. dorsalis scapulae (ds) und latissimus dorsi (dh) sowie dem N. radialis (28) liegt und noch im Bereiche der proximalen Hälfte des Oberarms sich mit dem A. humeralis lateralis (ahl) vereinigt.

b) Anconaeus humeralis lateralis (ahl). Ansehnlicher Kopf, der von der ganzen Länge der lateralen Fläche des Humerus mit Ausnahme des proximalen Endes entspringt und nach der Beugeseite zu an den M. acromio-humeralis (ah) angrenzt.

c) Anconaeus humeralis medialis (ahm). Kleiner als der vorige. Er entspringt nur von der distalen Hälfte der medialen Fläche des Humerus.

d) Anconaeus humeralis brevis (z. Th. Subanconaeus). Sehr kleiner vom distalen Ende des Humerus zwischen den Mm. anconaeus humeralis lateralis (ahl) und medialis (ahm) entspringender Theil.

Alle Köpfe vereinigen sich zu einem mächtigen Muskel, der sich am proximalen Ende des ulnaren Theiles des Antibrachium (Olecranon), häufig ein Sesambein (Patella ulnaris) einschliessend, anheftet. Tiefere Fasern des Anconacus humeralis brevis stehen auch zur Kapsel des Ellenbogengelenks in Beziehung.

Innervirt durch sehr verschieden entspringende Rr. musculares n. radialis (40).

⁴⁾ ZENKER unterscheidet ein Caput medium s. longissimum, internum und externum, Collan ein Caput longum s. posterius s. M. anconaeus longus, ein C. externum s. M. anconaeus externus und ein C. internum s. M. anconaeus internus, STANNUS cinen Anconaeus longus und zwei vom Humerus entstehende Köpfe, ECKER einen langen, medialen, lateralen und ausserdem einen kurzen vierten Kopf (Subanconaeus), Rüdinger einen äusseren, innern und langen Kopf. Mangel des Caput internum (und Ersatz desselben durch den sogenannten Extensor magnus) hat KLEIN bel Cystignathus beobachtet.

Nax Fürbringer.

Der M. anconaeus der Anuren stimmt nicht vollkommen mit dem der Urodelen überein. Er unterscheidet sich einmal von diesem durch den Mangel cines jeden Homologon des M. anconaeus coracoideus, ferner durch die Entwickelung eines neuen humeralen Kopfes, des M. anconaeus humeralis brevis, der sich, wie durch Untersuchung von jungen Thieren nachgewiesen wird, aus dem M. anconaeus humeralis medialis differenzirt hat, endlich durch die Aufgabe jedweder Beziehungen zum M. latissimus dorsi. Letzteres Verhältniss ist bedingt durch eine von der bei den Urodelen abweichenden Bildung des M. anconaeus scapularis medialis. Während bei diesen die Nn. radiales medial an ihm vorbeiliefen, kommt hier das umgekehrte Verhältniss zur Beobachtung: der Muskel liegt medial von den Nerven. Eine Aufklärung dieses verschiedenen Verhaltens ist zur Zeit durch die Untersuchung noch nicht gefunden, da Mittelstufen bei den untersuchten Urodelen und Anuren nicht vorliegen¹. Wahrscheinlich²) ist, dass ursprünglich, ehe noch phylogenetisch eine Trennung in Urodelen und Anuren stattgefunden hatte, den Amphibien ein von dem N. radialis durchbohrter M. anconaeus subscapularis medialis zukam. Durch Verkümmerung der medial vom Nerv gelegenen Elemente entstand dann der Anconaeus scapularis medialis der Urodelen, durch Verkümmerung der lateralen Theile der gleichbenannte Muskel der Anuren. Gegen eine Vergleichung des M. anconaeus scapularis medialis der Anuren mit dem M. anconaeus coracoideus der Urodelen, die Rühlingen befürwortet, spricht die abweichende Beziehung des letzteren zu den Nn. brachiales longi inferiores. Eine directere Homologisirung mit dem M. anconaeus longus des Menschen ist durch sein Verhalten zum M. latissimus dorsi und N. radialis unbedingt verboten³). Dagegen stehen die Mm. anconaeus humeralis lateralis und medialis in näherer Beziehung zu den Mm. anconaous extornus und internus des Menschen, ebenso wie tiefere an der Kapsel inserirende Partien des M. anconaeus humeralis brevis zu dem M. subanconaeus desselben.

Möglicher Weise kann eine Untersuchung von Microps zur Aufklärung dieser
 Frage beitragen.

2) Diese Annahme wird übrigens durch die Verhältnisse bei den Selachiern und, wennn auch in weniger überzeugender Weise, bei den Crocodilen unterstützt.

3; Unbegreiflich ist RÜDINGER'S Behauptung: «Im Allgemeinen kann eine vollständigere Uebereinstimmung zwischen dem Triceps der ungeschwänzten Batrachier und dem dreiköpfigen Streckmuskel des Vorderarms beim Menschen und den Säugethieren nicht gedacht werden. Lage des Muskels, Ursprung, Ansatz und Wirkung stimmen vollständig mit dem menschlichen Triceps überein«. Die abweichende Lage zum M. latissimus dorsi (ganz abgesehen vom N. radialis) muss auch dem oberflachlichsten Beobachter einleuchten.

Zur vergleichenden Anatomie der Schultermuskeln.

315

Erklärung der Abbildungen.

Auf allen Tafeln ist die rechte Seite der betreffenden Thiere abgebildet.

Die Knochen sind durch gerade grosse lateinische Buchstaben¹), die Hauptstämme der Kopfnerven durch schräge grosse lateinische Buchstaben, die Hauptstümme der Spinalnerven durch römische Zahlen, deren Aeste durch arabische Zahlen, die Muskeln durch kleine lateinische Buchstaben bezeichnet.

Ein rother Abdruck unterscheidet die Muskeln von den andern Theilen.

Auf den Abbildungen der Plexus brachialis sind die Nn. brachiales inferiores und thoracici inferiores weiss, die Nn. brachiales superiores grau, die Nn. thoracici superiores schwarz dargestellt.

Taf. XIV.

Nerven für die Schultermuskeln der Amphibien.

Für alle Figuren dieser und der 4 folgenden Tafeln gültige Bezeichnungen für die Nerven:

- a) Kopfnerven:
 - το Aeste des N. trigeminus.
 - $\pi \varrho$ Aeste des N. facialis.
 - V Vagus-Gruppe :
 - « R. accessorius n. vagi.
 - σ R. scapularis n. vagi.
 - q R. pharyngeus.
 - y'l R. lingualis.
 - ω R. auricularis.
 - € R. intestinalis.
 - x R. communicans c. nervo faciali.

b) Spinalnerven:

- I, II, III, IV, V Ventrale Aeste der Nn. spinales.
 - 4 Aeste des N. spinalis I. an die ventrale und hypaxonische Rumpfmuskulatur.
 - 2 N. thoracicus superior I.
 - 3 Aeste des N. spinalis II. an die Rumpfmuskulatur und die Haut des Halses.
 - 4 N. thoracicus superior II.
 - 5 N. thoracicus inferior II. anterior.
 - 6 Ast des N. spinalis II. für den M. rectus und obliquus abdominis (N. thoracicus inferior II. posterior).
 - 7 N. thoracicus superior III.
 - 8 Ast des N. spinalis III. für die Bauchmuskeln (N. thoracicus inferior III.).
 - 9 N. thoracicus superior IV.
- 10 Aeste des N. spinalis IV. f
 ür die Bauchmuskeln und den M. abdominiscapularis (N. thoracicus inferior IV.).
- 11 Aeste des N. spinalis V. für die Bauchmuskeln.
- 12 N. supracoracoideus.

¹⁾ Durch Versehen des Lithographen sind auf Taf. XV u. XVI die Knochen mit schrägen grossen lateinischen Buchstaben bezeichnet worden.

Max Färbringer.

- 48 Ast für die Mm. supracoracoideus und coraco-radialis proprius.
- 44 Ast für den M. procoraco-humeralis (Urodelen) und episterno-cleidoacromio-humeralis (Anuren).

·. ,

- 45 Ast für die Haut zwischen Coracoid und Procoracoid (Proteus).
- 16 Ast für den Rectus abdominis (Rana) (N. thoracicus inferior III. posterior?).
- 47 Nn. pectorales.
 - 18 Ast für die Haut der Brust.
 - 49 Aeste für den M. pectoralis.
 - 20 Ast für den M. obliquus abdominis externus (Proteus).
- 24 N. brachialis longus inferior.
 - 32 Nn. coracobrachiales.
 - 23 R. superficialis n. brachialis longi inferioris (Urodelen).
 - 24 Aeste für den M. humero-antibrachialis inferior (Urodelen).
 - 25 N. cutaneus brachii inferior medialis.
 - 26 N. cutaneus brachii inferior lateralis.
 - 27 Ast an die Beugemuskeln des Vorderarms und an die Beuge der Hand.
 - 28 R. profundus n. brachialis longi inferioris (Urodelen).
- 29 N. subscapularis (Urodelen).
- 30 N. dorsalis scapulae.
 - 31 Aeste für den M. dorsalis scapulae.
 - 32 Nn. cutanei brachii superiores laterales.
 - 38 Ast für den M. procoraco-humeralis (Urodelen) und acromio-humeralis (Anuren).
- 34 Nn. latissimi dorsi.
- (35 + 38) N. brachialis longus superior s. radialis (Anuren).
- 35 N. brachialis longus superior profundus s. radialis profundus (Urodelen).
 36 Aeste für den M. anconaeus.
 - 37 Ast für die Streckseite des Vorderarms und der Hand.
- 38 N. brachialis longus superior superficialis s. radialis superficialis (Urodelen).
 - 39 Kleiner Hautnerv an den lateralen Theil der Streckseite des Oberarms.
 - 40 Aeste an den M. anconaeus.
 - 44 N. cutaneus brachli et antibrachii superior.
- 42 N. culaneus brachii superior medialis.

43 Hautäste, die weder von Kopfnerven noch vom Plexus brachialis abstammen.

- -----
- Fig. 4. Vagus-Gruppe und Plexus brachialis von Salamandra maculata. Ventral-Ansicht. Grössenverhältniss 4.
- Fig. 2. Seltenerer Ursprung des N. pectoralis von Salamandra maculata. Ventral-Ansicht. Grössenverhältniss 4.
- Fig. 3. Plexus brachialis von Siredon Axolotl. Ventral-Ansicht. Grössenverhältniss 4.
- Fig. 4. Plexus brachislis von Proteus anguineus. Ventral-Ansicht. Grössenverhältniss 4.
- Fig. 5. Vagus-Gruppe und Plexus brachialis von Rana esculenta. Ventral-Ansicht. Grössenverhältniss ^a.
- Fig. 6. Seltenere Verbindung des N. spinalis II. und III. im Plexus brachialis von Ranaesculenta. Ventral-Ansicht. Grössenverhältniss 4.

Zur vergleichenden Anatomie der Schultermuskeln.

Taf. XV und XVL

Schultermuskeln von Salamandra maculata.

Taf. XV stellt Seiten-, Taf. XVI Ventralansichten in doppelter Vergrösserung dar.

Für alle Figuren dieser beiden Tafeln gültige Bezeichnungen:

Knochen:

- s Scapula.
- Pr Procoracoid.
- С Coracoid.
- FC Foramen coracoideum.
- St Sternum.
- H Humerus.
- PL Processus lateralis humeri.
- PM Processus medialis humeri.
- CR Condylus radialis humeri.
- CU Condylus ulnaris humeri.
- R Radius
- U Ulna.

Nerven:

Vergleiche die Bezeichnungen von Taf. XIV.

Muskeln:

- cds M. capiti-dorso-scapularis (Cucullaris).
- M. basi-scapularis (Levator scapulae). bs
- ths M. thoraci-scapularis (Serratus magnus).
 - ths, Untere Partie } desselben.
 - ths,, Obere Partie
- M. pectori-scapularis internus. psi
- Ð M. pectoralis.
- spc M. supracoracoideus.
 - crp M. coraco-radialis proprius.
- cbl M. coraco brachialis longus.
- cbb M. coraco-brachialis brevis¹).
- hai M. humero-antibrachialis inferior (Brachialis inferior).
- ph M. procoraco-humeralis.
- dh M. dorso-humeralis (Latissimus dorsi).
- d s M. dorsalis scapulae.
- sbc M. subcoracoideus.
- n M. anconaeus.
 - ac M. anconaeus coracoideus.
 - asm M. anconaeus scapularis medialis.
 - ahl M. anconaeus humeralis lateralis.
 - ahm M. anconaeus humeralis medialis.
- M. digastricus. dg
- M. dorso-trachealis. dtr
- mha M. mylo-hyoideus anterior.

¹⁾ In Fig. 21 fälschlich mit sbb bezeichnet.

Max Fürbringer,

mhp M. mylo-hyoideus posterior.

- oae M. obliquus abdominis externus.
- ra M. rectus abdominis.
- sth M. sterno-hyoideus.
- Fig. 7. Schultermuskeln nach Wegnahme der Haut.
- Fig. 8. Schultermuskeln nach Wegnahme der Mm. mylo-hyoidei anterior und posterior (*mh a* und *mh p*), digastricus (*dg*) und pectoralis (*p*).
- Fig. 9. Schultermuskeln nach Wegnahme der Mm. dorso-trachealis (dtr), supracoracoideus (spc), coraco-radialis proprius (crp), procoraco-humeralis (ph) und latissimus dorsi (dh).
- Fig. 40. Schultermuskeln nach Wegnahme der Mm. capiti-dorso-scapularis s. cucullaris (cds) und coraco-brachialis longus (cbl).
- Fig. 44. Schultermuskeln nach Wegnahme des M. dorsalis scapulae (ds).
- Fig. 42. Schultermuskeln nach Wegnahme der Mm. coraco-brachialis brevis (c b b), anconaeus scapularis medialis (a sm) und anconaeus humeralis lateralis (a h l).
- Fig. 48. Tiefe Schultermuskeln nach Wegnahme des Humerus und seiner Muskulatur. Der Brustgürtel und das Brustbein sind durchsichtig gedacht, um die darunter liegenden Muskeln sichtbar zu machen, und ihre Umrisse durch Punctlinien angegeben.
- Fig. 44. Brustgürtel, Brusthein und Oberam mit Angabe der Ursprünge und Insertionen der Muskeln. Die an der Aussenfläche liegenden sind durch einfache Linien, die an der Innenfläche liegenden durch Punctlinien angedeutet. Bin o neben dem Muskelnamen bedeutet Ursprung, ein i Insertion.
- Fig. 15. Schultermuskeln nach Wegnahme der Haut. Vergleiche Fig. 7.
- Fig. 46. Schultermuskeln nach Wegnahme der Mm. mylo-hyoidei anterior und posterior (mha und mhp), digastricus (dg) und pectoralis (p). Vergleiche Fig. 8.
- Fig. 47. Schultermuskeln nach Wegnahme der Mm. dorso-trachealis (*dtr*), supracoracoideus (*spc*) und des Muskeltheils des M. coraco-radialis proprius (*crp*).
- Fig. 48. Schultermuskeln nach Wegnahme der Endsehne des M. coraco-radialis proprius (crp), des M. procoraco-humeralis (ph) und des latissimus dorsi (dh). Vergleiche Fig. 9.
- Fig. 19. Schultermuskeln nach Wegnahme der Mm. capiti-dorso-scapularis s. cucullaris (cds), coraco-brachialis longus (cbl) und dorsalis scapulae (ds). Vergleiche Fig. 11.
- Fig. 20. Schultermuskeln nach Wegnahme der Mm. coraco-brachialis brevis (c b b), anconaeus scapularis medialis (a sm) und anconaeus humeralis lateralis (a h l). Vergleiche Fig. 42.
- Fig. 24. Brustgürtel, Brustbein und Oberarm mit Angabe der Ursprünge und Insertionen der Muskeln. Vergleiche Fig. 44¹).

¹⁾ Für den Ursprung des M. subcoracoideus ist die Bezeichnung sbes vergessen worden.

Zur vergleichenden Anatomie der Schultermuskeln.

Taf. XVII und XVIII.

Schultermuskeln von Rana esculenta¹).

Taf. XVII. stellt Seiten-, Taf. XVIII. Ventral-Ansichten im Masstabe von 3 dar.

Für alle Figuren dieser beiden Tafeln gültige Bezeichnungen:

Knochen:

- S Scapula.
- A Acromion.

- 1. C

- S8 Suprascapulare.
- Pc Procoracoid.
- C Coracoid.
- Ec Epicoracoid.
- Cl Clavicula.
- St Sternum.
- Est Episternum.

- H Humerus.
- PL Processus lateralis humeri.
- CrL Crista lateralis humeri.
- PM Processus medialis humeri.
- ER Epicondylus radialis.
- EU Bpicondylus ulnaris.
- R Radius.
- U Ulna.

Nerven:

Vergleiche die Bezeichnungen von Taf. XIV.

Muskeln:

- cs M. capiti-scapularis (Cucullaris).
- is M. interscapularis.
- bss M. basi-suprascapularis (Levator scapulae inferior).
- pss M. petroso-suprascapularis (Levator scapulae superior).
- rha M. occipiti-suprascapularis (Rhomboideus anterior).
- ths M. thoraci-scapularis (Serratus magnus inferior).
- these M. thoraci-suprascapularis (Serratus magnus superior).
- rhp M. rhomboideus posterior.
- as M. abdomini-scapularis.
- p M. pectoralis.
 - pa M. pectoralis abdominalis.
 - pst M. pectoralis sternalis.
 - pe M. pectoralis epicoracoideus.
- crp M. coraco-radialis proprius.
- cbl M. coraco-brachialis longus.
- cbbi M. coraco-brachialis brevis internus.
- eclah M. episterno-cleido-acromio-humeralis.
 - eh M. episterno-humeralis.
 - clh M. cleido-humeralis.
 - ah M. acromio-humeralis.
- dh M. dorso-humeralis (Latissimus dorsi).
- ds M. dorsalis scapulae.
- a M. anconaeus.
 - asm M. anconseus scapularis medialis.
 - ahl M. anconaeus humeralis lateralis.
 - ahm M. anconaeus humeralis medialis.

¹⁾ Behufs der deutlicheren Darstellung der ventralen Maskeln auch auf den Seitenansichten wurde ein trächtiges Weibchen gewählt.

- dg M. digastricus.
- mha M. mylo-hyoideus anterior.
- mhp M. mylo-hyoideus posterior.
- oac M. obliquus abdominis externus.
- tra M. transversus abdominis.
- ra M. rectus abdominis.
- oh M. omo-hyoideus.
- st b M. sternalis brutorum s. rectus sterni.
- Fig. 22. Schultermuskeln nach Wegnahme der Haut.
- Fig. 23. Schultermuskeln nach Wegnahme der Mm. mylo-hyoidei anterior und posterior (mha und mhp), digestricus (dg), pectoralis abdominalis (pa) und pectoralis epicoracoideus (pe).
- Fig. 24. Schultermuskeln nach Wegnahme der Mm. coraco-radialis proprius (crp), pectoralis sternalis (pst), episterno-cleido-acromio-humeralis (cclah)und latissimus dorsi (dh).
- Fig. 25. Schultermuskeln nach Wegnahme der Mm. coraco-brachialis longus (cbl) und dorsalis scapulae (ds).
- Fig. 26. Schultermuskeln nach Wegnahme der hintern Kiefertheile und der Mm. coraco-brachialis brevis internus (*cbbi*) und anconaeus (a).
- Fig. 27. Tiefe Schultermuskeln nach Wegnahme des Humerus und seiner Muskulatur. Der Brustgürtel und das Brustbein sind durchsichtig gedacht, um die darunter liegenden Muskeln sichtbar zu machen, und ihre Umrisse durch Punctlinien angegeben.
- Fig. 28. Brustgürtel, Brustbein und Oberarm mit Angabe der Ursprünge und Insertionen der Muskeln. Die an der Aussenfläche liegenden sind durch einfache Linien, die an der Innenfläche liegenden durch Punctlinien angedeutet. Ein o neben dem Muskelnamen bedeutet Ursprung, ein i Insertion.
- Fig. 29. Schultermuskeln nach Wegnahme der Haut. Vergleiche Fig. 29.
- Fig. 30. Schultermuskeln nach Wegnahme der Mm. mylo-hyoidei anterior und posterior (*mha* und *mhp*), des sogenannten sternalis brutorum (*stb*) und pectoralis abdominalis (*pa*).
- Fig. 34. Schultermuskeln nach Wegnahme der Mm. digastricus (dg) und pectoralis epicoracoideus (pe). Vergleiche Fig. 23.
- Fig. 32. Schultermuskeln nach Wegnahme des Muskeltheils des M. coraco-radialis proprius (crp).
- Fig. 33. Schultermuskeln nach Wegnahme der Mm. pectoralis sternalis (*pst*), episterno-cleido-acromio-humeralis (*oclah*) und latissimus dorsi (*dh*). und der Endschne des M. coraco-radialis proprius. Vergleiche Fig. 24.
- Fig. 34. Schultermuskeln nach Wegnahme der Mm. coraco-brachialis longus (ebl) und dorsalis scapulae (ds). Vergleiche Fig. 25.
- Fig. 35. Schultermuskeln nach Wegnahme des M. coraco-brachialis brevis internus (cbbi).
- Fig. 36. Brustgürtel, Brustbein und Oberarm mit Angabe der Ursprünge und Insertionen der Muskeln. Vergleiche Fig. 28.

Ueber die Persistenz der Urniere bei Myxine glutinosa.

Von

Wilhelm Müller.

Nach den Beobachtungen JOHANNES MÜLLER'S (Untersuchungen über die Eingeweide der Fische. Berlin 4845. p. 7) liegt hinter den Kiemen zu beiden Seiten der Cardia der Myxinoiden eine eigenthümliche traubige Drüse. Die rechte trifft man hinter der Bauchfellfalte rechts von der Leber, unter welcher man in den Herzbeutel kommt, die linke kommt in dem Theil des Herzbeutels, worin der Vorhof gelegen ist, über diesem zum Vorschein.

Ihr feinerer Bau ist sehr eigenthümlich. Sie bestehen aus Büscheln sehr kleiner länglicher Lobuli, welche an den Blutgefässen hängen und durch Bindegewebe verbunden sind. Jeder Lobulus oder Cylinder der Büschel besteht aus einer doppelten Reihe von cylindrischen Zellen mit Kernen, die den Zellen des Cylinderepithelium gleichen. Beide Reihen biegen am Ende des zottenförmigen Lobulus in einander um. Zwischen beiden verlaufen die Blutgefässe und ein Strang von Bindegewebe.

Bei den Petromyzon kommt diese Drüse nicht vor. Wenigstens verhält sich die von RATHEB beschriebene Drüse, deren feinerer Bau von BARDELEBEN beschrieben ist, ganz anders. MAYER und BARDELEBEN vergleichen die Drüse der Petromyzon mit der Milz; die beiden Drüsen der Myxinoiden sind ohne Zweifel die Nebennieren.

Als Analoga der Organe der Myxinoiden lassen sich gewisse weisse Zapfen betrachten, womit die Stämme der hinteren Körpervenen bei Ammocoetes besetzt sind. Sie sind dort von RATHKE zuerst gesehen und beschrieben; ich habe sie wiedergesehen.

Die oberen Enden der Ureteren reichen bis nahe an die Nebennieren. Das Ende wird plötzlich dünn und zieht sich, nachdem es die llöhlung verloren hat, in einen feinen Strang von Bindegewebe aus, der keine Höhlung mehr enthält und welcher das einzige ist, was die Richtung noch weiter entgegen den Nebennieren verfolgt.

Sowohl die Beschreibung als die Deutung JOHANNES MÜLLER'S erweisen sich bei genauerer Prüfung als irrthümlich. Präparirt man bei einer gut konservirten Myxine mit Hülfe der Loupe unter Weingeist die Aorta von der Vorderfläche der Chorda ab, so lässt sich der Verlauf der beiden Ureteren mit den zugehörigen kurzen Harnkanälchen leicht übersehen. Am oberen Ende geht jeder Ureter in einen schmalen Gang über. Dieser Gang zeigt eine kurze Strecke näch seinem Abgang vom Ureter eine flache etwas unebene Anschwellung von weisslicher Farbe. Hinter dieser Anschwellung wird der Gang noch feiner als vorher; er lässt sich in dieser verschmälerten Gestalt bis zu dem unteren Ende der länglichen Drüse verfolgen, welche oberhalb des Vorhofs resp. des Pfortaderherzens in der Bauchhöhle liegt. Der Gang nimmt hier rasch an Dicke zu und theilt sich in zwei bis drei Aeste, welche sofort alle Eigenschaften der Kamälchen besitzen, aus welchen die fraglichen Drüsen sich zusammensetzen.

Die mikroskopische Untersuchung des Ureter ergiebt, dass dessen Schleimhaut in zahlreichen Falten erhoben ist, welche labyrinthförmig untereinander zusammenhängen. Sie wird von einem einschichtigen cylindrischen Epithel bekleidet, welches namentlich auf der Höhe der einzelnen Falten intensiv braungelb pigmentirt ist. Die kurzen Harnkanälchen, welche vom Ureter entspringen, besitzen ein einschichtiges pigmentloses Cylinderepithel; am Uebergang in die den Glomerulus beherbergende Erweiterung sind sie etwas verengt und eine Strecke weit mit höheren und schmäleren Zellen versehen. Die Innenfläche der Kapsel ist gleich der Oberfläche des Glomerulus von einem ganz flachen schwer wahrnehmbaren kernhaltigen Epithel bekleidet.

Hinter der Abgangsstelle des letzten Harnkanälchens reducirt sich der Durchmesser des Ureter um die Hälfte. Zugleich glätten sich die Falten der Schleimhaut und das Epithel wird niedriger, behält aber seine braungelbe Pigmentirung. Dieser Abschnitt ist, wie Querschnitte ergeben, hohl; er giebt nach kurzem Verlauf einem Kanälchen Ursprung, welches alsbald in eine mässige Zahl gewundener Schläuche sich auflöst. Die letzteren umgeben die Fortsetzung des Ureter und verdecken sie eine Strecke weit, durch sie wird die weissliche etwas unebene Anschwellung bedingt, welche man im Verlauf des Ganges wahrnimmt. Sie bestehen aus einer Membrana propria und einem einschichtigen schwach gelblich pigmentirten niedrigen Cylinderepithel. Vor Allem aber sind diese Kanälchen ausgezeichnet durch die Anwesenheit concentrisch geschichteter Concretionen in ihrem Lümen, welche stark

Ueber die Persistenz der Urniere bei Myxine glutinosa.

323

glänzend, zum Theil im Centrum mit einem schwarzen Kern versehen sind. Ihre Grösse ist verschieden, die kleinsten messen 0.01, die grössten erreichen 0.1 Mm. Die ganze Länge der Auftreibung, welche die Fortsetzung des Ureter im Bereich dieser gewundenen, Concremente führenden Kanälchen darbietet, beträgt etwa 4 Mm., die Dicke ist viel geringer.

Hinter dem Abgang des Kanälchens, welches in die Concremente führenden Schläuche sich auflöst, verengt sich die Fortsetzung des Ureter nochmals beträchtlich, so dass sie nur eben dem freien Auge als ein schmaler weisslicher Faden sichtbar bleibt. Dieser Faden ist aber nicht solid und bindegewebig, wie JOHANNES MÖLLER irrthümlich glaubte, sondern hohl und ausgekleidet von einem niedrigen ganz leicht gelblich pigmentirten Pflasterepithel in einschichtiger Lage. Dieser Gang erstreckt sich, fortwährend mit schmalem Lumen versehen, bis zum unteren Ende der über dem Vorhof resp. dem Pfortaderherz liegenden Drüse. Es giebt ganz kurz vor seinem Uebergang in die Kanälchen der letzteren nochmals einem schmalen aber ziemlich langen Harnkanälchen Ursprung, welches in eine mit Glomerulus versehene Kapsel sich endigt.

Am unteren Ende der beiden Drüsen theilt sich jeder der schmalen Gange in zwei bis drei Aeste. In diesen wird das Epithel alsbald wieder hoch, cylindrisch, leicht gelblich pigmentirt, während des Lumen sich erweitert. Umgeben werden dieselben von zarter Bindesubstanz mit Gefässen. Jeder Ast giebt mehreren Kanälchen Ursprung, welche alsbald starke Windungen machen, aus einer dünnen Membrana propria mit aufsitzendem einschichtigen Cylinderepithel bestehen und von einem Capillarnetz mit den entsprechenden bindegewebigen Adventiten umsponnen werden. Gruppen solcher gewundener Kanälchen sind hier und da durch Bindegewebszüge von den anliegenden gesondert; die Drüse erhält dadurch an der Oberfläche ein unvollkommen gelapptes Ansehen. An der medialen Fläche der Druse entsendet ein Theil der gewundenen Kanälchen seitliche Divertikel, welche alsbald nach kurzer Verengerung zu Kapseln sich erweitern, in welche je ein Glomerulus hineinragt. Solcher mit Gefässknäueln verschener Kapseln besitzt jede der beiden Drüsen sechs bis acht. Nach Abgabe der seitlichen Divertikel verlaufen die Kanälchen, hier und da dichotomisch sich theilend, gewunden gegen die Fläche des Bauchfells und münden schliesslich mit einer nicht unbedeutenden Anzahl freier Mündungen in die Bauchhöhle aus. An der Ausmündungsstelle erhält das Epithel der Kanälchen eine beträchtliche Grösse und geht continuirlich in das cylindrische rasch sich abflachende Epithel des anliegenden Bauchfellabschnitts über. Jede einzelne Ausmündung ist über das Niveau des anliegenden Bauchfells etwas erhoben;

Wilhelm Müller,

zwischen der dem Bauchfell angehörenden und der das Kanälchen auskleidenden Epithellage erstreckt sich eine zarte Bindesubstanzlamelle mit Capillargefässen. Die Mündungen der Kanälchen sind zahlreich und schon bei mässiger Loupenvergrösserung als feine Grübchen am Ende der prominirenden Drüsenkanälchen wahrnehmbar.

Die in Rede stehende Drüse kann nur für die Urniere gehalten werden. Diese Annahme gründet sich 1) auf das Vorkommen der einen Glomerulus enthaltenden Kapseln, 2) auf die Uebereinstimmung der gewundenen Kanälchen nach Lage und Bau mit den Urnierenkanälchen der Fische und Amphibien, 3) auf den Zusammenhang der Kanälchen mit der Verlängerung des Ureter, welche dem Urnierengang entspricht.

Die Richtigkeit dieser Deutung geht ausserdem hervor aus dem Verhalten, welches die Urniere bei den Neunaugen zeigt. Die Urniere tritt bei den Embryonen dieser Thiere sehr frühe auf; sie erhält sich zugleich sehr lange, so dass sie bei Larven von 6 Centimeter Länge noch leicht aufzufinden ist. Der Urnierengang bildet auch bei diesen Thieren eine Verlängerung des Ureter, aus welch' Letzterem die bleibenden Harnkanälchen bervorsprossen, welche nach mehrfachen Windungen in einer mit einem Glomerulus versehenen Kapsel endigen. Der Urnierengang spaltet sich an seinem Ende in drei bis vier Aeste, welche wie bei Myxine in gewundene, ziemlich weite, mit cylindrischem Epithel ausgekleidete Röhren sich fortsetzen. Diese Röhren münden wie bei Myxine schliesslich mit offenen Enden in die Bauchhöhle aus. indem das Epithel schmäler und höher wird und lange ungemein deutliche Cilien an seinen freien Rändern trägt. Solcher Enden existiren aber bei sämmtlichen Petromyzonarten jederseits nur drei bis vier; die Endstücke springen auch hier über die Fläche des angrenzenden Bauchfells vor; in Folge meist vorhandener seitlicher Abflachung stellen sie rinnenartige wimpernde Furchen oder Quasten dar. Was aber die Drüse der Neunaugen und jene der Myxine glutinosa unterscheidet, ist der Umstand, dass bei Petromyzon ein grosser Glomerulus an deren medialen Fläche frei in die Bauchhöhle vorragt, nur von einer einfachen sehr zarten Schicht des flachen Bauchfellepithels überzogen, ohne in directen Zusammenhang mit den gewundenen Kanälchen zu treten. Dies ist aber dasselbe Verhältniss, welches zwischen Glomerulus und Urnierenkanälchen der Amphibien besteht, wie die Beobachtungen von Wittich's gezeigt haben.

Die Urniere persistirt bei Petromyzon Planeri in ganzer Ausdehnung so lange, bis dessen Larven eine Länge von 6 Centimeter erreicht haben. Ist letzteres geschehen, so beginnt die Rückbildung der gewundenen Kanälchen und zwar durch das Auftreten eines lebhaft braungelb ge-

Ueber die Persistenz der Urniere bei Myxine glutinosa.

färbten krystallinischen Infarkts, welcher in den Epithelien der Drüsenkanälchen seinen Sitz hat. Das Auftreten dieses Infarkts steht in Zusammenhang mit einer Umwandlung der zwischen den Urnierenkanälchen ursprünglich verlaufenden venösen Gefässe in ein Geflecht ächter kavernöser Hohlräume. In dem Masse, in welchem der braune Infarkt in den Zellen der Urnierenkanälchen zunimmt, verengt sich deren Durchmesser, bis schliesslich die Infarkt haltenden Zellen dem vollständigen Schwund anheimfallen und der Verlauf einzelner Urnierenkanälchen nur durch schmale gelbes Pigment führende Bindegewebszüge noch angedeutet wird. Demselben Schwund wie die Urnierenkanälchen verfällt der Urnierengang bis zum Abgang der obersten Harnkanälchen von dem zum Ureter sich gestaltenden bleibenden Abschnitt. Es entgehen aber dem Schwund die Enden der Urnierenkanälchen mit ihren flimmernden frei in die Bauchhöhle ragenden Oeffnungen; es entgeht dem Schwund ferner der Glomerulus. Beide persistiren bei sämmtlichen Neunaugen das ganze Leben hindurch; sie stellen die weisslichen Zapfen dar, welche RATHKE und JOHANNES MÜLLER schon gesehen haben und an welchen der Scharfblick MAX SCHULTZE's bereits in sehr frühen Entwicklungsstadien Flimmerepithel nachzuweisen vermochte.

Die Persistenz der Urniere, das Vorkommen eines concrementhaltigen Abschnitts, endlich die an embryonale Form erinnernde Gestaltung der Niere sind Momente, durch welche das uropoetische System der Myxine von jenem der übrigen Wirbelthiere sich unterscheidet. Es muss ein Grund vorhanden sein, durch welchen dieses abweichende Verhalten bedingt wird. In Bezug auf die Vorstellungen, welche man über diesen Grund sich machen kann, muss die Einfachheit hervorgehoben werden, mit welcher die Thatsachen vom Standpuncte der Descendenztheorie aus sich erklären lassen. Concrementhaltige Abschnitte finden sich im uropoetischen System sowohl bei Würmern als bei Tunikaten sehr verbreitet vor. Das Rudiment eines solchen Abschnitts, welches dem oberen Ende der Niere von Myxine angefügt ist, kann als ein Erbstück betrachtet werden, welches den geeigneten Boden für eine weitere Entwicklung nicht mehr gefunden hat.

Es entwickelt sich aber ferner die Niere der Wirbelthiere zu einer Zeit, in welcher die Urniere einen vorgeschrittenen Grad der Ausbildung bereits erreicht hat und es erfolgt die Rückbildung der letzteren nach einer Periode der gleichzeitigen Existenz beider Organe. In dieser Beziehung lässt Myxine glutinosa sich auffassen als der erhalten gebliebene Repräsentant einer formenreichen Wirbelthierklasse, in welcher das den höheren Wirbelthieren eigenthümliche Verhalten des uropoetischen Systems in der Anbahnung noch begriffen war. Es entspricht des bleibende

326 Wilhelm Müller, Ueber die Persistenz der Urniere bei Myxine glutinosa.

Verhalten des uropoetischen Systems dieses Thieres einem vorübergehenden Stadium im embryonalen Leben der höheren Wirbelthiere; Phylogenese und Ontogenese müssen aber in den wesentlichen Puncten sich decken, wenn die Descendenztheorie auf richtiger Grundlage beruht.

Die ausführliche Darstellung dieser Verhältnisse zugleich mit den belegenden Abbildungen wird eine Arbeit über Bau und Verwandtschaft des Amphioxus bringen.

......

Jena, 4. Mai 1872.

Ueber die Hypobranchialrinne der Tunikaten und deren Vorhandensein bei Amphioxus und den Cyklostomen.

Von

Wilhelm Müller.

Als Hypobranchialrinne wird in der nachstehenden Mittheilung der gegen die Kiemenhöhle offene Halbkanal bezeichnet, welcher bei allen Tunikaten längs der ventralen Fläche der Athmungshöhle vom Mund in der Richtung gegen den Oesophaguseingang sich erstreckt. Das Organ ist zuerst von CUVIER beschrieben worden ; SAVIGNY nnd ESCHRICHT haben die beiden Lamellen, welche seine seitliche Begrenzung bilden, als Bauchfalten bezeichnet. HuxLEY hat davon einen längs der unteren Fläche des Organs verlaufenden weissen Streifen unterschieden und als Endostyl bezeichnet, welcher nach ihm sowohl bei Salpen als auch bei Ascidien und Pyrosomen sich findet. LEUCKART hat im Gegensatz zu HEINRICH MÜLLER die Darstellung HuxLey's für die Salpen acceptirt, zugleich aber erheblich zu modificiren gesucht, indem nach seiner Beschreibung das Endostyl hohl und im Inneren von Epithel ausgekleidet, zugleich nur an seinem vorderen Ende mit der Kiemenhöhle in Communikation sein soll. Für die Ascidien hat RICHARD HARTWIG, wohl in Folge eines Missverständnisses der Angaben HuxLEY's, behauptet, dass Endostyl und Hypobranchialrinne identische Organe seien und in der Foll'schen Arbeit über die Appendikularien der Meerenge von Messina ist in Folge desselben Missverständnisses die Hypobranchialrinne geradezu als Endostyl beschrieben und abgebildet.

Prüft man die vorliegenden Angaben an Repräsentanten verschiedener Ordnungen der Tunikaten¹), so ergiebt sich, dass constant unterhalb der Hypobranchialrinne ein Streif dichterer Bindesubstanz verläuft,

⁴⁾ Auch für diese Untersuchung stellte mein College ANTON DOBRN in Neapel mir werthvolles Material zur Disposition, wofür demselben hierdurch öffentlich gedankt sei.

Wilhelm Müller,

welcher das oder die ventralen Kiemengefässe beherbergt und bei den Ascidien die Verwachsung der Kieme mit der Leibeswand vermittelt. Diese Bindesubstanzlamelle lässt sich bei den Salpen mit kurzer Hypobranchialrinne, wie HuxLEY und LEUCKART schon richtig angegeben haben, als weisser Streif bis zum Oesophaguseingang verfolgen. Auf diese Bindesubstanzlamelle allein kann die lluxLEY'sche Bezeichnung des Endostyl Anwendung finden. Dieselbe ist aber nicht hohl und im Innern von Epithel ausgekleidet, wie LEUCKART irrthümlich angab, sondern, wie Querschnitte ergeben, solid und bei den Ascidien nicht selten Sitz stärkerer Pigmentablagerung.

Die Hypobranchialrinne selbst zeigt bei allen Tunikaten im Wesentlichen den gleichen Bau. Allen Tunikaten kommen zwei symmetrisch neben der Mittellinie an der ventralen Fläche der Athmungshöhle der Länge nach verlaufende Leisten zu, welche einen nach der Athmungshöhle zu offenen Halbkanal umschliessen. Die laterale und mediale Fläche beider Leisten verhalten sich verschieden. Die laterale Fläche wird von einem ganz niedrigen schwer wahrnehmbaren kernhaltigen Epithel bekleidet. Die mediale Fläche lässt flimmernde und secernirende Epithelstrecken unterscheiden. Auf der Kante der Leiste nimmt das Epithel ganz plötzlich cylindrische Form an und behält dieselbe eine Strecke weit längs der medialen Fläche in der Richtung nach abwärts. Auf dieser Strecke haben die Epithelien sehr deutliche starre etwas gewölbte Cuticularsäume. Daran schliesst sich eine kurze Strecke ganz flachen kernhaltigen Epithels. Es findet sich ferner constant ein unpaarer Streifen flimmernden Epithels längs der Mittellinie im Grunde der Halbrinne. Dieses Epithel ist ausgezeichnet durch Schmalheit des Protoplasmaleibes der einzelnen Zellen und durch die Länge der Gilien, deren oberer Rand im Niveau der beiden seitlichen Begrenzungsleisten liegt. Der Raum zwischen dem flachen und dem flimmernden Epithel wird zu beiden Seiten der Halbrinne eingenommen von Zellen, welche mit den Secretionsepithelien der betreffenden Thiere am meisten Aehnlichkeit darbieten. Sie stellen grosse Cylinderepithelien dar mit grossem Kern und körnigem Protoplasma. Sie sind stets zu einer oder zwei im letzteren Fall übereinanderliegenden flachen Rinnen angeordnet, welche dem Querschnitt des Organs ein sehr characteristisches Aussehen ver-Beide Halbrinnen werden, wo sie deutlich entwickelt sind, leihen. durch kurze Strecken eines schmäleren, stark glänzenden, mit starrem deutlich gestreiften Cuticularsaum versehenen Epithels verbunden. Getragen wird die Epithelbekleidung von einer zarten Bindesubstanz, welche einzelne Gefässe führt und häufig von pigmenthaltigen Zellen in reichlichem Masse durchsetzt ist.

Nun hat schon Goonsom darauf aufmerksam gemacht, dass der Kiemenapparat des Amphioxus mit jenem der Ascidien am nächsten verwandt sei, indem beiden die gitterförmige Durchbrechung der respirirenden Fläche und die Betheiligung von Flimmerepithel an der Bekleidung der letzteren gemeinsam sei. Die Uebereinstimmung beider wird dadurch des Weiteren erwiesen, dass der ventrale Abschluss der Kiemenhöhle des Amphioxus durch ein Organ gebildet wird, welches alle wesentlichen Attribute der Hypobranchialrinne der Tunikaten besitzt.

Unterhalb des Endes der Kiemenspalten erhebt sich bei Amphioxus der Boden der Kiemenhöhle zu zwei schmalen Leisten, welche lateralwärts gerichtet sind und in der Mittellinie zu einer flachen Rinne sich vereinigen. Die lateralwärts sehende etwas umgebogene Kante beider Leisten ist verdünnt, gegen die Mitte nimmt die Dicke des Bodens allmälig zu. Der Bau des bindegewebigen Gerüstes der Hypobranchialrinne ist bei Amphioxus complicirter als bei den Tunikaten, indem in die straffe Grundlage beiderseits ein nach oben und unten sich zuspitzender Chitinstreif eingebettet ist, welcher mit seinem oberen Ende in die zugeschärfte Kante sich erstreckt, während das untere Ende in einzelne Zipfel zerspalten ist, welche mit den Zipfeln der entgegengesetzten Seite sich durchkreuzen und schliesslich den gabeligen Enden der Chitinstäbe des Kiemenskelets zustreben. Diese zwei Chitinstreifen bilden zusammen eine Hohlkehle, welche längs der ganzen Rinne sich erstreckt. Sie sind eingebettet in eine sehr straffe vorwiegend aus schmalen und kurzen spindelförmigen Zellen bestehende Bindesubstanz, welche ausserdem von Bündeln platter Muskeln in querer Richtung durchzogen wird, deren gelbliche Farbe von iener der farblosen Bindesubstanz deutlich sich abhebt. Längs der unteren Fläche des Organs verläuft die hin und hergebogene Kiemenarterie, nach unten von der Fortsetzung des visceralen Blattes des Bauchfells umschlossen. Die epitheliale Bekleidung der Hypobranchialrinne stimmt in ihrem Verhalten mit dem bei den Tunikaten geschilderten überein. Die lateral und etwas abwärts sehende äussere Fläche besitzt ein schmales ziemlich kurzes Cylinderepithel; an der Kante verlängert sich dasselbe und geht längs der medialen zugleich nach oben gerichteten Fläche in ein schmales, verhältnissmässig kurzes Flimmerepithel über. Zu beiden Seiten der Mittellinie ändert sich die Beschaffenheit dieses Epithels plötzlich, indem die Zellen viel breiter werden und deren Protoplasma stärkeren Glanz annimmt; diese breiten Zellen sind zugleich zu einer flachen Halbrinne angeordnet, welche links und rechts von der Mittellinie längs des ganzen Bodens der Kiemenhöhle sich verfolgen lässt. Die Mitte des letzteren zeigt wieder eine Bekleidung mit geschichtetem schmalen Cylinderepithel, welches in dünne Cilien sich fortsetzt.

Wilhelm Müller,

Ist das Vorkommen eines bei den Tunikaten allgemein vorhandenen, den höheren Wirbelthieren aber fehlenden Organs bei Amphioxus von Interesse für die Phylogenese der Wirbelthiere, so glaube ich, wird dieses Interesse wesentlich erhöht durch den Nachweis, dass dasselbe Organ auch den Cyklostomen während ihres Larvenzustandes zukommt, mit Eintritt der definitiven Gestaltung des Körpers aber schwindet. Schon RATHER und August Müller haben das längliche Organ besprochen, welches am Boden der Kiemenhöhle bei der Ammocoetesform der Petromvzonten sich findet und welches nach der Vermuthung des ersteren Beobachters dem langen Zungenmuskel der reifen Thiere den Ursprung MAX SCHULTZE hat in seiner Entwicklungsgeschichte des geben soll. Petromyzon Planeri auf Seite 28 das Organ gleichfalls beschrieben; er lässt dasselbe aus dem zwischen Haut und Schlundhöhle liegenden Gewebe hervorgehen und hält es wegen des Vorkommens flimmernden Epithels für das Homologon der Thymus der höheren Wirbelthiere.

Die erstere Angabe des berühmten Anatomen bedarf der Berichtigung, da sich an sehr jungen Petromyzonlarven der Nachweis führen lässt. dass die epitheliale Auskleidung des fraglichen Organs mit jener der Kiemenhöhle allenthalben continuirlich zusammenhängt, welcher Zusammenhang im weiteren Verlauf der Entwicklung auf einen schmalen Spalt im Niveau des zweiten Kiemendiaphragmas (Septum zwischen zweitem und dritten Kiemensäckchen) reducirt wird. Es entwickelt sich mithin das fragliche Organ aus dem ventralen Abschnitt der ursprünglichen Kiemenhöhle, die Epithelien, welche in seine Zusammensetzung eingehen, sind Abkömmlinge des Darmdrüsenblatts. Es bedarf aber ferner auch die Deutung, welche MAX SCHULTZE dem Organ zu geben versucht hat, der Berichtigung. Dasselbe lässt sich mit keinem Organ der höheren Wirbelthiere homologisiren; seine Entwicklung und sein Bau nöthigen vielmehr zu der Annahme, dass es das Homologon der Hypobranchialrinne der Tunikaten ist, welche bei Amphioxus als bleibender Bestandtheil des Körpers existirt, bei den Cyklostomen nur noch in Form eines transitorischen Organs sich erhalten hat.

Das Organ wird ursprünglich durch zwei symmetrisch neben der Mittellinie an der ventralen Fläche der Kiemenhöhle von deren vorderem Ende bis zur Bifurkation des Kiemenarterienstamms verlaufende Leisten dargestellt, welche unterhalb des Niveau der beiden Kiemenarterienäste gelegen sind. Das die letzteren umgebende Bindegewebe wächst in medieler Richtung zu einem Diaphragma aus, welches die eigentliche Kiemenhöhle von dem die beiden Leisten beherbergenden Abschnitt trennt. Die Trennung ist für die vordere und hintere Partie des Organs eine vollständige; unterhalb des Diaphragma, zwischen zweitem und drittem

Ueb. d. Hypobranchialriane d. Tanikaten u. deren Verbandenselu b. Amphiexus etc. 331

Kiemensackpaar bleibt die Verwachsung der beiden zu dem Diaphragma sich vereinigenden Lamellen aus. Es erhält sich in Folge davon an dieser Stelle die ursprüngliche Communikation des die Hypobranchialrinne beherbergenden Abschnitts mit der Kiemenhöhle in Form einer in transversaler Richtung schmalen, in longitudinaler etwas verlängerten Spalte. Diese Spalte persistirt so lange, bis das Organ dem definitiven Schwund anheim fällt; sie ist bei 46 Centimeter langen Ammocantes des Petromyzon Planeri noch vorhanden, welche bereits zur Gewinnung der bleibenden Form sich anschicken. Das Epithel der Kiemenhöhle setzt sich im Bereich dieser Spalte auf das Epithel der beiden in den abgeschnürten Theil prominirenden Leisten ohne Unterbrechung fort. Der abgeschnürte Theil der Kiemenhöhle stellt einen in senkrechter Richtung etwas abgeplatteten cylindrischen Hohlraum dar, welcher durch eine schmale senkrecht vom Boden sich erhebende Bindegewebslamelle, welche allmälig an Höhe abnehmend von vorne bis zum Ende des zweiten Kiemensackpaars sich erstreckt, in zwei symmetrische Hälften abgetheilt wird. Jede dieser Hälften enthält im Inneren eine mit breiter Basis dem Boden aufsitzende, gegen den oberen Rand etwas sich verschmälernde Leiste, welche je aus einem medialen und einem lateralen Abschnitt sich zusammensetzt. Beide Abschnitte stimmen in der vorderen Hälfte des Organs nahe mit einander überein; in der hinteren Hälfte zeigen sie wesentliche Verschiedenheiten, nicht sowohl hinsichtlich des feineren Baus, als vielmehr hinsichtlich der gröberen anatomischen Anordnung. In ersterer Beziehung wird die bindegewebige Grundlage der beiden Leisten gebildet von einem lockeren zellenarmen Schleimgewebe, welches an die Adventität einzelner kleiner Arterien und Venen sich anschliesst. Der epitheliale Ueberzug verhält sich im oberen schmäleren Abschnitt jeder Leiste anders als im unteren breiteren. Im oberen Abschnitt findet sich eine einfache Lage cylindrischer kernhaltiger Epithelien, welche durch die steife Beschaffenheit ihrer kurzen conisch sich zuspitzenden Cilien sofort als mit der epithelialen Bekleidung des oberen Abschnitts der Flimmerrinne der Tunikaten übereinstimmend sich zu erkennen geben. Im unteren breiteren Abschnitt bildet das Epithel zwei parallel verlaufende übereinander liegende Längsrinnen, es ist im Bereich der letzteren stark körnig, und mit langen Gilien versehen. An der Kante jeder einzelnen Rinne wird das lange Cilien tragende körnige Epithel ganz abrupt von einer kurzen Reihe steifer nut kurzen conischen Cilien versehenen Epithelien unterbrochen.

Was die gröbere anatomische Anordnung betrifft, so verhült sich am hinteren Ende der mediale und laterale Abschnitt jeder Flimmerleiste verschieden. Der letztere erstreckt sich ziemlich gerade nach rückwörts;

332 W. Müller, Ueb. d. Hypobranchialrinne d. Tunikaten u. deren Vorhandensein etc.

seine beiden Flimmerrinnen nähern sich am vierten Kiemendiaphragma, an welchem der mediale Abschnitt seine hintere Begrenzung hat, bis zur Berührung und verlaufen parallel nach rückwärts bis zum Niveau des fünften Kiemendiaphragma. Der mediale Abschnitt dagegen steigt unter dem vierten Kiemensackpaar nach aufwärts, biegt sich dann horizontal nach vorwärts um, um unter dem dritten Kiemensackpaar wieder nach abwärts sich zu krümmen und zuletzt horizontal gerade nach rückwärts zu verlaufen. Es beschreibt mithin die hintere Partie des medialen Abschnitts einen Kreis mit abnehmendem Radius, so dass sein Ende zwischen dem ursprünglichen unteren Stück und dem oberen horizontal zurücklaufenden Stück des Kreises zu liegen kommt. Dieses auffallende Verhalten lässt sich durch die Annahme erklären, dass der mediale Abschnitt beträchtlich stärker in die Länge wächst als der laterale und dabei den Umgebungen sich anpasst.

Vergleicht man das Organ der Cyklostomenlarven mit der Hypobranchialrinne der Tunikaten oder des Amphioxus, so ergiebt sich, dass es alle wesentlichen Bestandttheile der letzteren besitzt. Es fehlen weder die steifen Cuticularsäume längs der oberen Partie noch die langen Wimperzellen der eigentlichen Rinne. Das Organ hat aber, wie schon früher bemerkt wurde, bei den Cyklostomen eine vorübergehende Existenz. Durch die mächtige Entwicklung der Zungenmuskulatur, welche bei der Umwandlung der Larven in die geschlechtsreifen Thiere sich einstellt, wird das ganze Organ gleich den beiden vor dem Eingang zur Kiemenhöhle liegenden Schlundsegeln zur Atrophie gebracht. Nur ein geringer Rest seiner Epithelialbekleidung entgeht der Vernichtung; er entwickelt sich zur Schilddrüse, welche bei dem geschlechtsreifen Thier unterhalb des langen Zungenmuskels vom zweiten bis vierten Kiemensackpaar sich erstreckt und von einer mässig grossen Anzahl rings geschlossener von intensiv braungelb gefärbtem cylindrischen Epithel ausgekleideter Follikel gebildet wird. Sie kann mit der Speicheldrüse, welche unterhalb des Auges der reifen Thiere liegt, nicht verwechselt werden, denn letztere ist eine Drüse mit Ausführungsgang, welcher durch Injection und Präparation bis zu seiner Ausmündung in die Mundhöhle sich verfolgen lässt.

Die ausführlichere Darstellung dieser Verhältnisse nebst den belegenden Abbildungen wird eine Arbeit über Bau und Verwandtschaft des Amphioxus bringen.

Jena, 27. Juli 1872.

Beiträge zur Kenntniss der Termiten.

Von

Fritz Müller.

Hierzu Taf. XIX und XX.

I. Die Geschlechtstheile der Soldaten von Calotermes.

LESPES hat unter den Arbeitern und Soldaten des Termes lucifugus Männchen und Weibchen gefunden. Aeusserlich waren die beiden Geschlechter nicht zu unterscheiden. Bei den weiblichen Arbeitern sah er Eierstöcke mit 12 bis 15 wenig getrennten Eiröhren, die in einen dickeren Eileiter mündeten. Die beiden Eileiter verbanden sich zu einer kurzen Scheide. In den Eiröhren fand sich keine Spur von Eiern, dagegen flüssiges Fett in Kügelchen von oft beträchtlicher Grösse. Die männlichen Geschlechtstheile der Arbeiter waren äusserst gering entwickelt: zwei kaum sichtbare Hoden, deren sehr feine Ausführungsgänge zu einem gemeinschaftlichen Gange sich verhanden; an letzterem sassen verkümmerte Samenblasen. Waren schon bei den Arbeitern alle diese Theile sehr zart und schwierig darzustellen, so fand dies in noch höherem Grade bei den Soldaten statt¹).

HAGEN versuchte vergeblich bei Arbeitern verschiedener Termesund Hodotermes-Arten innere Geschlechtstheile nachzuweisen²) und • ist trotz des Zutrauens, welches ihm die Arbeit von LESPES zu verdienen scheint, der Meinung, dass » die Angabe so auffälliger Thatsachen vor ihrer allgemeinen Annahme eine neue Bestätigung erfordert«. Auch GERSTÄCKER³) hält das Vorkommen von Männchen und Weibchen unter den Arbeitern und Soldaten der Termiten für »kaum glaublich«.

Weshalb die von LESPES beobachteten Thatsachen »so auffällig«, weshalb die Vertretung beider Geschlechter unter den Arbeitern und Soldaten der Termiten »kaum glaublich« sei, haben HAGEN und GER-STÄCKER nicht erörtert. Doch hat wohl auch in diesem Falle, um mit BATES

¹⁾ Vergl. den Bericht von HAGEN in Linnaea entomol. XII, S. 320 u. 322.

²⁾ Ebenda, S. 22.

⁸⁾ Lehrbuch der Zoologie von PETERS, CARUS U. GERSTÄCKER. II, S. 44.

Bd. VII. 8.

Fritz Müller,

zu reden, »eine irrige Analogie mit den gesellig lebenden Hymenopteren zu falschen Hypothesen geführt«¹), wie das so vielfach in der Naturgeschichte der Termiten geschehen.

Mir schienen von vornherein die Angaben von LESPES sehr wahrscheinlich und glaabwürdig. Bei den Hautsfüglern liegt die Brutpflege den Weibchen ob; wenn bei ihnen ein besonderer Stand für die Brutpflege sich bildete, so war zu erwarten, dass er von den Weibchen sich abzweigen, aus verkümmerten Weibchen bestehen werde. Bei den Termiten dagegen scheint es kaum zweifelhaft, dass die besonderen Stände der Soldaten und Arbeiter nicht aus den geflügelten Thieren, sondern aus deren Jugendzuständen hervorgegangen sind, und wenn dem so ist, so liegt natürlich kein Grund vor für den Ausschluss eines der beiden Geschlechter.

Theoretisch hatte ich also gegen die Angaben von LESPES keinerlei Bedenken. Allein, wie HAGEN, habe ich bis jetzt bei Arbeitern und Soldaten mehrerer, sehr verschiedenen Gruppen der Gattung Termes angehörender Arten vergeblich nach sicher als Hoden oder Eierstock zu deutenden Spuren innerer Geschlechtstheile gesucht, und obwohl ich keines besonderen Geschicks im Zergliedern mich rühmen darf, also auf mein Nichtfinden grosses Gewicht zu legen kaum berechtigt war, fingen doch leise Zweifel an der Richtigkeit der Beobachtungen von LESPES sich zu regen an. Um so erfreuter war ich, seine schöne Entdeckung bei den Soldaten der Gattung Calotermes vollständig bestätigen zu können. Die inneren Geschlechtstheile sind bei diesen Soldaten weit weniger verkümmert, als bei Termes lucifugus, und kaum minder entwickelt, als bei den geflügelten Männchen und Weibchen; ja bei zwei Arten ist das Geschlecht der Soldaten sogar äusserlich zu erkennen.

Zur Vergleichung schicke ich die Beschreibung der Geschlechtstheile der geflügelten Männchen und Weibchen von Calotermes Canellae n. sp. ²) voraus.

4) Linn. entom. XII, S. 979.

3) Calotermes Canellae n. sp. steht dem C. verrucosus Hag. sehr nahe, unterscheidet sich aber leicht durch geringere Grösse und durch die Zahl der Adern im Randfelde der Flügel.

 Calotermes Canellae.
 C. verrucosus.

 Länge mit den Flügeln: 40mm
 44mm

 Vorderflügel mit
 2

 Ader im
 4

 Hinterflügel mit
 4

 Randfelde.
 ohne

C. Canellae lobt hauptsächlich im Holze der Canella preta, seitner in Guamirim, Ceder und Guarajuva.

Jeder der beiden Eierstöcke (Fig. 1) besteht aus 6 bis 7 spindelförmigen Eiröhren, die dem Ende eines kurzen weiten Eileiters aufsitzen. Zwei oder drei der Eiröhren zeichnen sich vor den übrigen meist durch grössere Dicke und weiter entwickelte Eier aus. Wie überhaupt bei den geflügelten Termitenweibchen sind selbst die am weitesten vorgeschrittenen Eier noch weit von der Reife entfernt; die grössten erreichen selten mehr als 1/5 der Länge der reichlich 4 Mm. langen reifen Eier (Fig. 5) und treten eben in die Entwicklungsstufe, auf welcher feine Körnchen den bis dahin durchsichtigen Dotter zu trüben und das Keimbläschen der sich in die Länge streckenden Eier zu verdecken beginnen (Fig. 4). Die kurzen Eileiter, deren Länge übrigens bedeutenden Schwankungen unterliegt, vereinigen sich zur Scheide, deren äussere Oeffnung von unten her durch das grosse sechste Bauchschild verdeckt wird. Nicht weit vom Ausgange der Scheide liegt die sehr dickwandige Samenblase (Fig. 2 u. 3). Sie fällt sofort ins Auge durch die dicke dunkelgefärbte Haut, welche ihre Höhlung auskleidet. Das Ende dieser Höhlung ist mehr oder weniger gekrümmt; in der Mitte ist dieselbe mehr oder weniger aufgetrieben und verjüngt sich dann zu einem engen Ausführungsgange. Zwischen Scheide und Mastdarm liegt eine sehr ansehnliche Kittdrüse (»glande sébifique« LESPES), aus dicht zusammengeknäuelten, schwer zu entwirrenden Röhren gebildet. Man kann an ihr den gemeinsamen Ausführungsgang, zwei zu diesem sich vereinigende Hauptäste und an jedem der letzteren 4 bis 7 Zweige unterscheiden. Bei dem geflügelten Weibchen von Calotermes negosus Hag. gabelt sich der Stamm nur zweimal, so dass die Drüse aus nur vier langen verknäuelten Röhren besteht. Die Kittdrüse von Calotermes gleicht also weit mehr der von LESPEs beschriebenen »glande sébifique« des Termes lucifugus, als der von HAGEN als Samenblase gedeuteten baumförmigen Drüse mit zahlreichen kurzen gekrümmten Aesten, die derselbe bei der Königin von Termes nigricans und dem geflügelten Weibchen von T. dirus fand.

Die Hoden der geflügelten Männchen von Calotermes Canellae (Fig. 6-43) lassen sich einer Hand mit 3 bis 6 meist kurzen Fingern vergleichen. Ihre sehr wechselnde Gestalt mögen die Abbildungen veranschaulichen. Die beiden Hoden desselben Thieres pflegen einander in Grösse, Zahl, Länge und Stellung der Finger sehr ähnlich zu sein. In den Fingern sieht man stark lichtbrechende Kerne, in der Hand grössere, runde, durchsichtige Zellen, deren Kerne in frischem Zustande wenig hervortreten. Wie die Eierstöcke scheinen sie noch weit von der Reife entfernt zu sein. Die Ausführungsgänge der Hoden, bisweilen dicht unter diesen zu einer kleinen Blase aufgetrieben (Fig. 6 u. 8), münden in eine

32*

dickwandige, birnförmige Tasche, die sich in einen über dem achten Bauchschilde sich öffnenden Gang fortsetzt.

Bei den Soldaten von Calotermes Canellae sind die Bauchschilder des Hinterleibes wie die des geflügelten Männchens gebildet, das sechste nicht vergrössert, das siebente und achte ungetheilt und letzteres mit zwei griffelförmigen Afteranhängen versehen. (Beim Weibchen ist bekanntlich das sechste Bauchschild vergrössert, das siebente und achte sind in je zwei kleine seitliche Platten zerfallen und die Afteranhänge fehlen.) Ein äusserer Geschlechtsunterschied ist nicht vorhanden oder doch kaum angedeutet. (Der Hinterrand des achten Bauchschildes schien mir bei den weiblichen Soldaten zwischen den Afteranhängen in der Regel etwas tiefer ausgebuchtet zu sein, als bei den männlichen; vergl. Fig. 45 u. 46.)

Die inneren Geschlechtstheile der weiblichen Soldaten (Fig. 14) unterscheiden sich von denen der geflügelten Weibchen ausser durch geringere Grösse fast nur durch den Mangel der Samenblase, von der ich keine Spur habe finden können. Im unteren Theile der Eiröhren sieht man meist grosse blasse Zellen, von denen zwei die ganze Breite der Eiröhre einzunehmen pflegen, mit grossem Kern und deutlichem Kernkörperchen. Mehrfach sah ich am Anfang jeder Eiröhre ein Häufchen einer undurchsichtigen krümlichen Masse, die ich bei den geflügelten Weibchen dieser Art ebensowenig bemerkt habe, als bei den Soldaten von Calotermes nodulosus und rugosus. Die Eileiter sind im Verhältniss viel länger und dünner, als beim geflügelten Weibchen, die Kittdrüsen stets stark entwickelt.

Auch die Geschlechtstheile der männlichen Soldaten (Fig. 16-18) sind denen der geflügelten Männchen durchaus ähnlich. Die Hoden zeigen ebenso mannichfaltige, im Allgemeinen etwas schlankere Formen. Das Gewebe der Hand ist bisweilen von dem der Finger kaum verschieden, kleinzellig, mit stark lichtbrechenden Kernen. In einem Falle (Fig. 17) sah ich den Hoden zu einem kleinen birnförmigen Körper ohne alle Anhänge verkümmert; den zweiten Hoden fand ich bei diesem Thiere nicht.

Bei Calotermes nodulosus Hag. und rugosus Hag., zwei merkwürdigen nahe verwandten Arten, deren sehr eigenthümliche jüngste Larven uns vielleicht in ähnlicher Weise die älteste noch lebende Insectenform zeigen, wie die Nauplius die älteste Crustaceenform, sind die männlichen von den weiblichen Soldaten schon äusserlich an der Bildung des achten Bauchschildes zu unterscheiden. Bei den männlichen Soldaten ist wie bei den geflügelten Männchen der Hinterrand dieses Schildes zwischen den Afteranhängen kaum merklich ausgebuchtet (Fig. 84 u. 29), bei den weihlichen Soldaten dagegen (Fig. 20 u. 28) tief ausgeschnitten und der dunkle dicke Chitinrand ist in der Mitte dieses Ausschnitts durch dünnere Haut ersetzt, — der erste Schritt zu dem Zerfallen dieses Schildes in zwei seitliche Platten, welches die geflügelten Weibchen zeigen.

Die männlichen Soldaten scheinen wenigstens in manchen Gesellschaften von C. nodulosus weit häufiger zu sein, als die weiblichen. Einmal fand ich unter siehen Soldaten 43, 32; sechs Soldaten aus einer anderen Gesellschaft waren sämmtlich 3; ein drittes Mal wurde unter sieben Stück ein einziges 2 gefunden. Von C. rugosus fand ich in einem Falle zwölf männliche und zehn weibliche, in einem anderen sieben männliche und sechzehn weibliche Soldaten.

Ich bedaure, zur Zeit keine geflügelten Männchen und Weibchen der beiden Arten zur Vergleichung der inneren Geschlechtstheile zur Hand zu haben. Ich kann in dieser Beziehung nur anführen, dass die weiblichen Geschlechtstheile von C. rugosus bis auf die bereits erwähnte Verschiedenheit der Kittdrüse und eine etwas abweichende Form der Samenblase ganz mit denen des C. Canellae übereinstimmen.

Bei den weiblichen Soldaten beider Arten ist wie bei C. Canellae die Zahl der Eiröhren in der Regel sechs, seltener sieben. Bei C. nodulosus (Fig. 19) sind dieselben, wo sie sich an den Eileiter ansetzen, stark eingeschnürt. Deutlich ausgeprägte Eier, die die ganze Lichtung der Eiröhre füllen, habe ich bei den wenigen bis jetzt untersuchten weiblichen Soldaten dieser Art nicht gefunden; dagegen finden sich solche fast bei allen weiblichen Soldaten von C. rugosus (Fig. 26 u. 27), bisweilen bis über 20 in einer Eiröhre. Die grössten, die ich gesehen, hatten 0,4 Mm. Durchmesser bei 0,06 Mm. Höhe, ihr Keimbläschen 0,02 Mm. Durchmesser. — Eine Samenblase habe ich nicht gefunden. Die stets stark entwickelte Kittdrüse zeigte sich, wo ich sie entwirren konnte, bei den weiblichen Soldaten von C. rugosus aus vier langen Schläuchen gebildet, wie bei den geflügelten Weibchen derselben Art.

Wenn schon die fingerförmigen Fortsätze der Hoden von C. Canellae an die Eiröhren der Weibchen erinnern, so ist die Aehnlichkeit zwischen Hoden und Eierstock eine noch weit grössere bei den Soldaten von C. nodulosus und rugosus. Als ich den ersten Soldaten von C. nodulosus zergliederte und das Fig. 22 gezeichnete Gebilde fand, wusste ich in der That nicht, ob ich einen verktummerten Eierstock oder einen Hoden vor mir hätte. Am Ende eines gemeinschaftlichen Ausfthrungsganges sassen, wie am Ende des Eileiters sechs Eiröhren, so hier sechs fingerförmige Anhänge, die aber andererseits wieder durch das kolbig angeschwollene, umgebogene Ende voll stark lichtbrechender Kerne an

Fritz Müller,

die Hoden anderer Termiten erinnerten. - Die Hand tritt bei beiden Arten, besonders bei C. rugosus, meist ganz gegen die Finger zurtick und fehlt oft vollständig, während das Gewebe der Finger selbst dem des handförmigen Theiles am Hoden des geflügelten Männchens von C. Canellae gleicht und die stark lichtbrechenden Kerne sich auf die Spitze der Finger beschränken. Die Zahl der Finger scheint bei C. nodulosus fast ohne Ausnahme sechs zu sein, bei C. rugosus öfter sieben. łn Betreff der auch bei diesen Arten ziemlich wechselnden Form und Grösse der Hoden verweise ich auf die Abbildungen (Fig. 21-25 u. 29-32). Die häufig einseitige Auftreibung am Anfange des Ausführungsganges (vas deferens), die schon bei C. Canellae erwähnt wurde, ist in der Regel vorhanden. Die Ausführungsgänge der Hoden sind weit länger, als bei C. Canellae; die Tasche, in welche sie einmünden, ist namentlich bei C. nodulosus sehr breit, ihr Scheitel nicht, wie bei C. Canellae, abgerundet, sondern ausgebuchtet oder tief eingekerbt, als wäre die Tasche aus zwei kugeligen (C. nodulosus) oder eiförmigen (C. rugosus) Hälften zusammengesetzt.

Auch nachdem ich die Gechlechtstheile der Soldaten von Calotermes kennen gelernt, habe ich bei Arbeitern und Soldaten verschiedener Termes-Arten, wie HAGEN und wie ich selbst schon früher, wiederholt vergeblich nach solchen gesucht und vermuthe, dass nicht unser Ungeschick daran schuld war, dass vielmehr überhaupt bei diesen Arten nichts mehr zu finden sein werde. Wenn LESPES glücklicher war, so mag es daran liegen, dass Termes lucifugus auch in dieser Beziehung, wie in manchen anderen, den Calotermes näher steht, als die meisten übrigen Termes-Arten. Ich erwähnte schon den ähnlichen Bau der Kittdrüse. Ebenso besitzt T. lucifugus nach LESPES acht Harngefässe, wie auch die Calotermes deren sechs oder acht haben, während sich sonst bei Termes vier zu finden pflegen. Auch die Lebensweise ist insofern ähnlich, als T. lucifugus, wie unsere Calotermes, ohne eigentliches Nest in den Gängen lebt, die er in abgestorbenem Holze nagt. Aus der ganzen Abtheilung der Gattung Termes, deren Soldaten wie die von Calotermes scharfe beissende Kiefer besitzen, während der Kopf eines nasenartigen Fortsatzes entbehrt, ist mir hier noch keine Art vorgekommen. Sind nun schon bei den Arbeitern und Soldaten von T. lucifugus die bei den Soldaten von Calotermes noch so überaus deutlichen Geschlechtstheile so weit verkümmert, dass die Eierstöcke mitunter kaum erkennbar sind; nie Spuren von Eiern, dagegen Fettkügelchen enthalten, dass ebenso die Hoden kaum sichtbar sind und dass oft gar nichts zu finden war, so kann es nicht befremden, wenn bei Arten, die sich in anderer Beziehung

Beiträge sur Kenntniss der Termiten.

viel weiter von Calotermes entfernt haben, auch die Verkumn der Geschlechtstheile bei Arbeitern und Soldaten weiter fortgesc ist, wenn dieselben entweder völlig geschwunden oder doch nich mit Sicherheit von dem Fettkörper zu unterscheiden sind.

Fast hätte ich vergessen, eine Frage zu beantworten, di wahrscheinlich stellen wird: warum ich nicht, da ja bei den Arl von Termes lucifugus die Geschlechtstheile leichter nachzu sind als bei den Soldaten, auch die Arbeiter von Calotermes a Geschlechtstheile untersuchte. Die Antwort ist sehr einfach. D bekannten sechs oder sieben Calotermes-Arten fehlt ein beso Arbeiterstand.

Zum Schlusse will ich nicht unterlassen, darauf aufmerks machen, dass rings um das Mittelmeer ein Calotermes (C. flavi Fabr.) vorkommt und von da leicht lebend nach allen Theilen E zu verschicken sein wird, dass somit eine bequeme Gelegenheit g ist, vorstehende Angaben an einer Art derselben Gattung nachzur

Erklärung der Abbildungen.

Tafel XIX. Calotermes Canellas F. M.

Fig. 4-4. Geflügeltes Weibchen. Fig. 4. Innere Geschlechtstheile.

Fig. 2 u. 3. Samenblase.

Fig. 4. Stück einer Biröhre.

Fig. 5. Reifes (gelegtes) Ei.

Fig. 6—43. Geflügeltes Männchen. Fig. 6. Innere Geschlechtstheile. Fig. 7—43. Verschiedene Formen des Hodens.

Fig. 14-45. Weiblicher Soldat.

Fig. 14. Innere Geschlechtstheile.

Fig. 45. Hinterrand des achten Bauchschildes.

Fig. 46-48. Männlicher Soldat.

Fig. 16 u. 17. Geschlechtstheile im Zusammenhang. Fig. 18. Hoden. Fritz Mäller,

Tafel XX.

Fig. 19-25. Calotermes nodulosus Hag.
Fig. 19 u. 20. Weiblicher Soldat.
Fig. 19. Eierstock.
Fig. 20. Achtes Bauchschild.
Fig. 24-25. Männlicher Soldat.
Fig. 24. Geschlechtstheile im Zusammenhang.
Fig. 22-25. Verschiedene Formen des Hodens.
Fig. 26-28. Weiblicher Soldat.
Fig. 26. Innere Geschlechtstheile.
Fig. 27. Theil einer Eiröhre.
Fig. 28. Hinterrand des achten Bauchschildes.
Fig. 29-32. Männlicher Soldat.
Fig. 29-32. Männlicher Soldat.
Fig. 29. Geschlechtstheile im Zusammenhang.
Fig. 29. Geschlechtstheile im Zusammenhang.
Fig. 30-32. Verschiedene Formen des Hodens.

Itajahy, S^{*}. Catharina, Brazil, im Juni 1872.

Beiträge zur Kenntniss der Termiten.

II. Die Wohnungen unserer Termiten.

In Betreff des Nestbaues der Termiten finden sich in HAGEN's Monographie folgende allgemeine Bemerkungen : »Bis jetzt scheint es sicher, dass alle Arten gesellschaftlich leben und wenigstens eine Art von Nest bauen. Am unvollkommensten ist dies, wenn sie nur in abgestorbenen Bäumen oder gar nur unter der Rinde wohnen. Hierher scheinen die Calotermes zu gehören. Ueber die Wohnungen der ganz unter dem Erdboden wohnenden Arten ist eigentlich noch nichts bekannt. Dass hier umfangreiche Nester in der Erde angelegt werden, ist aus einigen Beobachtungen wahrscheinlich ... Hierher gehören der Vermuthung zu Folge Hodotermes und eine Anzahl der Gattung Termes. Die Hügelbauten über der Erde, die der Gattung Termes allein zufallen, sind uns am genügendsten bekannt... Ich rechne dahin auch die Thurmund Pilzbauten... Als letzte Art der Nester bleiben die sogenannten kugeligen Baumnester übrig. Ihr Bau ist uns noch sehr unvollkommen bekannt und eine Königin darin niemals gefunden worden ... Baumnester scheint nur Eutermes zu haben, obwohl einige Eutermes auch Hügel bewohnen«1).

Diese kurze, von kundiger Hand entworfene Uebersicht wird genügen, um weitere Mittheilungen über die Wohnungen der Termiten wünschenswerth erscheinen zu lassen, und mag zugleich dienen, für die Beurtheilung des im Folgenden Gebotenen den mit der Naturgeschichte dieser Thiere minder Vertrauten einen Anhaltspunct zu gewähren.

»Ueber die Lebensweise und den Nestbau von Calotermes ist bis jetzt nichts bekannt«²). Ich habe aus dieser Gattung etwa ein halbes Dutzend Arten kennen gelernt (C. Smeathmanim., C. Hagenii m.³), C. rugosus Hag., C. nodulosus Hag., C. Canellaem., und ein oder zwei andere der letzten nahestehende Arten). Vom Bau einer Wohnung kann man bei diesen Arten kaum reden. Wie die Larven vieler Käfer, nagen die Larven (und Nymphen) von C. Calo-

⁴⁾ HAGEN in Linnaea entomol. XII, S. 30.

²⁾ HAGEN a. a. O. S. 38.

⁸⁾ Calotermes Smeathmani und C. Hagenii unterscheiden sich von anderen bekannten Arten dadurch, dass bei den Soldaten der aufgebogene Vorderrand des Prothorax gezähnelt ist. Auch die Kopfbildung der Soldaten ist eine sehr eigenthümliche. Bei den Soldaten von C. Smeathmani finden sich Flügelscheiden an Mittel- und Hinterbrust, die bei denen des C. Hagenii, wie bei denen unserer anderen Calotermes-Arten fehlen.

Fritz Müller,

termes Gänge im Holze abgestorbener Bäume, die sie niemals verlassen. Der Unterschied ist nur der, dass in diesen Gängen neben den Larven auch ein eierlegendes Weibchen mit ihrem Männchen (Königin und König) sich dauernd aufhält, dass man daher bunt durch einander Larven des verschiedensten Alters findet und dass zum Schutze dieser Gesellschaft ein besonderer Soldatenstand vorhanden ist, aus männlichen und weiblichen Larven bestehend, die sich nie in geflügelte Thiere verwandeln.

Die Calotermes findet man hauptsächlich in noch fast gesundem. hartem Holze; der völlig gesunde Kern härterer Holzarten wird von ihnen ebensowenig angegriffen, als der stärker vermoderte Splint; zwischen beiden beschränken sich ihre Gänge nicht selten auf eine kaum fingerdicke Schicht. Einzelne Arten haben eine unverkennbare Vorliebe für gewisse Holzarten; so C. Canellae für Canella preta, C. rugosus für Cangerana, in welchen beiden Hölzern ich noch keine andere Art getroffen habe. Am wenigsten wählerisch scheint C. nodulosus zu sein, der in Poroba, Ariribá, Piquiá, Ceder (Cedrela), der Gissarapalme u. s. w. vorkommt. Selten trifft man zwei oder mehr Arten in demselben Stamme. So leben in einem grossen umgestürzten Guarajuva-Stamme in meinem Walde gleichzeitig C. Hagenii, nodulosus, Canellae und eine vierte Art, die ich im geflügelten Zustande noch nicht kenne. Wenn bei solchem Zusammenleben die Gänge der einen Art auch vielfach zwischen denen der anderen hinlaufen, so scheinen die Thiere sich doch nie in die Gänge einer fremden Art zu verirren.

Die Gänge der Calotermes-Gesellschaften sind meist der Achse des Baumes gleichlaufend und zum grossen Theil so eng, dass nur ein Soldat oder eine erwachsene Larve auf einmal hindurch kann. Dies gilt namentlich von den Gängen, welche die Holzschichten quer durchsetzen. Stellenweise finden sich weitere, unregelmässige, meist flache Räume, in denen sich die geflügelten Thiere zu sammeln pflegen. Ein besonderer Raum für König und Königin ist nicht vorhanden. Letztere schwillt nur wenig an und läuft frei in den Gängen umher, hier und da einzelne Eier ablegend, um die sich Larven und Soldaten nicht weiter zu bekümmern scheinen. Sie ist gewöhnlich begleitet von dem Könige und in der Umgebung des Königspaares pflegen die Soldaten häufiger zu sein, als an anderen Stellen. Die Wand der Gänge ist meist mit einer dünnen Kothschicht bekleidet, während man bisweilen grössere Kothmassen am blinden Ende eines oder des anderen Ganges angehäuft findet.

Dächte man sich die Volkszahl einer Calotermes-Gesellschaft in gleichem Raume verzehnfacht oder verhundertfacht, so würden die von der dichtgedrängten Bevölkerung ausgefressenen Gänge immer näher zusammenrücken, die dazwischen liegenden Holzwände würden immer

dünner werden und endlich ganz aufgezehrt werden. Die Kothbekleidung der benachbarten Räume würde unmittelbar aneinanderstossen. An Stelle des verzehrten Holzes hätte man einen von Kothwänden durchzogenen und in unregelmässige Zellen und Gänge getheilten Raum. --Diesen allmäligen Uebergang von weit getrennten, das Holz durchziehenden Gängen zu Kothanhäufungen, die in ihrem Gefüge an lockere Brodkrume oder an einen Schwamm erinnern, kann man nicht selten beobachten in Baumstämmen, die von einem mit Termes Rippertii nahe verwandten Eutermes¹) bewohnt sind. Beschränken sich diese Kothanhäufungen nicht auf das Innere des Baumes, treten sie aus demselben hervor, so entstehen die bekannten »kugeligen Baumnester«, die also ursprünglich nichts anders sind, als der gemeinsame Abtritt eines Eutermes-Volkes, dann aber auch als Brutstätte für die Eier und als Aufenthalt für die Jungen dienen. - Diese Nester werden also aus dem Baume heraus, nicht an den Baum hinangebaut. Anders mag es bei den VOD AUGUSTE ST. HUAIRE und BURBRISTER erwähnten Baumnestern ans Erde oder Lehm sein; zu solchen von aussen dem Baume angefügten Nestern würde dann auch aussen am Baume ein Gang emporführen mtissen; bei unserer Art sind solche vom Neste ausgehende Gänge in der Regel nicht vorhanden.

Der Stoff, aus dem unsere Baumnester bestehen, ist ausschliesslich der Koth der Bewohner. Ich habe oft dem Baue oder vielmehr der Ausbesserung desselben zugesehen. Schneidet man ein Stück des Nestes ab, so ziehen sich die Arbeiter aus den dadurch geöffneten Gängen ins Innere des Nestes zurück; es erscheinen an den Oeffnungen in grosser Zahl die kleinen spitzköpfigen Soldaten, eifrig herumlaufend und mit ihren Fühlern tastend. Nach einiger Zeit kehren die Arbeiter zurück. Jeder betastet zuerst den Rand der zu schliessenden Oeffnung, dreht sich dann herum und legt ein braunes Würstchen auf diesen Rand ab. Dann eilt er entweder sofort ins Innere des Nestes zurück, um den anderen, die dichtgedrängt ihm folgen, Platz zu machen, oder er dreht sich auch wohl noch einmal um, um sein Werk zu betasten und es nöthigenfalls zurecht zu drücken. Einzelne Arbeiter bringen auch wohl zwischen den Kinnbacken kleine Bruchstücke der alten Wände, die beim Oeffnen des Nestes in dasselbe hineingefallen sind, und fügen sie in die im Bau begriffenen, noch feuchten Wände ein. Andere, doch das sieht man nur selten, die nichts aus ihrem Mastdarme liefern können, opfern auf dem Altar des Vaterlandes ihr noch unverdautes Mahl, das sie zwi-

⁴⁾ Ich möchte den Namen Eutermes auf die Arten mit spitzköpfigen Soldaten beschränken.

Frits Müller,

schen den Koth der anderen ausbrechen. In ruhigen Zeiten wird des Letztere wahrscheinlich nicht geschehen, sondern nur, wenn es gilt, rasch das durch einen Feind geöffnete Nest wieder zu schliessen. — Die Soldaten haben sich beim Beginn der Arbeit grossentheils wieder ins Innere des Nestes zurückgezogen, vielleicht um Arbeiter herbeizuholen. Einer oder ein paar bleiben bei jeder zu schliessenden Oeffnung. Man sieht sie ab und zu die Arbeiter mit ihren Fühlern berühren, wie um sie zurechtzuweisen oder anzutreiben.

Der Eutermes, der diese Baumnester baut, scheint fast alle unsere Holzarten anzugreifen, doch niemals, wenn sie noch ziemlich gesund sind. Man findet ibn oft in demselben Stamme mit Calotermes, diesen dem Kerne, jenen der Rinde näher. Zum Baue des Nestes zieht er härtere, der Verwesung gut widerstehende Stämme z. B. von Cangerana vor. An dickeren Stämmen nimmt das Nest nur eine Seite ein und springt mehr oder weniger stark, halbkugelig oder eiförmig vor; dünnere umgiebt es bisweilen ringsum. An der Spitze von Baumstümpfon bildet es eine rundliche Kuppel oder sicht aus, wie der Knopf einer Stecknadel. Eines der grössten Nester, die ich gesehen, bildete eine unregelmässige Masse von 3 bis 4 Fuss Durchmesser, welche zwei an der Erde liegende Cangerana-Stämme umschloss.

Die Oberfläche der Nester zeigt flache, unregelmässige, in einander verfliessende, undeutliche Erhöhungen, die im Verein mit der schwärzlichen Farbe und der kugeligen Gestalt den oft gemachten Vergleich mit einem Negerkopf rechtfertigen. Die Farbe ist übrigens verschieden, bisweilen heller, bräunlich, — häufiger fast schwarz, was theils von der Nahrung der Baumeister, theils vom Alter des Nestes abhängt. Alte Nester sind dunkler und zugleich fester als neugebaute. Die grössere Festigkeit älterer Nester hat wohl ihren Hauptgrund in der grösseren Dicke der Wände, die im Laufe der Zeit durch neue Kothlagen verstärkt

Fig. 4. Bruchstück eines Baumnestes. (¹/₂ der nat. Gr.)

werden. Alten Nestern kann man mit dem Messer wenig anhaben, sondern muss zur Axt greifen, um Stücke davon loszuhauen.

Ueber den inneren Bau dieser Nester ist wenig zu sagen. In dem Gewirr unregelmässiger, im Verbältnisse zur Grösse der Bewohner weiter Räume, die durch dünne aber feste Wände getrennt das ganze Nest durchziehen, habe ich eine bestimmte Anordnung nicht erkennen können.

Oeffnet man ein solches Baumnest, so findet man in den oberflächlicheren Theilen nur Arbeiter und Soldaten, sowie kurz vor der Schwärmzeit (December) geflügelte Thiere. Dringt man tiefer ein, so stösst man

Beiträge zur Kenntniss der Termiten.

uf Larven, die immer kleiner werden, je weiter man ins Innere vorrückt. Dann kommen, zu unglaublichen Mengen in einzelnen, sonst durch nichts susgezeichneten Räumen angehäuft, die Eier und endlich die Eierlegerin, lie Königin mit ihrem Gemahl. In dem ersten Neste, welches ich öffnete, land ich den Raum, in welchem in diesem Falle zwei Königinnen sich aufhielten, durch nichts ausgezeichnet. In einem anderen Falle waren um die Königin herum die Wände weit dicker als sonst und nur von ziemlich engen Güngen durchsetzt. In diesen Gängen hatte sich der König versteckt, während sie für seine umfangreichere Gemahlin viel zu eng waren.

Wenn man bisher in Baumnestern keine Königin gefunden hat, so wird dies kaum daran liegen, dass man zufällig nur Nester ohne Königin geöffnet hat. Das Nest von Termes Rippertii zum Beispiel, welchem OSTEN-SACKEN zahlreiche Eier und junge Larven entnahm¹), enthielt ohne Frage auch eine Königin. Die Nester sind, wie bereits gesagt, nicht äusserlich dem Baume angekleht, sondern gleichsam aus dessem Innern hervorgewachsen und gehen ohne scharfe Grenze in denselben über. Sprengt man das Nest vom Baume los, so bleibt immer ein Theil daran oder darin zurück und gerade in diesem innersten Theile des Nestes hat man die Königin zu suchen. Sie da herauszuholen wird aber meist mehr Uebung in der Führung der Axt verlangen, als reisende Naturforscher zu besitzen pflegen.

So weit meine Erkundigungen reichen, gehören alle in Brasilien den Menschen in seiner Wohnung belästigenden Termiten zu den Eutermes unit spitzköpfigen Soldaten; auch hier sind die Erbauer der Baumnester, wie es scheint, die einzigen ihrer Familie, die als unwillkommene Göste in die Häuser eindringen und dann, wie das auch von den Eutermes anderer Länder berichtet wird, ihre Nester unter dem Dache anzulegen lieben.

In allen Ständen dem eben besprochenen Eutermes sehr ähnlich ist eine zweite hier häufige Art, die ihre Nester besonders zwischen den Wurzeln alter Stuken der Gissarapalme (Euterpe, Kohlpalme, von den deutschen Ansiedlern Palmite genannt,) anzulegen pflegt. Diese Gissarastuken sind überhaupt ein Lieblingsaufenthalt der Termiten; ich habe darin bereits acht verschiedene Arten angetroffen, bisweilen vier bis fünf in demselben Stuken. (Drei Eutermes, darunter der später zu erwähnende Eutermes in quilinus m., Termes saliens m., T. Lespesii m., Anoplotermes pacificus m., Calotermes nodulosus Hag. und C. rugosus Hag.) Wie viele andere Palmen

⁴⁾ Linnaea eutomol. XIV, S. 449.

Fritz Müller,

(und überhaupt Monocotyledonen) sendet die Gissara aus dem untersten Theile ihres Stammes dichtgedrängte fingerdicke Luftwurzeln schief zur Erde. Bei alten Stämmen sind die ältesten innersten Wurzeln verwest; unter dem Stamme bildet sich so eine Höhle, welche die jüngeren, äusseren, höher am Stamme entspringenden Luftwurzeln wie ein kegelförmiger Mantel schützend umschliessen. In dieser Höhle legt der Gissara-Eutermes sein Nest an, doch nie unter lebenden Palmen, sondern erst einige Jahre nach dem Fällen. Das Nest besteht, wie das der Baumtermite, aus dem Kothe der Thiere. Die Wände sind papierartig dünn und so bröcklich, dass die Hand ohne merklichen Widerstand durch das Nest hindurchfährt. Die dünnen Kothwände, von hellbräunlicher Farbe, legen sich mehr oder weniger regelmässig wie Zwiebelschalen um einen gemeinsamen Mittelpunct berum, vielfach unterbrochen durch Oeffnungen, welche die so gebildeten concentrischen Räume mit einander verbinden, und auseinandergehalten durch Wände, welche diese Räume in eine Menge unregelmässiger Zimmer und Gänge In der Mitte des Baues findet sich ein verschieden grosser theilen. fester Kern, der das Zimmer des Königspaares umschliesst. In einem Falle, in welchem die schützenden Wurzeln der Palme noch ihre ganze ursprüngliche Festigkeit besassen, fehlte dieser feste Kern; die Wände der Zelle, in der sich die noch ziemlich junge Königin aufbielt, waren

Fig. 2. Königliches Zimmer der Gissara-Termite. (¹/₂ der nat. Gr.)

noch ebenso papierartig dünn, wie das übrige Nest. In recht alten und volkreichen Nestern kann dagegen der feste Kern die Grösse eines Kindeskopfes erreichen. Derselbe ist sehr hart, nur von engen, für die Königin ungangbaren Wegen durchzogen und birgt in seiner Mitte das meist ziemlich unregelmässig gestaltete königliche Gemach. Nicht eben

selten findet man bei dieser Art zwei Königinnen mit einem einzigen König in demselben Neste und demselben Zimmer; der umgekehrte Fall, dass mit einer Königin zwei Könige lebten, ist mir nur einmal vorgekommen. Einmal traf ich, in einem ungewöhnlich grossen und volkreichen Neste gleichzeitig sechs Königinnen und drei Könige. — Ein anderes Mal fand ich in demselben Neste zwei königliche Zimmer, aber nur eins von einem königlichen Paare bewohnt, das andere, von dessen wahrscheinlich längst verstorbenen Bewohnern keine Spur mehr zu finden war, mit junger Brut gefüllt.

Der gefährlichste Feind dieser Art ist das Tatu. Früher oder später, wenn die Wurzeln der Palme morscher werden, erliegen wohl die meisten Bauten den Angriffen desselben. Man sieht im Walde häufig Gissara-

Beiträge zur Kenntniss der Termiten.

stuken, durch deren Wurzeln an einer Seite die kräftigen Klauen des Tatu einen Weg gebrochen haben, und bisweilen um sie her gestreut Bruchstücke des Termitennestes. Bei einem solchen Ueberfalle, der gewiss einem grossen Theile des Volkes das Leben kostet, ist dann wenigstens das Königspaar durch die dicken harten Wandungen seines Zimmers gesichert. Die erste Königin dieser Art, die ich überhaupt sah, erhielt ich aus einem solchen lose im Walde gefundenen festen Kerne eines zerstörten Nestes.

Auf seiner Reise durch die Provinzen Rio de Janeiro und Minas geraes sah Augusrg Sr. HILAIRE Termitenbauten, die mitten auf dem Wege einfache, einen halben Fuss hohe Hügel bildeten. Solche kleine Hügelnester, — ob von derselben Art gebaut, ist freilich nicht zu entscheiden, — finden sich auch hier und sind sogar weitaus die häufigsten aller Termitenbauten. Sie sind das Werk des Anoplotermes pacificus m.¹). Obwohl anscheinend aus Erde gebaut, bestehen auch sie, wie die Entermes-Nester, aus dem Kothe ihrer Bewohner. Die Anoplotermes fressen nämlich Erde, man findet in ihrem Magen völlig verrottete Pflanzenstoffe und einzelne kleine Steinchen. Daher scheinen ihre Nester aus Erde gebaut zu sein; doch habe ich geschen, wie sie durchschnittene Nester in der Weise der Baumtermiten mit ihrem Kothe ausbesserten, und mich überzeugt, dass diese geflickten Stellen in nichts von dem übrigen Neste sich unterschieden.

Die Form der Nester ist eine sohr wechselnde. Häufig sind sie ganz flach, in Form und Grösse einem Kuhfladen gleichend, in anderen Fällen unregelmässig knollig; bisweilen rundlich, kegelförmig oder kurz walzenförmig. In besonderer Menge traf ich diese Nester auf einem frisch gorodeten Stücke Urwald in der Colonie Dona Francisca, auf schwammigen, sandig-sumpfigem Boden. Stellenweise stand hier alle zwei bis drei Schritte ein Nest. Die höchsten waren etwa einen Fuss hoch, bei 4 bis 6 Zoll Durchmesser, walzen- oder kegelförmig mit abgerundeter Spitze. Auch die kleineren, faust- bis kopfgrossen waren dort meist

⁴⁾ Die Staaten der Gattung Anoplotermes m. zeichnen sich dadurch aus, dass sie, — hierin weiter vorgeschritten, als wir Menschen, — nur Arbeiter, aber keine Soldaten besitzen. Alle Stände, von der jüngsten Larve an, sind dadurch leicht von Calotermes, Termes und Eutermes zu unterscheiden, dass ihrem Vormagen (Kaumagen) die Bewaffnung mit Kauleisten fehlt. Durch äussere Merkmale weiss ich die geflügelten Thiere nicht von Eutermes zu scheiden. Es gehört hierher eine zweite hiesige Art (vielleicht Termes ater Hag.) und wahrscheinlich Termes cingulatus Burm. Der von Haezwunter T. cingulatus beschriebene Soldat gehört nicht zu dieser, sondern zu einer weit verschiedenen Art, T. saliens m.

Fritz Müller,

In meinem Walde herrschen die flachen, doppelt so hoch als dick. fladenförmigen Nester vor. Die Farbe ist ein bald helleres, bald dunkleres, fast schwarzes Grau. Gewöhnlich lassen sie sich mit der Hand zerbröckeln oder doch leicht mit dem Messer schneiden. Ungewöhnlich, dunkelgefärbte und feste Nester fand ich kürzlich nahe dem Gipfel eines unserer höheren Berge (an der Itoupava). Man kann in der Regel zwei, freilich ohne scharfe Grenze ineinander übergehende Theile an diesen Nestern unterscheiden. Der obere Theil bildet eine fast dichte, nur von einzelnen engen Gängen durchzogene erdige Masse, in der sich lebende Wurzeln benachbarter Pflanzen (besonders die einer strauchartigen Piperacee) auszubreiten pflegen. Dieser Theil ist von den Bewohnern ziemlich verlassen. Der untere dichtbevölkerte Theil enthält zahlreiche für die winzigen Bewohner sehr weite, vorherrschend in wagerechter Richtung ausgedehnte unregelmässige Räume, die durch dicke Wände getrennt, und durch engere und weitere Gänge verbunden sind. Das königliche Zimmer ist nur durch seine Grösse, und nicht immer durch diese vor den übrigen Räumen ausgezeichnet und liegt in der Regel ziemlich in der Mitte des unteren Theiles. Mit einer erstaunlichen Menge von Eiern gefüllte Zellen verrathen seine Nähe. Der obere Theil des Nestes ist wahrscheinlich der ältere, dessen früher bewohnte Räume allmälig mit Koth vollständig ausgefüllt worden sind. Die Nester liegen lose am Boden, oder sind an demselben durch von unten eindringende Wurzeln befestigt. Gern lehnen sie sich an dicke vorspringende Baumwurzeln, und finden sich auch bisweilen in alten stark vermorschten Gissarastuken. Dasselbe Volk besitzt bisweilen, - doch scheint es bei dieser Art selten zu sein, - mehr als einen Bau. In einem kleinen, etwa faustgrossen Neste, in welchem keine Königin lebte, fand ich Eierhaufen und zahlreiche junge Brut; eine Königin fand sich in einem in der Nähe stehenden grösseren Neste. -- Oeffnungen zum Ein- und Austritt der Bewohner finden sich nur an der unteren, dem Boden aufliegenden Seite des Nestes.

Die Bauten des Anoplotermes pacificus macht sich zuweilen ein winziger Eutermes (Eut. inquilinus m.¹)) zu Nutze, der keine eigenen Nester zu bauen scheint. Ich habe diesen Eutermes sowohl in Dona Francisca als hier in Nestern von Anoplotermes pacificus getroffen und zwar hier ein vollständiges Volk mit König,

⁴⁾ Die geflügelten Thiere dieser Art kenne ich noch nicht. König und Königin habe ich mit HAGER's Monographie verglichen und halte danach die Art für unbeschrieben. Die Soldaten sind durch ihren hell bernsteingelben langnasigen Kopf sehr ausgezeichnet.

Beiträge zur Kenntniss der Termiten.

wei Königinnen, Arbeitern, Soldaton, Eiern und Larven vom verschiedensten Alter. Ob der Eindringling den Erbauer des Nestes vertreibt oder nur alte verlassene Nester sich aneignet, weiss ich nicht. Das Letztere ist wohl wahrscheinlicher. Das Nest, in welchem ich ihn hier fand, war offenbar ein sehr altes und die dasselbe durchziehenden Wurzeln grossentheils verschimmelt. Es hausten darin ausserdem zwei Ameisenarten und durch den unteren Theil des Nestes ging eine Strasse von Termes Lespesii. — Eine kleine Gesellschaft von Eutermes inquilinus, nur aus Arbeitern und Soldaten bestehend, traf ich einmal in einem ganz alten modrigen Neste von Termes Lespesii. Bemerkenswerth ist, dass die Arbeiter des Eutermes inquilinus denen des Anoplotermes pacificus Huschend Hunlich sehen, obwohl sich bei genauerer Untersuchung des Husseren und inneren Baues durchaus keine nähere Verwandtschaft beider Arten herausstellt.

Wie mancher alte Baumstumpf in seiner ganzen Ausdehnung von Gängen verschiedener Termitenarten durchzogen ist, (Calotermes im festeren Kerne, Eutermes im morscheren Splinte, Züge von Termes saliens oder Lespesii unter der Rinde), so ist auch der Boden des Urwaldes an manchen Stellen vollständig durchwühlt von Termiten und nicht selten durchziehen dieselbe Erdscholle gleichzeitig Gänge von drei bis vier verschiedenen Arten (Termes saliens, Lespesii, Anoplotermes ater (?), Eutermes sp.).

Von den Wohnungen dieser unterirdisch lebenden Termiten kenne ich bis jetzt nur die des Termes Lespesiim.¹). Dieselben sind durch eine viel weitere Kluft von den aus einem ordnungslosen Gewirr unregelmässiger Räume bestehenden Nestern unserer Eutermes-Arten getrennt, als diese von den kaum den Namen einer Wohnung verdienenden Gängen der Calotermes, und gehören, wie die riesigen von SMEATHMAN so trefflich geschilderten Hügel des Termes belli-

4) Diese Art ist dem Erdhügelnester bewohnenden T. sim ilis Hag. äusserst ähnlich.

T, similis Hag.		T. Lespesii F. M.
Länge mit den Flügeln: 22—27 Mm.		16—18 Min.
Fühler :	15 gliederig,	13—15 gliederig.
Stes Fühlerglied :	so lang als breit,	viel länger als breit.
3tes Fühlerglied :	so lang als die folgenden,	bei 45gliederigen Fühlern klein
		und ringförmig.

Die Form der Oberlippe der Soldaten ist eine ganz verschiedene; bei T. similis beschreibt sie HAGEN als «breit, nach vorn breiter, gerade abgeschuitten mit scharfen Vorderwinkeln; in der Mitte ein dreieckiger vorspringender Lappen angesetzt«. Nicht ein Wort dieser Beschreibung passt auf die Oberlippe des Soldaten von Termes Lespesii.

Bd. VII. 3.

cosus, zu den merkwürdigsten Bauten, die überhaupt von Insecten aufgeführt werden.

Die Häuser des Termes Lespesii haben die Gestalt einer dieken, etwa spannenlangen Wurst oder einer Walze, um welche sich flache durch seichte Furchen geschiedene Wülste gürtelartig herunziehen. Auf

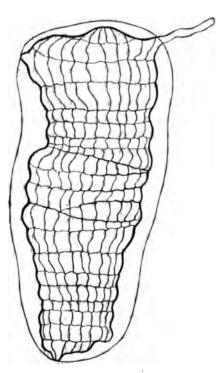


Fig. 3. Ilaus des Termes Lespesii (1/2 der nat, Gr.).

0.4 Meter kommen 9 bis 12 solcher Wulste. - Auf diesen Ringwülsten verlaufen schmale, etwa 2 Mm. breite Längswülste, jede von einer mittleren Längsfurche durchzogen (15 bis 20 auf 0,1 M.). - Diese Längswülste sind nicht immer genau gleichlaufend und ihre Entfernung ist sehr beträchtlichen Schwankungen unterworfen. Die meisten lassen sich über eine grössere Zahl von Querwülsten, viele über das ganze Haus bin verfolgen, andere nur über ein, zwei oder drei Querwülste. An alten Häusern treten sowohl Längs- als Querwülste weniger deutlich hervor, als an neueren; besonders bei letzteren öffnen sich beim Austrocknen an der Luft längs der Furchen, die die Längswülste durchziehen, sowie derjenigen welche die Ringwülste scheiden, schmalo Risse oder Spalten. An beiden Enden des Hauses finden sich meist einige

1

kurze Fortsätze und am Ende eines derselben, als einziger Zugang zu dem sonst völlig geschlossenen Hause, eine kleine runde Oeffnung.

Um einen Einblick in das Innere des Hauses zu erhalten, wollen wir es der Länge nach durchschneiden. Wir sehen, dass es aus eben so vielen durch wagerechte Scheidewände geschiedenen Kammern oder Stockwerken besteht, als wir äusserlich Ringwülste wahrnahmen; wir sehen, dass die Ringwülste den Kammern, die Ringfurchen den Scheidewänden entsprechen. Wir erkennen auch sofort als Ursache der Risse, die beim Austrocknen entstehen, Röhren, welche die Wand des Hauses durchziehen und unter den Ring- und Längsfurchen verlaufen. — Jedes Stockwerk hat die Gestalt einer flachen Schachtel mit bauchiger Aussen-Sehr häufig und vielleicht in allen Fällen, wo nicht äussere wand. Hindernisse die Regelmässigkeit des Baues gestört haben, sind die

Kammern fast genau kreisförmig. Ich habe mich davon wiederholt mit dem Zirkel überseugt und bisweilen bei einem Halbmesser ven etwa 3 Cm. keine 1 bis 2 Mm. überschreitenden Abweichungen gefunden. Würde ein Mensch wohl im Stande sein, ohne Werkzeuge mit dem 5- bis 6 fachen seiner Länge als Halbmesser einen gleich fehlerfreien Kreis zu beschreiben?

In jedem Stockwerke sind Boden und Decke durch einen dicken, oben und unten verbreiterten Pfeiler verbunden, der bald die Mitte einnimmt, bald mehr oder weniger dem Umfang genähert ist. Am Fusse des Pfeilers geht eine runde Oeffnung, die nur ein Thier auf einmal durchlässt, schief durch den Boden ins nächste Stockwerk. Geht man in derselben schief absteigenden Richtung, in Lespesii, Längsschnitt, 1/2 der der man in dieses Stockwerk eingetreten ist, an dessen Pfeiler weiter, so gelangt man, in der Mehrzahl der Fälle, zu dem am Fusse desselben gelegenen Ausgang. Auf diese Weise

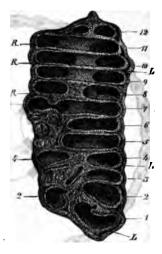


Fig. 4. Haus von Termes nat. Gr. 1 bis 12 die 42 Stockwerke des Hauses. L Längscanale in der Aussenwand. R Ringcanäle zwischen den Stockwerken.

bildet der Weg, der vom obersten bis zum untersten Stockwerke durch die Scheidewände hindurch und an den Pfeilern entlang führt, eine Schraubenlinie oder eine Wendeltreppe, die man sich freilich nicht allzu regelmässig vorstellen darf. Ich gebe als Beispiel diesen Weg aus zwei Häusern, wie er sich gerade von oben geschen (auf eine wagerechte Ebene projicirt) darstellen würde. Bei dem einen Hause (Fig 5) wurden Lage und Richtung der Verbindungswege für acht aufeinanderfolgende Scheidewände aufgezeichnet. Das Stockwerk IX liegt etwa 0,1 M. über Stockwerk I. - Vom ersten (untersten) Stockwerke bis ins fünfte bildet der Weg eine nach rechts aufsteigende Schraubenlinie; im fünften Stockwerk liegen Eingang und Ausgang schr weit auseinander; es ist fast, als hätten die Baumeister auf diesem langen Wege die bis dahin verfolgte Richtung vergessen, da von da ab der Weg in entgegengesetzter Richtung, links aufsteigend, weiter geht. - Im zweiten Hause (Fig. 6) wurde der Weg durch zwölf Scheidewände hindurch verfolgt. Auch hier ändert sich die Richtung der Wendeltreppe, nachdem man im fünften Stockwerke

Fritz Müller,

einen ungewöhnlich langen Weg zwischen Ein- und Ausgang zurückgelegt hat. Ausserdem sind in diesem Hause, wie das nicht selten vorkommt, mehrere Scheidewände von zwei Verbindungswegen durch-

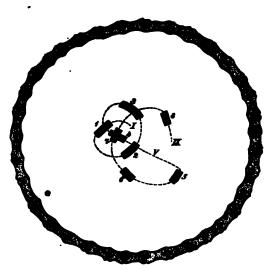


Fig. 5. Projection des aus dem ersten (I) ins neunte (IX) Stockwerk führenden Weges, aus einem Hause von Termes Lespesii, nat. Gr. I bis B die durch die Scheidewände der Stockwerke führenden Gänge.

setzt. (Aus dem sechsten Stockwerk führen 6 und 6+ ins siebente, aus diesem 7 und 7+ ins achte; ebenso führt ein Nebenweg aus dem neunten ins elfte Stockwerk.) In solchen Fällen pflegen dann auch zwei Pfeiler, einer für jeden Durchgang, vorhanden zu sein. — Wege, die aus einem Stockwerke unmittelbar ins zweitfolgende führen und im Innern des Pfeilers des dazwischenliegenden verlaufen, (ein solcher Weg geht in Fig. 4 aus dem zweiten ins vierte Stockwerk). scheinen nur äusserst selten vorzukommen.

Der Bauplan des Hauses ist, wie man sieht, ein sehr einfacher; eine meist zwischen 12 und 16 schwankende Zahl flacher kreisförmiger

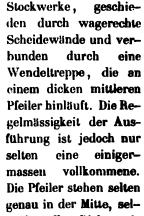


Fig. 6. Projection des aus dem ersten (I) ins dreizehnte (XIII) Stockwerk führenden Weges, aus einem Hause von Termes Lespesii, nat. Gr. 1 bis 12 die durch die Scheidewände führenden Gänge. 5 6* 7* VIII Nebenweg aus dem sechsten ins achte Stockwerk. $\partial 9^{*} 10^{*} XI$ Nebenweg aus dem neunten inselfte Stockwerk.

ten in benachbarten Stockwerken genau übereinander. Ihre Dicke, wie

Beiträge zur Kenntniss der Termiten.

. . .

die Form ihres Querschnittes ist sehr veränderlich. Bisweilen dehnen sie sich in die Breite zu Wänden aus, die nicht selten bis zur Aussenwand des Stockwerkes reichen (Fig. 7, 4, so wie im dritten, fünften und sechsten Stockwerk des in Fig. 4 dargestellten Hauses). Ja es kommt vor, dass das Stockwerk durch den wandartigen Pfeiler vollständig in zwei Kammern geschieden wird (Fig. 7, 5).

Fig. 7. Grundriss von fünf Stockwerken aus Häusern von Termes Lespesii, $\frac{1}{2}$ der nat. Gr. — c Mittelpunct der Kammer. P Pfeiler. — Die Pfeile zeigen den Weg ins nächstuntere Stockwerk. — 5 ist durch den wandartigen Pfeiler in zwei Kammern (α u. β) getheilt; aus α gehen zwei Wege ins nächstuntere Stockwerk, einer nach β ; aus β führt kein Weg in das darunterliegende Stockwerk.

Die Stockwerke haben nicht immer alle die gleiche Höhe. Bisweilen ist Boden oder Decke geneigt, so dass ein und dasselbe Stockwerk auf einer Seite höher ist, als auf der anderen; oder es reicht ein Stockwerk nicht durch die ganze Breite des Hauses, so dass auf einer Seite das darüber und das darunter liegende Stockwerk in grösserer oder geringerer Ausdehnung zusammenstossen. (Für alle diese Unregelmässigkeiten liefert Fig. 3 Beispiele.) Nicht immer ist der Durchmesser für alle Stockwerke der gleiche; nicht selten ist er für die oberen kleiner. Nicht immer stehen die Stockwerke genau übereinander; das eine oder das andere springt nach dieser oder jener Seite vor. In einem Falle sprang jedes folgende Stockwerk nach derselben Seite und gleich stark über das

Fig. 8. Haus von Termes Lespesii, Längsschnitt, ¹/₂ der nat. Gr.

vorhergehende vor, so dass das ganze Haue einen ganz regelmässigen schiefen Thurm bildete. Eine ganz eigenthümliche Abweichung vom gewöhnlichen Bau zeigt das beistehend im Längsschnitt dargestellte Haus (Fig. 8); in seinem unteren Theile finden sich mehrere Kammern, die zusammen eine fast regelmässigkeiten der äusseren Form sind wahrscheinlich immer durch Steine, Wurzeln und ähnliche Hemmnisse veranlasst, denen die Thiere beim Ausgraben des Bauplatzes begegnen.

Von den Schwankungen der Grösse mögen die Masse von zehn ohne Wahl berausgegriffenen Häusern eine Vorstellung geben, die nachträglich nach der Zahl der Stockwerke geordnet wurden:

	7	Z a	h	l	d	e r	Ste) C	k '	w	eı	r k	e.	llöhe.	Durchmesser.
I							12	•						H Cm.	5—6 Cm,
11	•						12							12 -	5-6 -
Ш							12							12 -	67 -
IV							13							12,5-	6-8 -
V							14							14 -	1,5-7 -
VI							14							14 -	6 -7 -
VII							15						•	43 -	6-8 -
VIII						•	21							19 -	47 -
IX						•	22							20 -	56 -
X							24							20 -	3,5-5 -

Die Wände des Hauses und die Scheidewände bestehen nicht aus einer gleichförmigen dichten Masse. Ich sagte bereits, dass sie von ziemlich regelmässig angeordneten Röhren durchzogen sind. An der nachstehend abgebildeten äusseren Oberfläche eines neu angebauten Stockwerkes gewahrt man tiefe Furchen, welche von der Seitenwand her auf die obere Wand treten und mehr oder weniger weit nach deren Mitte sich hinziehen. — Den Furchen entsprechend springt die noch dünne Wand nach innen leistenartig vor. Später werden diese leistenBeiträge zur Keuntniss der Termiten.

tigen Vorsprünge mehr oder weniger vollständig ausgeglichen. — Ein Iches neu aufgesetztes Stockwerk steht, die Mittelsäule ausgenommen, ir in sehr loser Verbindung mit dem nächst älteren; hebt man es ab,

sieht man, dass seine Wand unten in zwei atten gespalten ist, welche die Decke des nunter liegenden Stockwerkes in zwei, etwa bis 8 Mm. von einander entfernten Kreisen effen. So entsteht ein Ringcanal zwischen je vei Stockwerken, und da die Furchen auf der isseren Fläche der Wand erst überbrückt und 1 Röhren geschlossen werden, nachdem ein lgendes Stockwerk aufgesetzt ist, bleiben na-Irlich diese Röhren mit dem Ringcanal in offener Hauses von Termes Leserbindung. Dagegen sind die unter sich zu- pesii, von oben, 1/2 der mmenhängenden das ganze Haus durchziehen- nat. Gr. in Röhren in dem fertigen Hause vollständig

geschlossen sowohl gegen aussen, als gegen die inneren Räume des auses. Diese Bauweise des Termes Lespesii, die von einem Netz-

erk hohler Räume durchzogenen Wände, hat an bekanntlich in neuester Zeit auch für enschliche Wohnungen empfohlen; ob sie den jusern des ersteren denselben Dienst leistet. n man für letztere davon erwartet, nämlich n Luftwechsel zu erleichtern, lasse ich dahinstellt.

Termes Lespesii verwendet zum Bau incs Hauses nicht ausschliesslich seinen Koth, durch die Wand zweier wohl dieser die Hauptmasse bildet, sondern neugebauten Stockwerke eichzeitig die lehmige oder thonige Erde, in eines Hauses von Terr er dasselbe baut. Die erste dünne Wand mes Lespesii, nat. Gr. nes neuen Stockwerkes besteht fast immer aus

inem Koth. Dickere Lagen von reinem Lehm pflegen die Thiere benders in den von den Längs- und Ringcanälen umgrenzten Feldern r Aussenwand, sowohl an der Innen-, wie an der Aussenseite der sten dünnen Kothwand aufzutragen. Aussen werden diese dann wier mit einer Kothschicht bedeckt. Anderwärts, so namentlich in den sheidewänden ist der Lehm meist nur in dünnen Streifen, Pläuchen ler einzelnen Körnchen zwischen den Koth eingelagert.

Die lläuser von Termes Lespesii werden in der Erde angelegt, ne Handbreit bis eine Spanne unter der Oberfläche. Als Bauplatz ird eine Höhle gegraben, die einen etwa fingerbreiten leeren Raum

Fig. 9. Dach eines neugebauten Stockwerks eines

Fig. 10. Längsschnitt R Ringcanal.

um das Haus bildet (s. Fig. 3). Mit den glatten Wänden dieser Höble steht das Nest-durch eine kleine Zahl vom oberen und unteren Ende ausgehender Fortsätze in Verbindung. Durch einen derselben (selten durch mehrere) führt ein Weg aus dem untersten Stockwerke in feder-

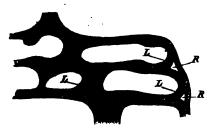


Fig. 44. Längsschnitt durch einige Kammern eines älteren (dickwandigen) Hauses von Termes Lespesii. Nat. Gr. Der in die feste Grundmasse eingelagerte Lehm ist durch dunklere Punkte und Striche bezeichnet. Grössere Anhäufungen von Lehm bei L. — R Ringcanal.

kieldicke mit einer dünnen bräunlichen Kothschicht ausgekleidete Röhren, die die Erde auf weite Entfernung durchziehen, und hier und da zu kleinen unregelmässigen Kammern sich erweitern. Sie führen zu alten Baumstumpfen, unter deren Rinde Termes Lespesii bisweilen getroffen wird, zu Gissara-Stuken u. s. w., und ohne Zweifel auch zu anderen Häusern.

Werfen wir zum Schlusse noch einen flüchtigen Blick auf die in den eben beschriebenen Häusern

lebenden Thiere, deren Bau und Lebensweise ich später ausführlicher · zu besprechen gedenke. -- Unter mindestens dreissig Häusern, die ich in den letzten Monaten geöffnet und von denen ich allerdings die Mehrzahl schon mehr oder minder zerbrochen erhielt, waren nur drei von einer Königin bewohnt; in dem einen fand sich der König in derselben, in dem zweiten in einer benachbarten Kammer; in dem dritten Hause, von dem ich nur ein Bruchstück bekam, wurde er nicht gefunden. In diesen drei Häusern befanden sich ausser König und Königin nur Arbeiter und Soldaten, aber weder Eier und Larven, noch Nymphen oder geflügelte Männchen und Weibchen, von denon letztere in vielen, Larven fast in allen übrigen Häusern zu finden waren. Von Eiern traf ich nur ein einziges Mal einen grösseren Haufen von vielleicht einigen Hunderten, ein paar mal wenige einzelne Eier. - Eier in grösster Menge und junge Larven habe ich dagegen einmal (im October v. J.) zwischen den Wurzeln eines Gissara-Stukens gefunden, der also von den Thieren als Brüteplatz benutzt wurde. Die Streifzüge, die man ausser dem Neste in den unterirdischen Gängen oder unter Baumrinde'antrifft, bestehen wie bei anderen Arten nur aus Arbeitern und Soldaten. Das Vorkommen einer Königin in nur wenigen Häusern und das Fehlen der Eier und Jugendformen gerade in diesen Häusern beweist, dass dasselbe Volk mehrere Häuser besitzt, wenn überhaupt wie bei den Bienen, gesonderte Völker bestehen und wenn man nicht auch hier, wie es BATES hei Termes

arenarius annimmt, für einen bestimmten Bezirk »die ganze Masse von dieser Art Termiten als eine einzige grosse Familie betrachten« muss¹).

Bricht man ein kleines Loch in eine Wand des Hauses von Termes Lespesii, so kann man ganz wie bei den Baunnestern, die Soldaten sehr bedächtig den Schaden untersuchen und dann die Arbeiter mit ihrem Koth denselben wieder ausbessern schen. Reisst man aber ein grösseres Stück der Wand eines Stockwerkes weg, so ziehen sich die Thiere in die nächstliegenden Stockwerke zurück und schliessen mit Koth die engen Eingänge zu denselben, wozu sie natürlich nur wenig Zeit brauchen. Auf diese Weise lässt sich das Haus leicht Stockwerk für Stockwerk gegen eindringende Feinde vertheidigen.

Termes saliens m.²) grabt ähnliche weithin laufende, mit Koth ausgekleidete Gänge, wie T. Lespesii. Sie sind in der Regel etwas weiter, viel häufiger zu grösseren niedrigen Kammern erweitert, der Kothüberzug meist dunkler. Bald laufen sie fast unmittelbar unter der Oberfläche, bald steigen sie bis über fusstief hinab. In solchen tieferliegenden Gängen habe ich erwachsene Nymphen in grosser Zahl getroffen. Eier und junge Brut findet man nicht selten zwischen den Wurzeln der Gissara-Stuken, wo ich auch einmal zwei geflügelte Thiere Züge von Arbeitern und Soldaten gehen auch unter die Rinde sah. modernder Bäume. — Wahrscheinlich wird als Wohnsitz des königlichen Paares ein unterirdisches Haus gebaut. Dass es eine zweite Art unterirdischer Termitennester hier gebe, hat man mir mehrfach berichtet; sie sollen sehr hart, über kopfgross, rundlich und mit einer Art Stiel versehen sein, im Innern aber nicht so regelmässige Kammern haben wie die von Termes Lespesii. Von den mir bekannten Arten könnte nur Termes saliens diese Nester gebaut haben. Ich selbst habe noch keins geschen.

Itajahy, S^a. Catharina, Brazil, im Juli 1872.

4) Linnaea entomol. XII, S. 278.

2) Zu dieser Art oder einer kaum verschiedenen gehört der von HAGEN unter Tormes eingulatus beschriebene und (Linnaea entomol. XII. Taf I. Fig. 43) abgebildete Soldat. Mit ihren gewaltigen zum Beissen untauglichen Kinnbacken können die Soldaten von Termes saliens nach Art der Odontomachiden über fussweite Sprünge nach rückwärts machen. »Maxillis longis altissime resiliens« segt von den Termiten schon LINNÉ, der also von ähnlichen Soldaten Kunde haben musste. « Nahe verwandt scheint der ebenda Taf. I. Fig. 45 abgebildete Soldat zu sein. Man kann diese Thiere kaum in der Gattung Termes belassen, die wohl am besten auf die Arten zu beschränken wäre, deren Soldaten scharfe beissende Kinnbacken (Mandibeln) haben und eines horn- oder nasenartigen Fortsatzes am Kopfe ontbehren.

Nachtrag.

Weit seltener als die Erbauer der Baumnester und die zwischen Gissarawurzeln hausenden Eutermes kommt hier eine dritte Art dieser Gattung vor, die wie jene beiden gelbgraue Flügel mit rostgelbem Bandfelde besitzt. Ihre Wohnungen bilden ansehnliche Kugeln, die im Urwalde lose am Boden liegen. Während die Baumnester durchweg fast gleich dicke und gleich harte Wände haben und während bei den unter Gissara-Stuken häufigen Nestern ein fester Kern von einem lockeren Gefüge papierartig dünner bröcklicher Wände umgeben ist, umschliesst bei diesen Kugetnestern eine ungemein harte dicke Schale die lockrere, weichere Mitte. Stehen sie hierdurch in geradem Gegensetz zu den Gissara-Nestern, so stimmen sie mit diesen darin überein, dass ihr Gefüge kein so völlig regelloses ist, wie bei den Baumnestern, dass vielmehr ihre vorwiegend in tangentialer Richtung ausgedehnten Räume eine mehr oder minder regelmässige concentrische Anordnung zeigen.

Ich hatte kürzlich Gelegenheit, eines dieser Kugelnester zu untersuchen. Dasselbe hatte etwa 1 Meter Durchmesser; die Höhe war etwas geringer, als der wagerechte Durchmesser, da der sonst fast regelmässigen Kugel unten, wo sie dem Boden auflag, ein Abschnitt fehlte. Die Oberfläche des Baues war mit kleinen Moosen und Lebermoosen bewachsen. Die harte Schale, die abzusprengen manchen kräftigen Hieb einer schweren Holzext erforderte, war fast einen Fuss dick. Sie bestand aus stellenweise ziemlich regelmässig concentrischen durchschnittlich etwa 2 Mm. dicken Wänden, die durch zahlreiche Pfeiler und unregelmässige Wände verbunden waren. Bei mehreren Zählungen fand ich in der Richtung des Halbmessers 16 bis 18 concentrische Räume auf 0,4 M. — Nach der Mitte des Nestes zu wurden die Wände allmälig dünner; der innerste Kern war leicht mit der Hand zu zerbröckeln. Hier wurde, leider durch einen Axthieb völlig zerquetscht, die Königin angetroffen; sie war durch kein besonderes, festwandiges Zimmer beschutzt, welches durch die dicke harte Schale des ganzen Nestes überflüssig gemacht ist. Um sie herum fanden sich Eier und junge Brut in ganz unglaublicher Menge. Zahllose geflügelte Männchen und Weibchen bielten sich ausschliesslich in den Räumen der harten Rinde des Baues auf.

Im Innern dieses Nestes herrschte eine ziemlich bedeutende Wärme; sie schien mir etwa der Blutwärme gleich zu sein, eher höher, als niedriger. Mitten im Winter und in tiefem Waldesschatten konnte diese Wärme natürlich nur von den Bewohnern des Nestes selbst erzeugt sein. — Einen saueren Geruch, von dem Beobachter anderer Arten sprechen, habe ich ebon so wenig bei diesem grossen Kugelneste, als bei den Nestern anderer hiesiger Arten wahrgenommen. Der nicht sehr starke Geruch war vielmehr hier, wie bei den Baumnestern ein ganz eigenthüunlich harziger.

Itajahy, Ende Juli 1872.

Ueber die Einwirkung einiger Chloride auf Natriumalkoholat.

Voù

A. Geuther und F. Brockhoff.

I. Phespherpentachlorid u. Natriumalkoholat.

Die Einwirkung von Phosphorpentachlorid auf Natriumalkoholat konnte möglicherweise unter Bildung von Natriumchlorid und dem Aether der Perhydroxylphosphorsäure nach der Gleichung verlaufen :

 $PCl^{5} + 5 C^{2}H^{5}NaO = 5 NaCl + P(OC^{2}H^{5})^{5}$.

Die beiden Körper wurden nach diesem Verhältniss in der Weise auf einander einwirken gelassen, dass zu dem mit Hülfe von 5 Grm. Natrium in einer Retorte dargestellten ganz alkoholfreien Natriumalkoholat das in einem Kochfläschchen, dessen Hals mit dem Tubulus der Retorte durch Gummischlauch verbunden war, befindliche Phosphorpentachlorid allmälig fallen gelassen wurde. Die Einwirkung ist lebhaft und findet unter starker Wärmeentwicklung statt, dabei entweicht ein mit grüngestumter Flamme brennendes Gas von den Eigenschaften des Aethylchlorids. Nachdem alles Phosphorpentachlorid zugegeben worden war, wurde die Retorte mit aufgerichtetem Kühler verbunden und längere Zeit im Wasserbade erhitzt. Darnach wurde der Kühler umgedreht und der Retorteninhalt im Oelbade einer allmälig steigenden Temperatur bis 220° ausgesetzt. Die Menge der überdestillirenden Flüssigkeit war nur gering, sie bestand aus einem unter 100° und einem über 200° übergehenden Theil. Die erstere war gewöhnlicher Alkohol, die letztere bei 215° siedender Phosphorsäureaether: PO(OC2115)3. Der in der Retorte verbliebene Rückstand bestand aus unverändertem Natriumalkoholat und Natriumchlorid; Natriumphosphat konnte in seiner wässrigen Lösung nicht nachgewiesen werden, wohl aber aetherphosphorsaures Salz, denn als dersche mit Natriumcarbonat und Natriumnitrat im Platinticgel eingedampft und geschmolzen worden war, gab er beträchtliche Phosphorsäurereaction. Darnach verläuft die Einwirkung also nicht nach obiger, sondern offenbar nach folgender Gleichung:

 $PCl^{5} + 4 C^{2}H^{5}ONa = 4 NaCl + C^{2}H^{5}Cl + PO(OC^{2}H^{5})^{3}$

welche sich zusammensetzt aus den beiden :

$$PCI^{5} + C^{2}H^{5}ONa = POCI^{3} + C^{2}H^{5}CI + NaCI$$

 $POCl^{3} + 3 C^{2}H^{5}ONa = PO(OC^{2}H^{5})^{3} + 3 NaCl.$

II. Perchloraethylen n. Natriumalkoholat.

Die Einwirkung von Perchloraethylen auf alkoholhaltiges Natriumalkoholat ist vor längerer Zeit von dem Einen von uns und FISCHER ¹) untersucht worden. Es entstehen dabei hauptsächlich ausser Natriumchlorid, aetherglyoxylsaures Natron und Dichloressigsäureaether und dann noch in geringerer Menge zwei ölförmige Körper von der Zusammensetzung: C4H⁵Cl³O (Siedep. 453°) und C⁸H¹⁶Cl²O³ (Siedep. 205°). Die Constitution der Letzteren war damals nicht klar geworden, sie können indess jetzt, seit der Eine von uns die Einwirkung von zweifach gechlortem Chloraethyl auf Natriumalkoholat studirt und dabei ausser Natriumchlorid und Essigaether auch die Bildung von Monochlor-aethoxyl-Aethylen und von dreibasischen Essigsäureaether nachgewiesen hat²), gedeutet werden. Das Erstere ist nämlich Trichlor-aethoxyl-Aethylen: C $\frac{CCl^2}{Cl(OC²H⁵)}$, das Letztere dreibasischer Dichloressigsäureaether: C $\frac{CHCl²}{(OC²H⁵)³}$.

Obwohl beide Verbindungen, hauptsächlich die Letztere, in verhältnissmässig nur sehr geringer Menge entstehen, so sind sie doch von grosser Wichtigkeit für das Verständniss des ganzen Hergangs und der Entstehung der übrigen Producte, welche aus ihnen auf einfache Weise hervorgehen.

Das Trichlor-aethoxyl-Aethylen ist das einfachste Umsetzungsproduct des Perchloraethylens, es entsteht durch Auswechslung von 1 Mgt. Chlor gegen 1 Mgt. Aethoxyl nach der Geichung:

$$C_{Cl^2}^{CCl^2} + C^{2H5}ONa = C_{Cl(OC^2H^5)}^{CCl^2} + NaCl.$$

Der dreibasische Dichloressigsäureaether, welcher nicht mehr ein Abkömmling des Aethylens, sondern des Aethans ist, kann aus

¹⁾ Diese Zeitschrift Bd. 1, p. 47 u. 167.

²⁾ Ebend. Bd. VI, p. 224.

Ueber die Einwirkung einiger Chloride auf Natrinmalkoholat.

dem Trichlor-aethoxyl-Aethylen durch Natriumalkoholat nur unter Mitwirkung von Alkohol entstehen und zwar in der Art, dass als Zwischenglied der Reaction "erst Dichlor-diaethoxyl-Aethylen gebildet wird, welches aber sofort unter Aufnahme von I Mgt. Alkohol den dreibasischen Aether erzeugt:

$$C_{Cl(OC^{2}H^{5})}^{CCl^{2}} + C^{2}H^{5}ONa = C_{(OC^{2}H^{5})^{2}}^{CCl^{2}} + NaCl$$
$$C_{(OC^{2}H^{5})^{2}}^{CCl^{2}} + C^{2}H^{5}OH = C_{(OC^{2}H^{5})^{3}}^{CHCl^{2}}.$$

Der ein basische Dichloresssigsäureaether gebt aus dem dreibasischen Aether durch die Einwirkung von Wasser bervor, welcher theils hygroscopischen Ursprungs sein kann, der Hauptsache nach aber entsteht bei der Bildung brauner harzartiger Säuren, welche in nicht unbeträchtlicher Menge stets mit erzeugt werden ¹):

$$C \frac{CHCl^2}{(OC^2H^5)^8} + OH^2 = C \frac{CHCl^2}{OC^2H^5} + C^2H^5OH.$$

Dieser Aether liefert durch Umsetzung mit Natriumalkoholat zunächst Diaethylglyoxylsäureaether, welche Verbindung bei der Einwirkung von durch Wasser entstehendes Natriumhydroxyd in Alkohol und Diaeth ylglyoxylsaures Natron übergeführt wird:

$$C \frac{CHCl^{2}}{OC^{2}H^{5}} + 2 C^{2}H^{5}ONa = C \frac{CH(OC^{2}H^{5})^{2}}{OC^{2}H^{5}} + 2 NaCl$$

$$C \frac{CH(OC^{2}H^{5})^{2}}{OC^{2}H^{5}} + NaOH = C \frac{CH(OC^{2}H^{5})^{2}}{ONa} + C^{2}H^{5}OH.$$

Wenn sich so in einfacher Aufeinanderfolge die verschiedenen Producte aus dem Trichlor-aethoxyl-Aethylen durch dauernde Einwirkung von Natriumalkoholat, Alkohol und Wasser ergeben, so leuchtet ein, muss von diesem Product eine um so grössere Menge gebildet werden, je verhältnissmässig kurzer die Einwirkung des Natriumalkoholats auf das Perchloraethylen dauert und je niedriger die Temperatur ist, bei welcher die Umsetzung erfolgt. Das ist, wie unsere Versuche gezeigt haben, auch in der That der Fall. Wenn man 4 Mgt Perchloraethylen mit 4 Mgt. alkoholischem Natriumalkoholat im Wasserbade am umgekehrten Kühler e in e Stunde lang erhitzt, so hat sich die Zersetzung vollendet, freilich nicht in der Art, dass man nun an Stelle des Perchloraethylens die entsprechende Menge Trichloraethoxylaethylen gebildet fände, denn es bleibt

⁴⁾ Vergl. FISCHER u. GEUTHER, diese Zeilschrift Bd. I, p. 48 u. SCHREIDER ebend. Bd. V, p. 874.

A. Gewther n. F. Brockhoff,

362

immer eine beträchtliche Menge von Perchloraethylen unzersetzt und wird dafür Trichloraethoxylaethylen weiter verändert, aber doch so, dass von nun an kein Perchloraethylen mehr umgesetzt wird. Die braun gewordene Flüssigkeit, in welcher sich viel Kochsalz abgeschieden hat, wird mit Wasser verdünnt, die hellbraune wässrige Lösung von der dunkelbraunen Oelschicht getrennt, letztere über Calciumchlorid getrocknet und rectificirt. Das unter 430° Destillirende, hauptsächlich aus unverändertem Perchloraethylen bestehend, wird immer von Neuem der gleichen Einwirkung ausgesetzt und das über 130º Destillirende weiter rectilicirt. Es besteht aus Perchloraethylen, aus Trichlor-aethoxyl-Aethylen, und wenig über 160° Siedendem. Als auf diese Weise 60 Grm. Perchloraethylen verarbeitet wurden, bis davon nichts unzersetzt mehr vorhanden war, wurden erhalten 15 Grm. Trichlor-aethoxyl-Aethylen und etwa 4 Grm. Höhersiedendes d. h. der Hauptsache nach dreibasischer Dichloressigsäureaether. Von gewöhnlichem Dichloressigsäureaether, der den gleichen Siedepunct wie das Trichlor-aethoxyl-Aethylen besitzt war kaum etwas entstanden, da das erhaltene Product nach dem häufigen Schütteln und Stehenlassen mit conc. wässrigen Ammoniak kaum eine Volumverminderung erlitt. Das so gereinigte Product stellt, wie auch eine neue Analyse bestätigte, das reine bei 152-1530 uncorr. siedende Trichlor-aethoxyl-Aethylen dar.

Der Grund, weshalb nur ¼ dieser Verbindung aus dem angewandten Perchloraethylen gebildet wird, liegt offenbar einestheils darin, dass dieselbe ebenso leicht, als das Letztere, von Natriumalkoholat weiter verändert wird. Deshalb entsteht eine geringe Menge von dreibasischem Dichloressigsäureaether und wie die Untersuchung der in Wasser löslichen Natriumsalze gelehrt hat eine grössere Menge desjenigen der Actherglyoxylsäure. Von den 60 Grm. Perchloraethylen wurden 12,7 Grm. des Salzes erhalten, als die wässrige Lösung mit Kohlensäure übersättigt nach dem Eindampfen zur Trockne mit absol. Alkohol ausgezogen und das darin Gelöste durch mehrmalig erneutes Auflösen und Abfiltriren des ungelöst Bleibenden gereinigt worden war. Gefunden wurden 19,0 Proc. Natriumoxyd, während sich für das aetherglyoxylsaure Natron 18,2 Proc. berechnen.

Wie leicht in der That das Trichloraethoxylaethylen sich in aetherglycolsaures Natron durch alkoholisches Natriumalkoholat verwandeln lässt, zeigen folgende Versuche, welche eigentlich unternommen worden sind, um es in den dreibasischen Dichloressigsäureaether nach der Gleichung:

 $C^{4}H^{5}ClO^{3} + C^{2}H^{5}NaO + C^{2}H^{6}O = C^{9}H^{16}Cl^{2}O^{3} + NaCl$ überzuführen.

Ueber die Einwirkung einiger Chloride auf Natriumalkoholat.

3,4 Grm. desselben wurden mit aus 0,5 Grm. Natrium dargestellten überschüssigen Alkohol enthaltendem Alkoholst in ein Rohr eingeschlossen. Nach kurzer Zeit trat schon bei gewöhnlicher Temperatur die Ausscheidung von Natriumchlorid ein. Das Rohr wurde darauf während etwa vier Stunden im Wasserbade erhitzt und darauf nach dem Erkalten geöffnet. Es war kein Druck vorhanden. Durch Zusatz von Wasser wurde Oel abgeschieden, dessen Menge nach dem Trocknen 1,3 Grm. betrug und bei etwa 150° destillirte. Beim Schütteln mit conc. wässrigen Ammoniak verschwand nur wenig davon, es war also nur wenig vom einbas. Aether der Dichloressigsäure entstanden, deren Ammoniumsalz in geringer Menge nach dem Verdunsten des Ammoniaks concentrisch strahlig krystallisirt und an der Luft schnell zerfliessend zurtickblieb. Die natriumhaltige wässrige Lösung lieferte nach dem Uebersättigen mit Kohlensäure, Eindampfen zur Trockne und Ausziehen mit absol. Alkohol 0,7 Grm. gelblich gefärbtes zerfliessliches Salz, dessen Natriumoxydgehalt zu 18,6 Proc. gefunden wurde, also aetherglyoxylsaures Salz war, welches 18,2 Proc. verlangt.

Darnach wurden 6,2 Grm. Trichloraethoxylaethylen mit 2 Grm. d. h. der berechneten Menge absol. Alkohol vermischt und zu der berechneten Menge alkoholfreiem Natriumalkoholat fliessen gelassen, welches sich in einem Kochfläschchen befand, das am umgekehrten Kühler befestigt war, dessen oberes Ende mittelst eines Glasrohrs unter einer etwa 250 Mm. hohen Quecksilbersäule ondigte. Nachdem ebenfalls vier Stunden im Wasserbade erhitzt worden war, wurde wie im vorigen Versuch verfahren. Es wurden erhalten 4,2 Grm. Oel, das durch Schütteln mit wässrigem Ammoniak nur eine geringe Volumverminderung zeigte und bei 450-460° siedete, also unverändertes Trichloraethoxylaethylen war und aus der wässrigen Lösung 1,4 Grm. zerfliessliches in absol. Alkohol leicht lösliches aetherglyoxylsaures Natron.

Diese Versuche zeigen zugleich, dass man zu grösseren Mengen von dreibas. Dichloressigsäureacher auf diese Weise nicht gelangen kann. Ob die Bildung dieser Verbindung reichlicher eintritt, wenn man umgekehrt verfährt und das alkoholische Natriumalkoholat in absoluten Alkohol gelöst zu überschüssigem Trichlor-acthoxyl-Aethylen treten lässt, muss der Versuch noch entscheiden.

Ganz in Uebereinstimmung mit dieser Zersetzung des Trichloraethoxylaethylens steht diejenige, welche es durch Wasser bei 460° erleidet. Dieselbe ist von dem Einen von uns schon früher studirt worden ¹), so dass an sie hier nur erinnert zu werden braucht, es ver-

⁴⁾ Vergl. d Zeitschrift Bd. 1, p. 469.

wandelt sich dabei nämlich in Glyoxylsäure, Alkohol und Chlorwasserstoff nach der Gleichung :

 $C_{Cl(OC^2H^5)}^{CCl^2} + 4 OH^2 = C_{OH}^{CH(OH)^2} + C^2H^5OH + 3 ClH.$

Auf das Perchloraethylen haben wir schliesslich auch noch das alkoholfreie Natriumalkoholat einwirken lassen. Dabei entstehen dieselben Producte aber in geringerer Menge, gleichzeitig tritt ein mit blauer Flamme brennendes Gas auf, das nicht näher untersucht wurde und viel brauner Farbstoff; das bei weitem meiste Perchloraethylen bleibt unverändert.

III. Perchioraethan u. Natriumalkoholat.

Es wurden angewandt auf 4 Mgt. Perchloraethan 6 Mgte. alkoholfreies Natriumalkoholat. Das Erstere wurde vor dem Zufügen zu Letzterem in wasserfreiem Aether gelöst. Da ein Versuch, bei welchem diese Körper im verschlossenen Rohr zusammenkamen, gezeigt hatte, dass bei 50° noch keine Einwirkung statt hat, bei 100° aber nach einstündiger Digestion die Röhre zersprengt wird, so wurde das Natriumalkoholat in einem Retörtchen bereitet, dieses sodann mit einem umgekehrten Kühler verbunden, dessen offenes Ende mit einem Glasrohr verschlossen war, das in einem Cylinder unter einer Quecksilberstule von 250 Mm. Höhe sich öffnete und die aetherische Lösung von Perchloraethan zugegeben. Es wurde im Oelbad langsam bis 100° erhitzt und da die Temperatur während einer Stunde erhalten. Der Aether destillirte meist fort und sammelte sich über dem Quecksilber, ausser einer Bräunung der Masse, war von Einwirkung nichts bemerkbar. Als nun die Hitze allmälig gesteigert wurde, traten bei etwa 118° auf einmal starke Dämpfe auf und fand die lebhafte Entwicklung eines mit nicht leuchtender Flamme brennbaren Gases statt. Die letztere verminderte sich bald und hörte. als die Temperatur bis 140° gestiegen war, ganz auf. Der Inhalt der Retorte wurde nun abdestillirt. Das Destillat bestand zum Theil aus Aether und Alkohol, die durch Waschen mit Wasser entfernt wurden, während ein schwereres Oel zurückblieb, das nach dem Entwässern bei der Destillation unter 430° ganz übergegangen war. Die fractionirte Destillation zeigte, dass der grösste Theil bei 122° siedete, also Perchloraethylen war, wie auch die Analyse zeigte, während der geringere Theil einen höheren Siedepunct besass und an feuchter Luft sich in Krystalle von Oxalsäure und Chlorwasserstoffgas zerlegte, sich also wie Trichlor-aethoxyl-Aethylen verhielt.

Bei einem zweiten ebenso angestellten Versuch begann die Einwirkung unter Gasentwicklung schon bei 106° und bei einem dritten Versuch schon bei 110°. Als beim zweiten Versuch sogleich während der lebhaften Einwirkung abdestillirt wurde, ging Anfangs gleichfalls Flüssigkeit, später aber ein krystallinisch erstarrender Körper über. Der Letztere hatte das Ansehen und den Geruch des Perchloraethans. Er war auch in Alkohol schwer löslich und zeigte, nachdem er damit gehörig abgewaschen und über Schwefelsäure wieder völlig getrocknet worden war, den Schmelzpunct 179°¹).

Die überdestillirte Flüssigkeit wurde mit Wasser gewaschen, über Chlorcalcium getrocknet und von Neuem rectificirt. Die Hauptmenge ging zwischen 420 und 430° über, war also Perchloraethylen. Beim dritten Versuch wurde am umgekehrten Kühler bis 480° die Retorte im Oelbade heiss werden gelassen. Als bei dieser Temperatur von Neuem Gasentwicklung eintrat wurde überdestillirt. Das Destillat war wieder vollkommen flüssig und bestand wieder zum grössten Theil aus Perchloraethylen und wenig Höhersiedendem. Als die im ersten und dritten Versuch erbaltenen über 430° siedenden Mengen vereinigt der fractionirten Destillation unterworfen wurden, zeigte es sich, dass dieselben aus Perchloraethylen, aus Trichlor-aethoxyl-Aethylen und dem dreibasischen Aether der Dichloressigsäure bestanden, also Veränderungsproducte waren, welche aus dem in grösserer Menge gebildeten Perchloraethylen hervorgegangen waren.

Die bei diesen drei Versuchen erhaltenen braunen Retortenrückstände, welche zum grössten Theil augenscheinlich noch aus unverändertem Natriumalkoholat bestanden, wurden mit Wasser behandelt. Dabei blieb ein dunkelbrauner, in Alkalien, Säuren, Alkohol und Aether unlöslicher harzartiger Körper zurück, während eine braune stark alkalische Lösung entstand. Aus dieser schied sich, nach dem vorsichtigen Ansäuren mit Salzsäure, ebenfalls ein brauner Körper aus. Im Filtrat davon konnte etwas Oxalsäure nachgewiesen werden, dasselbe wurde mit Natriumcarbonat übersättigt auf dem Wasserbade zur Trockne ver-

⁴⁾ Der Schmelzpunct des Perchloraethans aber wird von REGNAULT zu 460° angegeben, welche Zahl in die Lehrbücher allgemein übergegangen ist. Wäre die letztere richtig, so hätten die oben erwähnten Krystalle nicht Perchloraethan sein können. Als indessen mit reinem, wiederholt mit Alkohol gewaschenen und darauf über Schwefelsäure getrocknetem Perchloraethan eine Schmelzpunctbestimmung vorgenommen wurde, so ergab dieselbe den gleichen Schmelzpunct 479°. Der von REGNAULT gefundene niedrigere Schmelzpunct hat wahrscheinlich seinen Grund in einer ihm noch angehangenen kleinen Menge von dreifachgechlorten Aethylenchlorid.

A. Geuther u. F. Brockhoff,

dampft und mit Alkohol vollständig ausgezogen. Dieser Auszug enthält ausser einer geringen Menge von Natriumchlorid zwei Natriumsalze, ein in der Luft zerfliessliches und in abs. Alkohol sehr leicht lösliches, welches in grösserer Menge vorhanden ist und ein darin schwerer lösliches. Der Rückstand wurde zur Entfernung des Natriumchlorids wiederholt in der kleinsten Menge abs. Alkohols gelöst und dann mit einer geringeren, als zur Lösung nothwendigen Menge desselben in der Kälte digerirt. Das zurückgebliebene Salz wurde auf seinen Natriumgehalt untersucht. Es enthielt nach Berücksichtigung einer kleinen Menge Natriumchlorids: 36,2 Proc. Natriumoxyd. Darnach konnte es nicht wohl etwas anderes als noch etwas verunreinigtes Natriumacetat sein, welches 37,8 Proc. Natriumoxyd verlangt. Es wurde nochmals mit neuem absol. Alkohol digerirt und der Rückstand wieder analysirt. Es ergab jetzt 37,2 Proc. Natriumoxyd und zeigte alle Reactionen des Natriumacetats. Das in Alkohol leicht lösliche Salz, obwohl seine völlige Reindarstellung d. h. Befreiung von dem vorigen nicht wohl möglich war, wurde doch auf seinen Natriumoxydgehalt untersucht. Gefunden wurde, unter Berücksichtigung einer geringen Natriumchloridmenge: 23,4 Proc. Natriumoxyd, so dass es wahrscheinlich ist, das Salz sei mit Natriumacetat verunreinigtes Natriumsalz der Aetherglyoxylsäure gewesen, welches 48,2 Proc. Natriumoxyd verlangt, womit seine übrigen Eigenschaften auch übereinstimmen. Dasselbe würde dann das nothwendige dritte Product ausser Trichlor-aethoxyl-Aethylen und dem dreibasischen Aether der Dichloressigsäure sein, welches bei der weiteren Einwirkung von zuerst gebildetem Perchloraethylen auf noch vorhandenes Natriumalkoholat hätte entstehen müssen. Das gleichzeitig mitentstandene Natriumacetat dagegon ist offenbar ein unmittelbares Product der Einwirkung von Perchloraethan auf Natriumalkoholat neben Perchloraethylen. Die 2 Mgte Chlor, welche von Ersterem weggehen müssen um das Letztere übrig zu lassen wirken auf Natriumalkoholat oxydirend und Essigsäure bildend, wahrscheinlich nach folgender Gleichung:

 $3 C^{2}H^{5}ONa + 2 CI = C^{2}H^{3}NaO^{2} + C^{2}H^{6} + C^{2}H^{6}O + 2 NaCI.$

Hierdurch würde ausser der Bildung von Perchloraethylen das Auftreten eines mit nicht leuchtender Flamme brennenden Gases (Aethan) und das von Alkohol erklärt.

Die Bildung der beiden braunen harzartigen Producte aber, von welchen jedenfalls das eine saurer Natur ist, kann einestheils von der directen Einwirkung des Perchloraethans auf Natriumalkoholat herstammen, da unter dem Einfluss oxydirender Wirkung, wie schon unter

Ucber die Einwirkung einiger Chloride auf Natriumalkoholat.

...

dem Einfluss der Luft, das Natriumalkoholat gebräunt wird, anderntheils von der Einwirkung des Perchloraethylens auf Natriumalkoholat, wobei sich gleichfalls stets braune Nebenproducte bilden. Beide, das in Alkalien Unlösliche sowohl, als das darin Lösliche, sind nach genügender Behandlung mit verdünnter Salzsäure und nachherigem Waschen mit Wasser nach dem Trocknen bei 125° analysirt worden. Das Erstere hat ergeben: 67,4 Proc. Kohlenstoff und 4,7 Proc. Wasserstoff, das Andere 66,5 bis 67,7 Proc. Kohlenstoff und 5,5 bis 6,4 Proc. Wasserstoff.

IV. Trichler-Aethylenchlerid u. Natriumalkehelat.

Die zu den Versuchen verwandte Verbindung C²IICl⁵ war durch Einwirkung von Chlor auf Aethylenchlorid im hellen Tageslicht erhalten und war nach vielen Rectificationen zwischen 152 und 155° übergegangen. Die reine Verbindung siedet nach REGNAULT bei 153,5°.

Zuerst wurden die beiden Verbindungen in Röhren auf einander einwirken gelassen. Zu 5 Mgtn. alkoholfreiem Natriumalkoholat wurde 4 Mgt. Trichloraethylenchlorid, mit dem gleichen Volum wasserfreien Aethers vermischt, gefügt. Sofort trat unter ziemlicher Wärmeentwicklung die Einwirkung und Abscheidung von Natriumchlorid ein. Die Röhren wurden nach dem Erkalten zugeschmolzen und längere Zeit erst auf 100°, sodann auf 120° erhitzt. Bei dieser Temperatur trat bald Explosion ein. Die Leichtigkeit mit welcher die Einwirkung schon in der Kälte vor sich gegangen war, legte es nahe, dass das Trichloraethylenchlorid durch Natriumalkoholat in gleicher Weise zunächst zersetzt werde, wie durch alkohol. Kali, nämlich in Perchloraethylen unter Bildung von Natriumchlorid und Alkohol, was ein Versuch, der in einem Retörtchen vorgenommen wurde, durchaus bestätigte. Dabei wurden 35 Grm. Trichloraethylenchlorid angewandt und ohne Aetherzusatz auf das alkoholfreie Natriumalkoholat wirken gelassen. Es wurden erhalten an Alkohol und Perchloraethylen: 34 Grm. anstatt 36 Grm. und daraus wurden nach dem Vermischen mit Wasser gewonnen 22 Grm. Perchloraethylen anstatt der sich berechnenden 28 Grm. Dass alkoholhaltiges Natriumalkoholat in gleicher Weise wirken würde, war natürlich und wurde durch den Versuch bestätigt. Ein Theil des gebildeten Perchloraethylens wird dabei weiter zersetzt, was den Verlust daran Ist das angewandte Trichloraethylenchlorid perchloraethanerklärt. haltig, so ist ausser aetherglyoxylsaurem Salz auch essigsaures im Rückstand neben unverändertem Natriumalkoholat enthalten.

V. Dichloraethylenchlorid u. Natriumalkoholat.

Das zu den Versuchen verwandte Dichloraethylenchlorid war aus Aethylenchlorid in ähnlicher Weise wie das Trichloraethylenchlorid erbalten und durch wiederholte Rectificationen gereinigt. Verwandt wurde zunächst ein zwischen 133 u. 136° überdestillirendes Product und so viel Natriumalkoholat, dass alles Chlor gegen Aethoxyl hätte ausgetauscht werden können. Das Dichloraethylenchlorid wurde langsam zu dem alkoholhaltigen Alkoholat, das sich in einem aufgerichteten mit einem Kühler und der Quecksilbersäule verbundenen Retörtchen befand, fliessen gelassen. Die Einwirkung ist sehr lebhaft unter reichlicher Abscheidung von Natriumchlorid. Nach Beendigung der Einwirkung wurde die Retorte noch eine halbe Stunde im Wasserbade erhitzt und der Inhalt dann, zuletzt im Wasserstoffgasstrom, abdestillirt. Das alkoholhaltige Destillat schied auf Zusatz von Wasser ein Ocl ab, das nach dem Trocknen von 121 bis 126° vollständig überging. Die grössere zwischen 124 u. 125° destillirende Partie wurde analysirt.

I. 0,2719 Grm. Substanz lieferten 0,1032 Grm. Wasser, entspr. 0,01148 Grm. = 4,2 Proc. Wasserstoff und 0,3287 Grm. Kohlensäure, entspr. 0,08965 Grm. = 33,0 Proc. Kohlenstoff.

0,2977 Grm. Substanz gaben 0,6346 Grm. Argentichlorid entspr. 0,157 Grm. = 52,7 Proc. Chlor.

Daraus berechnet sich nahezu die Formel des Dichlor-aethoxyl-Aethylens: C⁴H⁶Cl²O = C $_{Cl(OC^{2}H^{5})}^{CHCl}$, welche verlangt: 34,0 Proc. Kohlenstoff, 4,3 Proc. Wasserstoff und 50,4 Proc. Chlor.

Der um 4 Proc. geringere Kohlenstoffgehalt und der um ca. 2 Proc. erhöhte Chlorgehalt, welchen die Substanz im Vergleich zum Dichloraethoxylaethylen ergab, hatte wahrscheinlich seinen Grund darin, dass dem angewandten Dichloraethylenchlorid noch etwas höher siedendes Trichloraethylenchlorid beigemengt war, welches die Veranlassung zur Bildung von bei 422° siedendem Perchloraethylen gegeben haben musste. Und in der That entspricht die gefundene Zusammensetzung fast genau einem Gemenge von 95 Proc. Dichloraethoxylaethylen und 5 Proc. Perchloraethylen, welches verlangt: 33,0 Proc. Kohlenstoff, 4,4 Proc. Wasserstoff und 52,2 Proc. Chlor. Das spez. Gewicht der Substanz wurde bei 42° zu 4,46 gefunden.

Es wurde deshalb das angewandte Dichloraethylenchlorid sammt den von 130 bis 133° destillirenden Portionen nochmals der Reinigung unterworfen und nach vielfachen Rectificationen ein von 132,5° bis 133°,5 destillirendes Product erhalten, dessen corr. Siedepunct 135°,4

 $\cdot T$

369

war. Dasselbe ergab bei der Analyse 14,7 Proc. Kohlenstoff, 1,5 Proc. Wasserstoff und 84,4 Proc. Chlor, war also die reine Verbindung C²H²Cl⁴, denn diese verlangt: 14,3 Proc. Kohlenstoff, 1,2 Proc. Wasserstoff und und 84,5 Proc. Chlor. Mit diesem Product wurde auf gleiche Weise verfahren wie mit dem zuerst Angewandten. Das erhaltene Dichloraethoxyl-Aethylen, dessen Menge auch hier, wie bei anderen Versuchen, den dritten Theil des Gewichts der angewandten Verbindung betrug, destillirte zwischen 124 und 127° über mit Ausnahme einer geringen Menge Höhersiedendem, welches sich leicht entfernen liess und wie weiter unten gezeigt wird ein Product der weiteren Einwirkung auf das Dichlor -aethoxyl-Aethylen ist. Unter 124° Siedendes, also Perchloraethylen, war nicht vorhanden, sondern die Verbindung rein, wie die folgende damit ausgeführte Analyse zeigte:

II. 0,1832 Grm. desselben lieferten 0,0729 Grm. Wasser, entspr. 0,0081 Grm. = 4,4 Proc. Wasserstoff und 0,2256 Grm. Kohlensäure, entspr. 0,06153 Grm. = 33,6 Proc. Kohlenstoff.

0,2105 Grm. Substanz gaben 0,4272 Grm. Argentichlorid, entspr. 0,1057 Grm. = 50,2 Proc. Chlor.

ber.	gef.			
	T	1		
$C^4 = 34,0$	33,0	33,6		
$H^6 = 4,3$	4,2	4,4		
$Cl^2 = 50, 4$	52,7	50 ,2		
0 = 11,3	_	·		
400,0				

Der Siedepunct dieses Dichlor-aethoxyl-Aethylens liegt bei 128,2 (corr.), sein spez. Gewicht ist bei + 10° zu 1,08 gefunden worden. Es ist eine farblose Flüssigkeit von eigenthümlichen aromatischen hintennach scharfem Geruch, welche mit Wasserohne Veränderung gewaschen werden kann. Wird dasselbe aber in schlecht schliessenden Gefässen aufbewahrt, so erleidet es jedenfalls unter Mitwirkung von Feuchtigkeit eine Zersetzung: es wird von Chlorwasserstoffbildung rauchend und giebt beim Erwärmen leicht ein mit grüngesäumter Flamme brennendes Gas, Chloracthyl, aus. Wird es mit überschüssigem Wasser in ein Glasrohr eingeschmolzen und auf 480° erhitzt, so serschwindet es allmälig. Beim Oeffnen des Rohres entweicht ein mit grüngesäumter Flamme brennendes Gas (Chloraethyl) und die Flüssigkeit enthält viel Chlorwasserstoff. Nach dem Eindampfen bleibt ein saurer Syrup zurück. Derselbe wurde in Wasser gelöst mit Calciumhydroxyd übersättigt und der überschüssige Kalk durch Kohlensäure entfernt. Es wurde ein in

ł

A. Geuther u. F. Brockhoff,

kaltem Wasser nicht leicht lösliches in seideglänzenden Nadeln krystallisirendes Salz vom Aussehen des glycolsauren Kalks erhalten. Dasselbe wurde, nachdem es eine Nacht über Schwefelsäure gestanden hatte, analysirt.

0,314 Grm. desselben verloren beim Erbitzen auf 125° 0,0681 Grm. Wasser, entspr. 21,8 Proc. und hinterliessen nach dem Verbrennen und Glüben 0,0722 Grm. Calciumoxyd = 23,0 Proc.

Der glycolsaure Kalk verlangt: 22,4 Proc. Wasser und 23,0 Proc. Calciumoxyd. Demnach war also die durch Einwirkung des Wassers aus dem Dichloraethoxylaethylen bei 480° gebildete Säure Glycolsäure, entstanden nach der Gleichung:

$$C C_{Cl \cdot OC^{2}H^{5}}^{CHCl} + 2 OH^{2} = C O_{OH}^{CH^{2}OH} + CIH + C^{2}H^{5}Cl.$$

Durch überschüssiges alkoholisches Natriumalkoholat wird das Dichlor-acthoxyl-Acthylen in das Natriumsalz der Actherglycolsäure verwandelt, es verhält sich also ganz analog wie das Trichlor-aethoxyl-Aethylen welches dabei in das Natriumsalz der Aetherglyoxylsäure tibergeht. Als Zwischenglied tritt dabei auch, wie es scheint, etwas Monochloressigsäureaether auf, welcher wahrscheinlich in der geringen Menge mit entstehendem höher Siedendem enthalten ist und vorzüglich gebildet wird, wenn man eine etwas höhere Temperatur als 100° bei der Umsetzung des Dichloraethylenchlorids mit dem Natriumalkoholat anwendet. Wird das über 128° siedende Oel nämlich mit conc. Ammoniak geschüttelt, so verschwindet ein grosser Theil davon und es bleiben nach dem Verdunsten der ammoniakal. Lösung über Schwefelsäure harte, an der Luft langsam feucht werdende Krystalle übrig, welche mit Natronlauge übergossen nicht sofort, sondern erst nach einiger Zeit oder beim Erwärmen damit Ammoniak entwickeln, also ein Amid und wie es den Anschein hat das der Monochloressigsäure sind.

Das Natriumsalz der Aetherglycolsäure ist bei dem überschüssigen Natriumalkoholat und dem gebildeten Natriumchlorid enthalten, mag man bei der Einwirkung Dichlor-aethoxyl-Aethylen oder Dichloraethylenchlorid angewandt haben. Es wird nach dem Versetzen mit Wasser, Sättigen mit Kohlensäure und Filtriren oder schwachen Uebersättigen mit Salzsäure, Filtriren und Wiederübersättigen mit Natriumcarbonat, Verdampfen zur Trockne und Ausziehen mit absol. Alkohol von Letzterem gelöst und bleibt nach dem Abdestilliren desselben als eine zerfliessliche meist etwas bräunlich gefürbte amorphe Masse übrig, die von einem geringen Kochsalzgehalt durch nochmaliges Auflösen in absolutem Alkohol fast vollständig befreit wird. Das aus Dichlor-aethoxyl-Aethylen

370 -

und Natriumalkoholat erhaltene Salz wurde nach dem Trocknen bei 105° im Platintiegel verbrannt und gab unter Berücksichtigung des geringen Gehalts an Natriumchlorid 24,4 Proc. Natriumoxyd. Das aus Dichloraethylenchlorid bei der Darstellung von Dichlor-aethoxyl-Aethylen mit entstandene Salz ergab: 24,9 Proc. Natriumoxyd. Das aetherglycolsaure Natron verlangt 24,6 Proc. Natriumoxyd.

Wirkt auf das Dichlor-aethoxyl-Aethylen nicht überschüssiges Natriumalkoholat, sondern eine viel geringere Menge, als zur Umsetzung der ganzen Menge nöthig ist, so wird gleichfalls Aetherglycolsäure gebildet. daneben entsteht aber noch Aethylchlorid, Chlorwasserstoff und Monochloressigsäure-Aether. Es zeigt dies der folgende Versuch, welcher mit von der ersten Darstellung herstammender Substanz angestellt wurde, vornehmlich um zu sehen, ob durch eine Behandlung mit einer geringen Menge von Natriumalkoholat die in ihr enthaltene geringe Menge von Perchloraethylen nicht zuerst verändert und sie also davon befreit werden könnte. 3,2 Grm. dieses Dichlor-acthoxyl-Aethylens wurden mit aus 0.05 Grm. Natrium bereiteten Natriumalkoholats eine halbe Stunde lang am aufgerichteten Kühler mit Quecksilbervorlage im Wasserbade erhitzt. Dabei fand Natriumchloridausscheidung statt, während sich gleichzeitig ein mit grüngesäumter Flamme brennendes Gas-Aethylchlorid entwickelte. Der Rückstand im Kölbchen raucht beim Oeffnen durch vorhandenes Chlorwasserstoffgas und reagirt natürlich sauer. Wasser schied daraus 2 Grm. Oel ab, welches von 137 bis 145° überdestillirte (der corr. Siedepunct des Monochloressigsäure-Aethers liegt bei 143°,5). Diese wurden nun mit überschüssigen alkoholischem Natriumalkoholat in ein Rohr eingeschlossen. Es fand sofort Umsetzung unter Erwärmung und Abscheidung von viel Kochsalz statt. Das Rohr wurde darauf bis zur völligen Umsetzung im Wasserbade längere Zeit erhitzt und der Inhalt nach dem Erkalten mit Wasser verdünnt. Es schied sich erst nach längerer Zeit nur ein Tropfen Oel ab. Die wässrige Lösung wurde mit Kohlensäure übersättigt, auf dem Wasserbade zur Trockne gebracht, mit absolutem Alkohol ausgezogen und das Lösliche, welches eine Spur Natriumchlorid enthielt, analysirt.

0,4677 Grm. des bei 105° getrockneten amorphen Salzes im Platintiegel verbrannt gaben 0,1946 Grm. weissen geschmolzenen Rückstand, welcher 0,0067 Grm. Natriumchlorid, also 0,1879 Grm. Natriumcarbonat enthielt. Das Letztere entspricht 0,1099 Grm. = 24,0 Proc. Natriumoxyd, während das aetherglycolsaure Natriumsalz: 24,6 Proc. Natriumoxyd verlangt.

Dies eben angeführte Verhalten des Dichlor-aethoxyl-Aethylens sowie das zu Wasser, zeigt, dass die Bildung von einbasischem Monochloressigsäure-Aether aus demselben noch auf andere Weise, als durch die erst entstehende Verbindung des dreibasischen Aethers, wie das für das Trichlor-aethoxyl-Aethylen oben S. 361 entwickelt wurde, hervorgeben kann, nämlich auch so, dass unter Austritt von Aethylchlorid und unter Aufnahme von Alkohol sich direct einbasischer Monochloressigsäure-Aether erzeugt:

$$C_{CI,OC^{9}H^{5}}^{CHCI} + C^{2}H^{5}OII = C_{OC^{2}H^{5}}^{CH^{2}CI} + C^{2}H^{5}CI.$$

VI. Monochloraethylenchlorid n. Natriumalkoholat.

Das Monochloraethylenchlorid wirkt auf überschüssiges Natriumalkoholat, alkoholisches und alkoholfreies unter Wärmeentwicklung der Hauptsache nach in der Weise, dass Dichloraethylen: C²H²Cl² gebildet wird, also so, wie eine alkoholische Kalilösung, gleichzeitig entsteht aber immer ausser Natriumchlorid eine kleine Menge des Natriumsalzes einer Kohlenstoffsäure, nämlich der Essigsäure. Dasselbe wird nach dem Uebersättigen des in Wasser gelösten Rückstandes mit Salzsäure, Filtriren und Wiederübersättigen mit Natriumcarbonat, Eindampfen zur Trockne und Ausziehen mit Alkohol als ein in absolutem Alkohol nicht sehr leicht lösliches an der Luft beständiges Salz von den Eigenschaften des Natriumacetats erhalten. Seine Analyse ergab 37,7 Proc. Natriumoxyd; das Natriumacetat verlangt: 37,8 Proc. — 14 Grm. Monochloraethylenchlorid lieferten nur 0,7 Grm. Salz.

Wie das Dichloraethylen seinerseits auf Natriumalkoholat einwirkt, was nur in verschlossenen Röhren geschehen kann, werden weitere Versuche zeigen.

VII. Perchlormethan u. Natriumalkoholat.

Es wurde 1 Mgt. Kohlenstofftetrachlorid, mit dem doppelten Volum wasserfreien Aethers verdünnt, zu 4 Mgtn. in einem Retörtchen befindlichen alkobolfreiem Natriumalkoholat gegeben, das Retörtchen mit umgekehrten Kühler verbunden, eine Quecksilbersäule wie oben vorgelegt und im Wasserbade während etwa 4 Stunden bis zum Sieden des Gemisches erwärmt. Der Retorteninhalt färbte sich dabei allmälig braun, ohne dass eine Gasentwicklung zu bemerken gewesen wäre. Hierauf wurde aus dem Wasserbade abdestillirt; es ging mit dem Aether etwas Alkohol und noch etwas unverändertes Perchlormethan über, ein über 75° siedender Theil war in dem Destillat nicht entbalten. Der in der

Ueber die Einwirkung einiger Chloride auf Natrinmalkoholat.

373

Retorte verbliebene Rückstand wurde mit Aether versetzt und darauf mit Wasser geschüttelt. Der Aether abgegossen, entwässert und rectificirt, er enthielt nichts Höhersiedendes. Die wässrige Lösung wurde von einem unlöslichen braunen amorphen Körper getrennt. Derselbe wurde mit Salzsäure digerirt und dann durch oftmaliges Decanthiren mit reinem Wasser ausgewaschen. Von der salzsauren Lösung blieb nach dem Verdunsten nur eine Spur von Natriumchlorid übrig. Das braune unlösliche Product wurde bei 125 bis 130° getrocknet und analysirt. Es war chlorfrei, hinterliess beim Verbrennen keine Asche und ergab: 63,0 Proc. Kohlenstoff und 7,2 Proc. Wasserstoff.

Das braune stark alkalische Filtrat liess beim Uebersättigen mit Salzsäure eine geringe Menge eines braunen harzigen, in Alkalien und Alkohol löslichen Körpers fallen, der durch Decanthation ausgewaschen, bei 125 bis 130° getrocknet analysirt wurde. Erhalten wurden: 60,8 Proc. Kohlenstoff und 6,2 Proc. Wasserstoff. Er war gleichfalls chlorfrei und hinterliess beim Verbrennen keine Asche¹).

Ausser diesen beiden Körpern, über deren Natur sich wenig sagen lässt, war noch eine grössere Menge von Kohlensäure entstanden, welche beim Ansäuren der wässrigen Lösung des Rückstandes entwich und eine Spur Oxalsäure. Der vierbasische Kohlensäureaether, dessen Bildung hätte erwartet werden können, entsteht also auf diese Weise nicht.

⁴⁾ BERTHELLOT hat bei der Einwirkung von alkoholischer Kalilösung auf Perchlormethan eine braune Substanz erhalten, welche nach dem Auswaschen mit verdünnter Salzsäure im leeren Raum getrocknet ergab: 52,2 Proc. Kohlenstoff, 4,8 Proc. Wasserstoff, 12,2 Proc. Chlor und 6,8 Proc. Asche, also unrein und offenbar noch Kaliumchloridhaltig war. (Annal. Bd. 109, p. 121.)

Takes the Eleverytory so two Chinese art Salar states and the 223

binarie verbinderne Ruicherung wurde von Anthon weist und durant der Weisse neuentung. Die Keines also in vers auch einer verdienen einer die in der Gehören der Gehöre der verste under verdie ver in Schlichten in der Gehören ausoritation Ruspiele ersternung für der under verdie Weissen ausgewisserten. Von der auforde einernigke tresundinieren und weinere die seiner under der Gehören durch eineralige tresundinieren und weinere der Schlichten und einer Von der aufordige tresundinieren und weinere der Schlichten und einer Von der aufordige tresundinieren und mitteltere der Anthonen und einer Von der aufordige tresundigen. Die henren untradieten der Schlichten verden Von der aufordigen der einer untradieten der Anthonen und einer Von der aufordigen der einer untradieten der Anthonen verden Von der Schlieren verder und angebe erzu erzus verder verder verderen Von der Schlieren verder und angebe erzus erzus der Von der Von der Schlieren Von der und angebe erzus der Schlieren verderen Von der Von der Von der Von der verder verderen und erzus der Von der Von der Von der Von der Von der verder verderen verderen Von der Von verderen und erzus der Von der Von der Von der Von der Von der Von verderen verderen verderen verderen und erzus der verder verderen verderen verderen verderen und erzus der verderen v

Data furnine with attraheorie Pilitat lieu funa Delew Majori uni-Salesiane alte verse delex mus furnice fortalistic, in Alfolien and Alfoliei foli for heppine tetres, due much threadingto megovariation, foi 122 bit 120° surrel to canto are versio. Urbalian tension, 66,8 Princ Kohiercari and ',2 Proc. Warracht, La var straidale phoreire mich Enterflere form retremany form Andre.

America di con fonden lorgena, alter dono Safar sona venig segun 1. 20. veni lo 1 veni grocco Mongo na Kalimacore entatmeter, antèlec terna America de l'este que ca el fonda de Birkanaire entitale da uni terna America de la seconda ca de Calima de Birkanaire entitale de uni Squar Oxal Sure - Deg verto acolo 6 da seconda dese Masso unitation cardo grocota vertira familia, entrado do unitation Masso unitati

(a) Mathematica has no dre barrelle nervous annihilater l'estimater est terre information de la construction de la construction de la construction de la dimensione de la construction de la constructio

Ueber die Einwirkung von Salpetrig-Salpetersäureanhydrid auf Arsenchlorür und Borchlorid.

Von

A. Geuther.

Nachdem die Einwirkung des Salpetrig-Salpetersäureanhydrids / auf das Phosphorchlorür zur Entdeckung eines neuen Phosphoroxychlorids, des Pyrophosphorsäurechlorids, geführt hatte, war es von Interesse zu versuchen ob die Chloride anderer trivalenter Metalloide sich gegen diese Substanz analog verhalten würden. Dazu wurden das Arsenchlorür und das Borchlorid ausersehen.

I. Salpetrig-Salpetersäureanhydrid und Arsenchlorür.

Vom Arsen kennt man bekanntlich nur ein Trichlorid, kein Pentachlorid. Die Versuche das Letztere darzustellen, ergaben an Stelle desselben immer das Trichlorid neben freiem Chlor. Das Arsen steht in dieser Hinsicht dem Stickstoff, welcher chenfalls kein Pentachlorid zu bilden vermag nahe. Dafür bildet das Arsen aber ein Pentoxyd, den Arsensäureanhydrid, welcher selbst in schwacher Glühhitze noch beständig ist. Aus diesem Verhalten liess sich die Hoffnung schöpfen, dass es gelingen werde auf eine oder die andre Weise wenigstens ein Oxychlorid des pentavalenten Arsons zu erhalten. Ein früher angestellter Versuch hat bereits ergeben, dass der eine Weg, auf welchem die Bildung eines solchen Oxychlorids zu erreichen war, nämlich durch die Einwirkung von Phosphorpentachlorid auf Arsensäureanhydrid, nicht zum Ziele führt, indem merkwürdigerweise dabei aller Sauerstoff vom Arsen fort und zum Phosphor geht, damit gewöhnliches Phosphoroxychlorid bildend, während gleichzeitig Arsentrichlorid und freies Chlorgas entsteht 1).

Zu 55 Grm. Arsenchlorür, welches sich in einem, mit einem doppelt durchbohrten Kork, der ein Zuleitungs- und ein Ableitungsrohr

⁴⁾ Vergl. HUNTZIG U. GEUTHER, Annal. d. Chem. Bd. 444 S. 478. Bd. VII. 4.

A. Geuther,

trug, verschlossenen Cylinder befand und der in einer Kältemischung stand, wurden langsam 22 Grm. N2 O1 destillirt. Das Letztere überschichtete das Erstere, als der Cylinder aus der Kältemischung genommen wurde, während an der Grenze beider Flüssigkeiten sich eine weisse pulverige Substanz ausgeschieden hatte. Durch Schütteln wurden die Flüssigkeiten vermischt und der Cylinder in einer Temperatur von etwa 0° stehen gelassen. Die Ausscheidung der weissen Substanz nahm allmälig zu, während eine gelinde Gasentwickelung auftrat. Aus dem Ableitungsrohr, welches auf dem Boden eines längeren durch eine Kältemischung gekühlten offenen Rohrs mündete, entwich ein farbloses an der Luft braune Dämpfe bildendes Gas, also Stickoxyd, während sich allmälig eine rothe Flüssigkeit condensirte. Nach Verlauf von 36 Stunden war der Inhalt des Cylinders fest geworden. Er stellte eine weisse, augenscheinlich von einer rothgelben Flüssigkeit durchtränkte Masse dar. Der Cylinder wurde nun mit lauwarmen Wasser umgeben, wobei noch eine beträchtliche Menge rother Flüssigkeit überdestillirte. Nachdem sie durch gehörig langes Erwärmen des Cylinders, zuletzt im Wasserbade, völlig ausgetrieben war, war der Inhalt des Cylinders weiss und scheinbar trocken geworden. Er wog 44 Grm. und löste sich in Wasser bis auf eine sehr geringe Menge arseniger Säure leicht auf. Die Lösung enthielt Arsensäure, nebenbei aber auch in beträchtlicher Menge Salzsäure und arsenige Säure. Die Anwesenheit der beiden Letzteren deutete auf möglicherweise noch unzersetzt gebliebenes Arsenchlorur hin. Um dies zu constatiren, wurde ein Theil des festen Rückstandes stärker erhitzt, wobei in der That Arsenchlorür abdestillirte und nur ein Bückstand von nabezu reinem Arsensäurean-Die früher erwähnte überdestillirte und in der hydrid übrig blieb. Kältemischung wieder condensirte rothe Flüssigkeit war schr flüchtig, schon in Wasser von 0° gerieth sie ins Sieden unter Bildung eines dunkelgelben Dampfes. Ibren Eigenschaften nach gab sie sich als Nitrosylchlorid NOCl zu erkennen, woraus sie denn einer Analyse zu Folge thatsächlich der Hauptsache nach auch bestand. 0,5384 Grm. derselben wurden mit viel Wasser in einem verschlossenen Cylinder zersetzt. Sie gaben 4,2038 Grm. Argentichlorid, entsprechend 0,2975 Grm. = 55,25 Proc. Chlor. Für NOCI berechnen sich : 54,2 Proc., für NOCI² dagegen 70,3 Proc.

Durch die 22 Grm. Salpetrig-Salpetersäureanhydrid war also nur ein Theil von den 55 Grm. Arsenchlorür in Arsensäureanhydrid und Nitrosylchlorid verändert worden. Wäre der Process nach der Gleichung:

 $4 \text{ AsCl}^3 + 5 \text{ N}^2\text{O}^4 = 2 \text{ As}^20^5 + 8 \text{ NOCl} + 2 \text{ NOCl}^2$

Ueber die Einwirkung von Salpetrig-Salpetersäureanhydrid auf Arsenchlorür etc. 377

verlaufen, so hätten die 22 Grm. N²O⁴ 32,1 Grm. Arsenchlorür zersetzen müssen; 22,9 Grm. davon wären also übrig geblieben und es mussten 22 Grm. Arsensäureanhydrid gebildet werden. Diese Letzteren zusammen mit dem unverändert gebliebenen Arsenchlorür bildeten den weissen Rückstand im Cylinder. Ihre Menge beträgt 22,9 + 22 = 44,9Grm., während dieser 44 Grm. wog.

Diese Resultate genügen, um die obige Umsetzungsgleichung als die sehr wahrscheinlich richtige bezeichnen zu können.

Man sieht also, dass es auch auf diese Weise nicht gelingt ein Oxychlorid des V-werthigen Arsens zu erhalten. Obwohl Arsenchlorür im Ueberschuss vorhanden war und obwohl die Einwirkung des Salpetrig-Salpetersäureanhydrids darauf langsam verläuft, wird bei der Oxydation doch nicht blos einfach Sauerstoff zugeführt, sondern es wird zugleich dabei auch das Chlor durch denselben ersetzt.

II. Salpetrig-Salpetersäureanhydrid und Borchlorid.

Zu 30 Grm. Borchlorid, das sich in einem Cylinder mit doppelt durchbohrtem Kork befand, durch dessen eine Durchbohrung ein bis in die Mitte reichendes Zuleitungsrohr, durch dessen andere ein Ableitungsrohr gesteckt war, das in einem zweiten leeren Cylinder mündete, wurden langsam 12 Grm. Salpetrig-Salpetersäureanhydrid treten gelassen und dabei beide Cylinder durch eine Kältemischung gut gekühlt. Es fand lebhafte Einwirkung statt und schied sich dabei ein fester Körper aus. Das Auftreten von einem Stickstoffoxychlorid war nicht zu bemerken, dagegen erschienen an der Wand des leeren Cylinders wenige gelbliche Krystalle. Nachdem alles N2O4 zudestillirt war, wurde zur Vollendung der Reaction der Cylinder 2 Tage lang wohlverschlossen in der Kälte stehen gelassen, darauf mit einem, ein weites knieförmiges Rohr tragenden Kork verschlossen und in noch nicht lauwarmes Wasser gestellt, während ein anderer gut gekühlter Cylinder vorgelegt wurde. In diesen sublimitten dabei sehr flüchtige schwefelgelbe Krystalle, deren braunrother Dampf an feuchter Luft einen starken weissen Rauch verbreitet, wie Königswasser riecht und die Flamme lebhaft grün färbt. Da gleichzeitig mit den Krystallen eine dunkelgelbe Flüssigkeit, offenbar eine Lösung der gelben Verbindung in überschüssigem Borchlorid destillirte, so wurde durch Umkehren des Cylinders sie von den Krystallen abfliessen und durch kurzes Oeffnen des Glasstöpsels rasch auslaufen gelassen. Sie verdampfte sogleich unter starkem Rauchen.

Die Krystalle, welche so ganz trocken erhalten werden, stellen scheinhar rhombische Octaëder und Prismen dar und lösen sich in A. Genther,

Wasser leicht unter Zischen. In dieser Lösung ist Borsäure, Chlor und Salpetersäure enthalten. An der Luft werden sie weiss indem sie sich in Borsäure verwandeln. Sie schnielzen bei 23-24° zu ? Flüssigkeiten, einer dicken, zähen, gelbrothen unteren und einer geringeren leichten, goldgelben oberen. Bei langsamer Abkühlung vereinigen sich diese Schichten wieder bei 20° zu den ursprünglichen Krystallen, bei rascher Abkühlung erstarrt nur die untere, während die obere flüssig bleibt und erst nach längerer Zeit wieder vollständig verschwindet. Die Krystalle bestehen, wie die Analyse gezeigt hat, aus einer Verbindung von Borchlorid und Nitrosylchlorid von der Formel: BCl³, NOCl.

Zur Analyse wurden sie in ein gewogenes Glasröhrchen gegeben, dasselbe zugeschmolzen und nach dem Wägen in einen Wasser enthaltenden mit Glasstöpsel verschliessbaren Glascylinder gebracht. Durch starkes Schütteln wurde das Rohr zertrümmert und die Krystalle vom In der filtrirten, mit Salpetersäure noch versetzten Wasser gelösst. Lösung wurde zunächst durch Argentinitrat das Chlor gefällt. Nach dem Filtriren das überschüssig zugesetzte Silber durch einen geringen Ueberschuss von Chlorwasserstoffsäure abgeschieden und die filtrirte Lösung mit einer bestimmten Menge reinen überschüssigen Calciumoxyds vermischt, die alkalisch reagirende Flüssigkeit zur Trockne gebracht, im Platintiegel allmälig bis zum Glühen erhitzt und darauf vor dem Gcbläse anhaltend und so oft wiederholt geglüht, bis das Gewicht constant blieb. Der Rückstand wurde nun in Salpetersäure gelöst, durch Silberlösung die als Chlorcalcium vorhandene Chlormenge bestimmt und auf Calciumoxyd berechnet. . Die dem Chlor entsprechende Calciumchloridmenge wurde vom gefundenen Gewicht abgezogen und darauf die sich daraus berechnende Calciumoxydmenge ihm wieder zugezählt. Das so gewonnene Gewicht ist gleich dem Gewicht des angewandten Calciumoxyds + dem Gewicht vorhandenen Borsäureanhydrids, woraus sich das Bor leicht berechnet.

0,3188 Grm. gaben 0,9985 Grm. AgCl², entsprechend 0,247 Grm. = 77,5 Proc. Chlor; und 0,0689 Grm. B²O³ entsprechend 6,7 Proc. Bor.

		ber.	gef.
B	=	6,01	6,7
Cl4	=	77,60	77,5
N	==	7,65	
0	==	8,74	_
		100,00	

Die Trennung der Verbindung in zwei Schichten beim Schmelzen rührt offenbar von einer theilweisen Zersetzung in BCl³ und in NOCI her. Die obere Schicht, welche ihre gelbe Farbe etwas darin gelöster

Ueber die Einwirkung von Salpetrig-Salpetersäureanhydrid auf Arsenchlorür etc. 379

Verbindung verdankt, besteht offenbar aus Borchlorid, während die untere von geschmolzener Verbindung, der das Nitrosylchlorid beigemengt ist, gebildet wird.

Da der nach dem Abdestilliren der Verbindung im Cylinder verbleibende weisse Rückstand sich als Borsäureanhydrid erwies, so ist es wahrscheinlich, dass die Reaction der Hauptsache nach gemäss den Gleichungen:

 $2 BCl^3 + 3 N^2O^1 = B^2O^3 + 6 NOC1 + 30$

 $6 \text{ BCl}^3 + 6 \text{ NOCl} == 6 \text{ (BCl}^3, \text{ NOCl})$

d. i. 8 BCl³ + 3 N²O¹ = B²O³ + 6 (BCl³, NOCl) + 30 verlaufen ist.

Ueber die Einwirkungen der Phosphorchloride auf die Phosphorsäuren.

Von

A. Geuther.

I. Trihydroxyl-Phosphorsäure und Phosphoroxychlorid.

1. Wird Phosphoroxychlorid und gewöhnliche Phosphorsäure in Mengen, welche der Gleichung:

 $2 \text{ PO}^{4}\text{II}^{3} + \text{POCI}^{3} = 3 \text{ PO}^{3}\text{H} + 3 \text{ CIH}$

entsprechen, zusammengebracht, so vermischen sie sich vollständig, ohne dass bei gewöhnlicher Temperatur eine Einwirkung zu bemerken wäre. Wird im Wasserbade erwärmt, so beginnt dieselbe und setzt sich bis zu Ende fort unter lebhafter Entwickelung von Chlorwasserstoff. Der zähe Rückstand in Wasser gelöst fällt Eiweiss und wird durch Phosphorpentachlorid (siehe unten IV) zu Phosphoroxychlorid und Chlorwasserstoff, ist also Monhydroxylphosphorsäure¹).

2. Wendet man weniger Oxychlorid an und zwar Mengen, welche der Gleichung:

 $5 \text{ PO}^{4}\text{H}^{3} + \text{POC}^{3} = 3 \text{ P}^{2}\text{O}^{7}\text{H}^{4} + 3 \text{ CIH}$

entsprechen, so verläuft die Reaction ähnlich, aber der dicke Rückstand besteht nicht aus einem Gemenge von Monhydroxyl- und Trihydroxyl-Phosphorsäure, sondern aus Pyrophosphorsäure, denn seine wässrige Lösung fällt Eiweiss nicht und giebt mit Argentinitrat auf vorsichtigen Zusatz von Ammoniak eine weisse Fällung.

Da sich die obige Gleichung aus den 2 Gleichungen:

 $2 \text{ PO}^{4}\text{H}^{3} + \text{POC}^{13} = 3 \text{ PO}^{3}\text{H} + 3 \text{ ClH}$

 $3 \text{ PO}^{4}\text{H}^{3} + 3 \text{ PO}^{3}\text{H} = 3 \text{ P}^{2}\text{O}^{7}\text{H}^{4}$

⁴⁾ Dieser und die folgenden Versuche, mit Ausnahme der auf die unterphosphorige Säure bezüglichen, wurden im Winter 1871/72 ausgeführt. Seitdem hat auch Schiff (Annal. d. Chem. u. Pharm. Bd. 168 p. 229) die Zersetzung der dreibas. Phosphorsäure durch Phosphoroxychlorid in gleicher Weise beobachtet.

zusammensetzen lässt und also die Pyrophosphorsäure ihre Entstehung der Einwirkung von Monhydroxylphosphorsäure auf Trihydroxylphosphorsäure verdanken kann, so wurden diese beiden Säuren zu gleichen Mischungsgewichten zusammengebracht und im Wasserbade erwärmt. Nach längerer Einwirkung wird das Gemisch homogen und giebt nun mit Eiweiss keine, mit Silbersalzen aber eine weisse Fällung. Es entsteht also bei der Einwirkung von Monhydroxylphosphorsäure auf Trihydroxylphosphorsäure in der That Pyrophosphorsäure.

II. Trihydroxyl-Phosphorsäure und Phosphorpentachlorid.

In der Voraussetzung, je nach der Menge des angewandten Chlorids wurde die Einwirkung nach folgenden beiden Gleichungen verlaufen:

$$3 \text{ PO}^{4}\text{H}^{3} + \text{PC}^{15} = 4 \text{ PO}^{3}\text{H} + 5 \text{ CIH}$$

PO^{4}\text{H}^{3} + 3 \text{ PC}^{15} = 4 \text{ POC}^{13} + 3 \text{ CIH}

und in der Voraussetzung es würde, da sich die letztere Gleichung aus den folgenden beiden zusammensetzt :

$$3 \text{ PO}^{4}\text{H}^{3} + \text{PCI}^{5} = 4 \text{ PO}^{3}\text{H} + 5 \text{ CIH}$$

PO^{3}\text{H} + 3 PCI^{5} = 3 POCI^{3} + CIH

die erstere Gleichung stets zunächst realisirt werden, wurde Phosphorsäure und Phosphorpentachlorid in solchen der ersten Gleichung entsprechenden Mengen zusammengebracht. Es hatte sofort lebhafte Einwirkung ohne bedeutende Erwärmung unter Entwicklung von Chlorwasserstoff statt. Als das Phosphorpentachlorid verschwunden war, wurde das gleichförmig flüssige Gemisch auf dem Wasserbade erhitzt. Dabei traten ganz dieselben Erscheinungen ein, wie bei der Einwirkung von Phosphoroxychlorid auf Trihydroxyl- Phosphorsäure : es begann erneute Chlorwasserstoffentwicklung bis zuletzt ein Rückstand von Metaphosphorsäure blieb.

Daraus folgt also, dass bei gewöhnlicher Temperatur das Phosphorpentachlorid auf dreibas. Phosphorsäure nicht nach der oben angeführten ersten Weise, sondern stets sofort nach der zweiten Gleichung wirkt, d. h. unter Bildung von Phosphoroxychlorid, auch wenn Trihydroxyl-Phosphorsäure im Ueberschuss vorhanden ist, und dass diese erst in der Wärme durch das gebildete Phosphoroxychlorid weiter in Monhydroxylphosphorsäure nach der oben unter I. 4. angegebenen Art verwandelt wird. A. Geuther,

III. Trihydroxyl-Phosphorsäure und Phosphorchlorür. Es wurden der Gleichung:

 $3 PO^{4}II^{3} + PCI^{3} = 3 PO^{3}II + P(OII_{1}^{3} + 3 CIII_{1}^{3})$

entsprechende Mengen angewandt. Bei gewöhnlicher Temperatur findet keine Einwirkung statt, das Phosphorchlorür schwimmt unvermischt auf der Phosphorsäure. In der Wärme des Wasserbades beginnt eine gelinde Einwirkung, die sich durch Abscheidung von gelben Phosphor bemerklich macht. Allmälig vermehrt sich dieser unter Verschwinden des Phosphorchlorürs. Der verbleibende Rückstand giebt die Reactionen auf Pyrophosphorsäure: Silbersalze werden weiss, aber Eiweiss wird nicht gefällt.

Aus diesem Verhalten geht offenbar hervor, dass die Umsetzung nach der obigen Gleichung vor sich geht, aber es wird einestheils, wie bekannt, allmälig die gebildete phosphorige Säure durch das noch unveränderte Phosphorchlorttr in Phosphor, Chlorwasserstoff und gewöhnliche Phosphorsäure zerlegt, anderntheils wird die gebildete Monhydroxylphosphorsäure mit unveränderter Trihydroxylphosphorsäure zu Pyrophosphorsäure, wie unter 1. 2. angeführt ist.

IV. Monhydroxyl-Phosphorsäure und Phosphorpentachlorid.

Die beiden Verbindungen wirken bei gewöhnlicher Temperatur so gut wie nicht aufeinander ein, beim Erwärmen im Wasserbade aber beginnt starke Chlorwasserstoffentwickelung unter Verflüssigung der Masse. Wendet man genügend Chlorid an, so wird allmälig alles flüssig und in Phosphoroxychlorid verwandelt nach der Gleichung:

 $PO^{3}H + 2 PCI^{5} = 3 POCI^{3} + CIH.$

Als nur die Hälfte so viel Chlorid einwirken gelassen wurde, in der Hoffnung, neben gewöhnlichem Oxychlorid das Chlorid der Monhydroxylsäure zu erhalten nach der Gleichung:

 $PO^{3}H + PCl^{5} = PO^{2}Cl + POCl^{3} + ClH$

fand doch die Einwirkung nur nach der ersten Gleichung statt, indem die Hälfte der Monhydroxylphosphorsäure unverändert blieb. Dies auffallende Resultat ist nur zu erklären entweder dadurch, dass das Metaphosphorsäurechlorid sich sofort nach seinem Entstehen mit der vorhandenen Säure weiter in Phosphorsäureanhydrid und Chlorwasserstoff nach der Gleichung: $PO^2Cl + PO^3H = P^2O^5 + ClH$ umsetzt und gewöhnliches Oxychlorid erzeugt, oder aber dadurch, dass das Metaphosphorsäurechlorid vom Phosphorpentachlorid selbst wieder angegriffen und 1 Mgt Sauerstoff des Ersteren gegen die 2 Mgte. locker gebundenes

Ueber die Einwirkungen der Phosphorchloride auf die Phosphorsäuren. 383

Chlor des Letzteren unter Bildung von gewöhnlichem Oxychlorid nach der Gleichung: $PO^2Cl + PCl^5 = 2 POCl^3$ ausgewechselt wird, wie es ahnlich bei der Einwirkung von PCl^5 auf Pyrophosphorsäurechlorid ja geschieht¹).

Monhydroxyl-Phosphorsäure wird von Phosphoroxychlorid und Phosphorchlorttr bei der Siedetemperatur der Chloride nicht verändert.

V. Pyrophosphorsäure und Phosphoroxychlorid.

In der Kälte findet zwischen den beiden Verbindungen keine Einwirkung statt, das Oxychlorid überschichtet die Säure ohne sich damit zu vermischen. In der Wasserbadwärme beginnt die Umsetzung unter schäumender Entwicklung von Salzsäure und unter Trübwerden des Oxychlorids, bedingt durch die Abscheidung von Monhydroxyl-Phosphorsäure, vollendet sich aber kaum, da selbst noch nach schr langer Einwirkung Oxychlorid übrig ist und erst bei stärkerer Erwärmung von neuem unter starkem Schäumen der immer zäher werdenden Masse einzuwirken beginnt. Die Gleichung, nach welcher die Umsetzung erfolgt, ist:

 $2 P^2O^7H^4 + POCl^3 = 5 PO^3H + 3 ClH.$

VI. Pyrophosporsäure und Phosphorpentachlorid.

In der Kälte findet nur geringe Einwirkung statt, im Wasserbade wird sie lebhaft und vollendet sich unter Bildung von Phosphoroxychlorid und Chlorwasserstoff, wenn genügend Phosphorpentachlorid angewandt wurde, nach der Gleichung:

 $P^{2}O^{7}H^{4} + 5 PCl^{5} = 7 POCl^{3} + 4 CHI.$

Wird aber weniger Phosphorpentachlorid angewandt, so bleibt Monhydroxyl-Phosphorsänre übrig, d. h. dann findet der Hergang zunächst nach der Gleichung statt:

 $P^{2}O^{7}H^{4} + PCI^{5} = 2PO^{3}H + POCI^{3} + 2CH.$

In keinem Falle wird die Bildung des Pyrophosphorsäurechlorids beobachtet, was möglicherweise daher kommen kann, dass dasselbe, wie bekannt, sich mit Phosphorpentachlorid bei Wasserbadhitze in gewöhnliches Oxychlorid verwandelt.

VII. Pyrophosphorsäure und Phosphorchlorür.

In der Kälte schwimmt das Phosphorchlorür unvermischt auf der Pyrophosphorsäure und ist ohne Einwirkung, auch selbst nach dem

1) Vergl. d. Zeitschrift Bd. VII. p. 105.

A. Geuther,

längeren Erwärmen auf dem Wasserbade bemerkt man kaum eine Veränderung, lässt man aber ein kleines Flämmchen direct so wirken, dass das Phosphorchlorür vom umgekehrten Kühler lebhaft zurückfliesst, so tritt die Entwicklung von Chlorwasserstoff auf und man bemerkt bald ein Trübwerden der vorher klar aussehenden Säure, genau so, wie wenn sich Monhydroxyl-Phosphorsäure abscheidet; daneben findet gleichzeitig die Bildung von rothem Phosphor statt, wie bei der Zersetzung von phosphoriger Säure durch Phosphorchlorür. Es setzt sich dies fort und wenn man Mengen nach der Gleichung:

 $3 P^{2}O^{7}H^{4} + PCI^{3} = 6 PO^{3}H + P(OH)^{3} + 3 CH$

anwendet, so verschwindet das Phosphorchlorür vollständig und nun enthält der zähe rothe Rückstand M on hydroxyl-Phosphorsäure, denn seine filtrirte Lösung fällt Eiweiss. Es unterliegt somit keinem Zweifel, dass die eben angeführte Gleichung die wahre Umsetzungsgleichung darstellt, dass aber die entstandene phosphorige Säure weiter durch das Phosphorchlorür unter Phosphorabscheidung wie bekannt verändert wird. Das schliessliche Resultat der Einwirkung ergiebt sich als Summe der 3 folgenden Reactionen :

VIII Phosphorige Säure und Phosphoroxychlorid.

In der Erwartung, dass die Einwirkung des Phosphoroxychlorids auf die phosphorige Säure nach der Gleichung:

3 POCl³ + 2 P(OH)³ = 3 PO³H + 2 PCl³ + 3 ClH welche sich aus den beiden Gleichungen:

 $POCl^{3} + P(OH)^{3} = PO^{4}H^{3} + PCl^{3}$ $POCl^{3} + 2 PO^{4}H^{3} = 3 PO^{3}H + 3 ClH$

zusammensetzt, verlaufen würde, wurden die dieser Gleichung entsprechenden Mengen beider Verbindungen auf einander einwirken gelassen. Es findet gleichförmige Mischung unter geringer Erwärmung und Entwicklung von viel Chlorwasserstoff statt. Die Reaction wurde sich im Wasserbade vollenden gelassen und darin so lange erhitzt, als noch Entwicklung von Chlorwasserstoff zu bemerken war. Es hatten sich nun 2 Schichten gebildet, eine dicke zähe untere und eine leichtbewegliche obere. Letztere wurde nach dem Erkalten abgegossen und destillirt; sie erwies sich als reines Phosphorchlorur. Die zähe untere Schicht hatte das Aussehen von Monhydroxyl-Phosphorsäure, sie löste sich in Wasser unter geringer Erwärmung zu einer

Ueber die Einwirkungen der Phosphorchloride auf die Phosphorsäuren. 385

Flüssigkeit, welche Baryumchlorid und auch nach Zusatz von Natriumacetat Eiweisslösung fällte. Dass sie in der That Monhydroxyl-Phosphorsäure war, wurde durch Zugabe der berechneten Menge von Phosphorsuperchlorid und Erwärmen im Wasserbade nachgewiesen, wobei sie unter Entwicklung von Chlorwasserstoff und Bildung von Phosphoroxychlorid verschwand.

Die Thatsache, dass die phosphorige Säure mit Hülfe von Phosphoroxychlorid so leicht wieder in Phosphorchlorür, aus dem sie gebildet wird, zurückverwandelt werden kann, hat eine wesentliche Bedeutung für die Constitution derselben. Sie zeigt unwiderruflich, dass Phosphorchlorür und phosphorige Säure durchaus im Verhältniss engster Zusammengehörigkeit stehen, dass eben das Erstere das zur Letzteren gehörige Chlorür ist, oder mit andern Worten, dass die phosphorige Säure so gut wie das Phosphorchlorür trivalenten Phosphor enthält und die Formel der Ersteren also nicht V 111 PHO (OH)² sondern P (OII)³ ist.

IX. Phosphorige Säure und Phosphorpentachlorid.

Das Phosphorchlorid wirkt lebhaft und unter starker Salzsäureentwicklung aber ohne bedeutende Erwärnung auf die phosphorige Säure ein. Wendet man auf 4 Mgt. der Säure zunächst nur 4 Mgt. des Chlorids an, so verflüssigt sich das Letztere leicht zu einem anfangs homogenen klaren Product. Später tritt ein Opalisiren der Flüssigkeit ein und es sondert sich eine dickere schwerere Schicht ab. Wird die obere Schicht davon abgegossen und für sich untersucht, so findet man leicht, dass sie aus Phosphorchlorür und Phosphoroxychlorid besteht. Die untere dicke Flüssigkeit aber ist unveränderte phosphorige Säure völlig frei von Monhydroxyl-Phosphorsäure. Lässt man auf sie ein zweites Mischungsgewicht Phosphorpentachlorid einwirken, so geschieht dasselbe. Die ganze Menge der phosphorigen Säure verschwindet erst, wenn auf 1 Mgt. derselben 3 Mgte. Pentachlorid angewandt werden nach der Gleichung:

 $P(OH)^3 + 3 PCI^5 = PCI^3 + 3 POCI^3 + 3 CIH.$

X. Unterphosphorige Säure und Phosphorchlorür.

Die zu diesem und den folgenden Versuchen verwandte unterphosphorige Säure war aus dem Baryumsalz gewonnen worden, welches mit der genauen Menge von verdünnter Schwefelsäure¹) in der Kälte

⁴⁾ Hat man eine Spur Schwefelsäure zuviel zugefügt, d. h. so wenig, dass sich in sehr verdünnter Lösung dieselbe nicht mehr erkennen lässt, so kommt die-

A. Geuther,

zerlegt worden war. Die filtrirte dünne Säure wurde erst in mässiger Wärme, zuletzt auf dem Wasserbade so lange concentrirt, bis der Geruch nach Phosphorwasserstoff aufzutreten begann und dann längere Zeit über Schwefelsäure gestellt. Sie war farblos, von öliger Consistenz, besass das spec. Gewicht 1, 19 bei $+ 10^{\circ}$ und war ganz rein, wie die folgende Analyse zeigt.

0,4485 Grm. unterphosphorige Säure lieferten nach der Oxydation mittelst Salpetersäure und Königswasser¹) 0,7544 Grm. Magnesiumpyrophosphat, entspr. 0,2106 Grm. = 46,93 Proc. Phosphor. Für die unterphosphorige Säure berechnen sich: 46,97 Proc. Phosphor.

Das Phos phorchlor ür wirkt schrlebhaft und unter starker Wärmeentwicklung auf die unterphosphorige Säure ein, weshalb man am Besten dasselbe tropfenweise zu der durch kaltes Wasser gekühlten Säure fliessen lässt. Das zufliessende Chlor ür bewirkt sofort Umsetzung unter Entwicklung von Chlorwasserstoff und Bildung von Phos phor, der anfangs als gelbe Haut, später als orangefarbene bis orangerothe Masse sich abscheidet. Zur Vollendung der Einwirkung wurde schliesslich noch am aufgerichteten Kühler im Wasserbade erwarmt und zuletzt das überschüssig gebliebene Chlor ür abdestillirt. Der rothe zähe Rückstand wurde nun mit viel Wasser übergossen und verschlossen

selbe während des Eindampfens als Schwefel zum Vorschein, oder auch noch beim Stehen über Schwefelsäure, wobei die unterphosphorige Säure allmälig eine immer intensiver werdende tief indigoblaue Farbe annimmt, welche mit der Zeit unter Schwefelabscheidung und Bildung von Schwefelwasserstoff immer heller wird und allmälig in einen ganz schwach braunlichen Ton übergeht.

1) Oxydirt man die unterphosphorige Säure mittelst Salpetersäure, so tritt beim Erwärmen, auch wenn nur mässig starke Säure angewandt worden war, bald die Entwicklung rother Dämpfe ein. Bei weiterem Eindempfen hört dieselbe wieder auf und die wegdampfende Salpetersäure ist scheinbar ohne weitere Einwirkung, bis dann bei genügender Concentration mit einemmale wieder eine reichliche und langer andauernde neue Entwicklung rother Dämpfe beginnt. Die zuerst eintretende Entwicklung rother Dämpfe rührt von der Oxydation der unterphosphorigen Säure hauptsächlich nur zu phosphoriger Säure und die zu zweit eintretende von der Oxydation der phosphorigen Säure zu Phosphorsäure her. Es ist lange schon bekannt, dass die Oxydation der phosphorigen Säure zu Phosphorsäure durch Salpetersäure nur schr schwierig vollständig erreicht wird und dass ein wiederholtes starkes Eindampfen mit der letzteren Säure noth thut. Ich habe mich ebenfalls bei Gelegenheit (ler obigen Analyse hiervon zu überzeugen Gelegenheit gehabt. H. Ross hat deswegen vorgeschlagen mit Salzsäure und Kaliumchlorat die Oxydation zu bewirken, ich habe aber nicht finden können, dass sie dadurch rascher und vollständiger von statten geht, denn ein grosser Theil des Chlors entweicht stets ohne oxydirend zu wirken. Vollständig und rasch erreicht man die Oxydation indess, wenn man nach der Oxydation mit Salpetersäure noch starkes Königswasser zufügt und eindampft. bis keine rothen Dämpfe mehr kommen.

Ueber die Einwirkungen der Phosphorchloride auf die Phosphorsäuren. 387

stehen gelassen. Etwa $\frac{4}{5}$ desselben gehen in Lösung als phosphorige Säure und Trihydroxyl-Phosphorsäure, während $\frac{1}{5}$ als orangerother Phosphor¹) übrig bleibt. Von der ersteren Säure ist am meisten, Monhydroxylphosphorsäure ist gar nicht vorhanden.

Die abgeschiedene Phosphormenge sowohl als die verbraucht werdende Menge von Phosphorchlorür zeigen, dass der Hergang bei der Umsetzung vorzüglich verläuft nach der Gleichung:

 $3 PH(OH)^2 + PCI^3 = 2 P(OH)^3 + 2 P + 3 CH.$

Die mit entstandene Trihydroxylsäure verdankt ihre Entstehung einer nebenher gehenden Einwirkung des Phosphorchlorürs auf die phosphorige Säure nach bekannter Art und Weise. Die unterphosphorige Säure benimmt sich also in dieser Reaction wie ein Gemisch von Phosphorwasserstoff und phosphoriger Säure:

$$3 \text{ PH}(\text{OH})^2 = \text{PH}^3 + 2 \text{ P}(\text{OH})^3.$$

Der Phosphorwasserstoff setzt sich dann, wie bekannt, mit dem Phosphorchlorür um in rothen Phosphor und Chlorwasserstoff, während die phosphorige Säure ührig bleibt.

Es will mir scheinen, als ob auch dies Verhalten dafür spräche, dass in der unterphosphorigen Säure trivalenter und nicht pentavalenter Phosphor enthalten, ihre Formel also $P_{(OH)^2}^{III}$ und nicht P_{OH}^{O} ist.

Ein Chlorid der unterphosphorigen Säure, dessen Bildung auf diese Weise hätte möglich sein können, entsteht also nicht, denn auch die kleinste Menge von Phosphorchlorür bewirkt sofort Abscheidung von Phosphor. Es geht daraus hervor, dass weder die Verbindung PIICl² noch der Anhydrid der unterphosphorigen Säure PHO oder $\stackrel{III}{P} \stackrel{III}{0} {}_{0} {}_{1}^{III}$ für sich bestehen kann, sondern die erstere nach der Gleichung: 3 PHCl² = PCl³ + 2 P + 3 ClH, der letztere aber nach der Gleichung: 3 PHO = P(OH)³ + 2 P zerfallen muss.

¹⁾ Derselbe mit heissem Wasser gewaschen, möglichst rasch durch Fliesspapier vom anhängenden Wasser befreit und im leeren Raum über Schwefelsäure getrocknet, ergab hei der Analyse 96—96,2 Proc. Phosphor. Die fehlenden 4 Proc. rühren jedenfalls von noch beigemengten Säuren des Phosphors, hauptsächlich phosphoriger Säure her, denn beim Erhitzen im Röhrchen entsteht neben viel sublimirenden Phosphor etwas entzündliches Phosphorwasserstoffgas und etwas Phosphorsäure.

A. Geuther,

XI. Unterphosphorige Saure und Phosphoroxychlorid.

Die Einwirkung des Phosphoroxychlorids auf die unterphosphorige Säure ist scheinbar noch lebhafter als die des Phosphorchlorturs und äusserlich von ganz ähnlichem Verlauf. Jeder Tropfen wirkt wie dort unter Phosphorabscheidung und Salzsäureentwicklung ein. Man verfährt deshalb auch hier wie dort. Wird nach vollendeter Einwirkung im Wasserbade mit aufsteigendem Kühler erhitzt, wobei eine erneute lebhaftere Entwicklung von Chlorwasserstoff auftritt, so bemerkt man bald, dass eine unter 400° siedende Verbindung gebildet ist, indem Flüssigkeit bis in den Kühler destillirt und von da wieder zurückfliesst. Dieselbe kann aus dem Wasserbade vom Rückstand und vom etwa überschüssig zugesetzten Oxychlorid abdestillirt werden und erweist sich bei erneuter Rectification als Phosphorchlortür. Der Rückstand selbst besteht hauptsächlich aus Monhydroxyl-Phosphorsäure. Der gebildeten Menge ausgeschiedenen Phosphors nach verläuft die Einwirkung nach den 2 Gleichungen:

 $\begin{array}{c} 6 \ PH(OH)^2 + 3 \ POCl^3 = 3 \ PO^3H + 2 \ P(OH)^3 + 4 \ P \ + 9 \ ClH \\ \hline 2 \ P(OH)^3 \ + 3 \ POCl^3 = 3 \ PO^3H \ + 2 \ PCl^3 \ + 3 \ ClH \\ \hline 2 \ [3 \ PH(OH)^2 + 3 \ POCl^3 = 3 \ PO^3H \ + \ PCl^3 \ + 2 \ P \ + 6 \ ClH]. \end{array}$

Dass sie sich nach der ersteren Gleichung zunächst realisirt, wird durch die oben erwähnte erneute Entwicklung von Chlorwasserstoffgas, welche bei der Einwirkung des Wasserbades statt hat, sehr wahrscheinlich gemacht. Der Rückstand enthält auch neben Metaphosphorsäure eine das Quecksilberchlorid reducirende Säure, indess kann daraus nicht auf die Anwesenheit von phosphoriger Säure geschlossen werden, da die sich bildende zähe Metaphosphorsäure leicht etwas unverändert gebliebene unterphosphorige Säure oder etwas Phosphorchlorür einshliessen kann.

Die erstere Gleichung lässt sich nun aber weiter als die Summe folgender einfachen und sehr verständlichen Gleichungen auffassen:

 $\begin{array}{r} 6 \ PH(OH)^2 = 2 \ PH^3 + 4 \ P(OH)^3 \\ 4 \ P(OH)^3 + 3 \ POCl^3 = 3 \ PO^3H + 2 \ PCl^3 + 3 \ ClII + 2 \ P(OH)^3 \\ 2 \ PH^3 + 2 \ PCl^3 = 4 \ P + 6 \ ClH \end{array}$

d. h. die unterphosphorige Säure verhält sich dem Phosphoroxychlorid gegenüber wie ein Gemisch von Phosphorwasserstoff und phosphoriger Säure, also ebenso, wie sie es dem Phosphor-

Ueber die Einwirkungen der Phosphorchioride auf die Phosphorskuren. 389

chlorür gegenüber thut ¹). So findet die dort aus diesem Verhalten hergeleitete Ansicht über die Constitution der Säure also auch von hier aus neue Unterstützung.

XII. Unterphosphorige Säure und Phosphorpentachlorid.

Nach der Kenntniss der Einwirkung des Phosphoroxychlorids auf die unterphosphorige Säure war es nicht schwer die Gleichung für die Endreaction aufzustellen, welche sich als die Summe der vier folgenden ergiebt:

9[PH(OH)² + 3 PCl³ = 2 POCl³ + 2 PCl³ + 3 ClH]. Es war vielmehr durch den Versuch festzustellen, ob bei der Einwirkung des Phosphorpentachlorids sofort die Umsetzung nach der Endreaction verlaufen würde oder ob erst die Zwischenreactionen sich verwirklichten. An einer eintretenden Phosphorabscheidung war dies leicht zu erkennen.

Fügt man zu unterphosphoriger Säure, die durch kaltes Wasser gekühlt ist, allmälig und in kleineren Portionen das nach obiger Endgleichung berechnete Phosphorpentachlorid, so findet lebhafte Einwirkung unter starker Chlorwasserstoffentwicklung und sofortiger Abscheidung von rothem Phosphor statt. Es setzt sich dies beim Zufügen neuer Mengen des Chlorids eine Zeit lang so fort, die Einwirkung wird allmälig schwächer und zuletzt so schwach, dass der noch verbliebene grosse Rest von Chlorid auf einmal zugegeben werden kann und zur weiteren Einwirkung gelinde Wärme des Wasserbades angewandt werden muss. Schliesslich ist alles verflüssigt und besteht aus einem Gemenge von Phosphoroxychlorid und Phosphorchlorür.

⁴⁾ Auch beim Erhitzen für sich verhält sich die unterphosphorige Säure so. Es ist schon oben erwähnt, dass sie bereits bei 400° anfängt Phosphorwasserstoff zu entwickeln. Dasselbe geschieht rasch unter beträchtlichem Schäumen zwischen 440° und 445°. Der verbleibende Rückstand ist phosphorige Säure, denn er kann bis 250° ohne Veränderung erhizt werden, während er über diese Temperatur hinaus erwärmt, von Neuem Phosphorwasserstoff zu entwickeln beginnt und nun erst einen Rückstand von Phosphorsäure lässt.

A. Geuther, Ueber die Einwirkungen der Phosphorchloride etc.

Die Gleichungen, nach welchen die Einwirkung der Phosphorchloride auf die Phosphorsäuren zunächst verläuft, sind demnach di folgenden :

POSH $+ 2 PCl^5 = 3 POCl^3 + ClH.$

3 PO4H3 2 PO4H3 PO4H3	+ POCl ³	$= 3 PO^{3}H - = 3 PO^{3}H - = 4 POCl^{3} - $	+ 3 CIH.	+ 3 CIH.
2 P2O7H4	+ POCI ^a	$= 6 PO^{3}H - $ = 5 PO^{3}H - = 2 PO^{3}H -	+ 3 CIH.	
2 P(OH) 3	+ 3 POCI	$= 3 PO^{4}H^{3} - 3 PO^{3}H - 3 PO^{3}H - 3 POC^{3} $	+ 2 PCI ³	+ 3 CIH.
6 PH (OH) 3 PH (OH)	2 + 3 POCI3	= PCl ³ -	+ 4 P	+ 3 ClH. + 3 PO3H + 9 ClH + 6 POCl ³ + 9 ClH

Beiträge zur anatomischen Kenntniss des Kreuzbeines der Säugethiere.

Von

F. Frenkel.

Hierzu Tafel XXI und XXII.

Die vorliegenden Untersuchungen über den vergleichend-anatomischen Werth eines im Sacrum des Menschen schon seit längerer Zeit bekannten, an den Skeleten anderer Säugethiere aber bisher grossentheils unbeachtet gebliebenen, selbständig verknöchernden Bestandtheiles, wurden veranlasst durch den Wunsch des Herrn Professor GE-GENBAUR, einen sicheren Aufschluss darüber zu erlangen, ob die von ihm bei Vögeln und Reptilien in den Seitenfortsätzen der Sacralwirbel nachgewiesenen Sacralrippen auch bei den Säugethieren in allgemeiner Verbreitung beständen und welche Bezichungen sie in diesem Falle zu dem am Sacrum befestigten Darmbeine erkennen liessen.

Die Vermuthung, dass bei allen Säugethieren das Darmbein nur mit solchen Stücken des Sacrums in Berührung träte, welche als Rippenäquivalente aufzufassen wären, erschien um so mehr gerechtfertigt, als bereits beim Menschen dieser Nachweis geführt werden konnte. Mit dem hier ausgesprochenen Zwecke einer genaueren Untersuchung über das Auftreten und Verhalten der sogenannten Sacralrippen in der Classe der Säugethiere verband sich die Absicht, die urspüngliche Zahl der echten, d. h. mit dem Beckengürtel verbundenen Sacralwirbel, die man von den anderen mit ihnen blos verwachsenen meist gar nicht unterschied, so genau als möglich festzustellen. Alle diese Verhältnisse wurden an fötalen oder sehr jugendlichen Stadien der Wirbelsäule untersucht; ausserdem standen mir die im hiesigen anatomischen Museum aufbewahrten Skelete erwachsener Säugethiere aus allen Ordnungen für die Untersuchung zu Gebote. Da es schwer halt, von anderen als von Hausthieren Embryonen in einem gewünschten Stadium sich zu verschaffen, so mussten die angestellten Beobachtungen zunächst auf diese sich be-Bd. VII. 4. 26

F. Frenkel,

schränken. Indessen sind dadurch sowohl umfängliche als auch von einander sehr entfernt stehende Ordnungen der Säugethiere vertreten, sodass es gestattet sein wird, in Anbetracht der grossen anatomischen Uebereinstimmung, von den untersuchten Ordnungen auf das Verhalten der nicht untersuchten einen wenigstens theilweise berechtigten Schluss zu ziehen. Da der. Mensch in dieser Richtung verhältnissmässig am genauesten bekannt ist, so möge er den Ausgangspunct dieser Darstellung bilden.

Mensch¹).

Schon sehr frühzeitig war den Anatomen bekannt geworden wie die Brust- und Rückenwirbel des Menschen von bestimmten Puncten aus verknöchern. In den anfangs gleichmässig aus Knorpel bestehenden und ein Ganzes darstellenden Wirbeln, wird zunächst an je drei von einander isolirten Puncten das Knorpelgewebe durch Knochengewebe substituirt. Indem von diesen Puncten aus die Ossification nach allen Richtungen hin gleichmässig um sich greift, wird der Knorpel bald in einem grösseren Umkreise in festere Knochensubstanz übergeführt und bildet einen »Knochenkern«. In jedem Lumbodorsalwirbel bildet sich ein unpaarer Knochenkern inmitten des Körpers und zwei seitliche rechts und links in den oberen Bogen aus. Dass die Knochenkerne der letzteren von jenen im Körper bei ihrem ersten Auftreten sich etwas verschieden verhalten sei hier nur nebenbei bemerkt. Von den Knochenkernen der oberen Bogen aus schreitet die Ossification theils dorsalwärts in die Wandung des Rückgratcanals, theils nach aussen in die Querfortsätze, theils ventralwärts in die Seitentheile des Wirbelkörpers fort, der nur in seinem mittleren Abschnitte von den Bogenstücken unabhängig verknöchert, dazu treten dann, wie bekannt, verhältnissmässig sehr spät besondere Ossificationen an den Enden der einzelnen Fortsätze.

Lange Zeit war man der Ansicht, dass in derselben Weise auch die Sacralwirbel ossificirten, und betrachtete die untereinander verschmolzenen fünf Sacralwirbel als Lendenwirbel mit ausnehmend stark entwickelten Seitentheilen. FALLOPIA, EYSSON und V. COITER liessen jeden Sacralwirbel mittelst dreier Kerne, wie es von den vorhergehenden Wirbeln bekannt war, verknöchern. Im Gegensatze hierzu, führte KERKRING (Spicilegium anatomicum, Amstelodami 1670) den Nachweis,

4) Alle in diesem Aufsatze gebrauchten Ausdrücke für Lagerungsbeziehungen am menschlichen Rückgrat setzen die horizontale Lage desselben voraus, indem nur so eine Uebereinstimmung mit den später für die übrigen Säugethiere in Anwendung kommenden Bezeichnungen erzielt werden kann.

dass jeder Sacralwirbel sich mit fünf Knochenkernen aus dem knorpeligen in den knöchernen Zustand umbilde. Er war, wie es scheint, der Erste, welcher das Vorhandensein ȟberzähliger« Knochenkerne in den Seitentheilen der Sacralwirbel beobachtet hat. Nur irrte er sich insofern, als er die ȟberzähligen Kerne« als in allen fünf Sacralwirbeln vorhanden annahm, so dass ihm zufolge das knöcherne Sacrum aus 25 Knochenkernen entstand.

Zwischen beiden Angaben hält ALBIN (Icones ossium foetus humani, accedit osteogeniae brevis historia, Leiden, 1737) die Mitte, indem er das später als ein knöchernes Ganzes erscheinende Kreuzbein ursprünglich aus 24 Knochenstücken bestehen lässt, zwischen denen sich Knorpelgrenzen hefänden, durch deren Verstreichen eine vollständige Verwachsung aller Stücke herbeigeführt werde. Die drei ersten Sacralwirbel enthalten nach ihm je 5, die zwei hinteren je nur 3 Knochenkerne. Durch diese Angabe der richtigen Zahl der Bildungsstücke des Kreuzbeines und in der Feststellung derjenigen Stücke an den Sacralwirbeln, welche den Bildungsstücken der Lendenwirbel entsprechen, war ein wesentlicher Fortschritt ausgedrückt. Er fand zwar in jedem Sacralwirhel die drei Bildungsstücke eines Lumbodorsalwirbels, die erwähnten drei Knochenkerne, wieder; allein ventral von den oberen Bogen zeigte sich im Seitenfortsatze der drei vorderen Sacralwirbel jederseits noch ein selbständiger Knochenkern, für den es an allen andern Wirbeln keine Analogie gab. Er will diese überzähligen Stücke processus transversi genannt wissen und spricht sich über sie nicht gerade sehr klar aus, indem er sagt: »sie entsprechen theils den Seiten des Körperstückes, theils den Anfängen der oberen Bogen«.

Diese » ventralen Seitenstücke«, wie man sie nennen könnte, suchte BLUMENBACH (Geschichte und Beschreibung der Knochen des menschlichen Körpers, Göttingen, 1807) in einer sehr sonderbaren Weise zu erklären. Er sagt über sie (S. 318): »Gegen die Zeit der Geburt kann man 24 Knochenkerne am Kreuzbein unterscheiden: Fünfe nämlich für jedes der drei oberen wirbelähnlichen Stücke, von welchen das mittlere den Körper derselben, zweie, die zu beiden Seiten nach vorn liegen, gleichsam die Seitenfortsätze, und zwei grössere, die ebenso nach hinten liegen, die schrägen Fortsätze bilden«. Die dorsalen Bildungsstücke dieser Wirbel sind also den schrägen Fortsätzen, die stets doch nur einen Theil der oberen Bogen vorstellen, gleich gesetzt.

In den neueren Lehrbüchern der menschlichen Anatomie, soweit sie überhaupt sich mit der Entwickelungsgeschichte der Wirbelsäule befassen, findet man zwar immer die ventralen Seitenstücke als etwas

den Kreuzwirbeln Eigenthümliches erwähnt, aber nur selten über ihre Bedeutung eine Aeusserung mitgetheilt.

Gleichwohl hatte schon MECKEL in seinem «System der vergleichenden Anatomie« (l, 4. 1824. S. 243) bereits ganz bestimmt, wenn auch nur kurz, sich über die Deutung dieser sonst räthselbaften Bildungsstücke der Sacralwirbel des Menschen ausgelassen, indem er in folgender Stelle zuerst ihre Vergleichung mit Rippenrudimenten anbahnte. »Da das Kreuzbein aus mehreren Wirbeln besteht, so entwickelt es sich aus einer beträchtlichen Anzahl von Knochenstücken, deren Zahl sich wegen der Grösse mehrerer seiner Wirbel noch vermehrt, sodass z. B. beim Menschen in den drei oberen Wirbeln zu den gewöhnlichen Stücken auf jeder Seite in dem Bogentheile noch zwei ungewöhnliche, vordere, den Rippen entsprechende kommen«. Die in dieser Notiz ausgesprochene anatomische Wahrheit blieb bis in die neuere Zeit völlig unbeachtet, indem die meisten Anatomen, sich an CUVIER anlehnend, die Querfortsätze der Lendenwirbel für an dem Wirbelkörper festsitzende Rippen oder für Acquivalente von solchen hielten. So lange man dieser Ansicht huldigte, konnte man folgerichtig die ganz anders gearteten ventralen Seitenstücke der Sacralwirbel gar nicht erklären; denn wenn man auch an den Kreuzwirbeln Rippen hätte nachweisen wollen, so konnten doch nur diejenigen Abschnitte dieser Wirbel dafür betrachtet werden, welche den Querfortsätzen der Lendenwirbel entsprachen. Dies sind aber nicht die ventralen Seitenstücke, sondern die dorsalen Abschnitte der Obgleich nun bereits vor Scitenfortsätze der vorderen Sacralwirbel. längerer Zeit von A. RETZIUS mit grosser Bestimmtheit gezeigt worden war, dass die Querfortsätze der Lendenwirbel bei keinem Säugethiere mit den Rippen verglichen werden dürfen, dass sie etwas von Rippen ganz Verschiedenes, nämlich Fortsätze der oberen Bogen seien, wurde die alte Ansicht von den Querfortsätzen als angewachsene Rippen selbst neuerlich wieder zur Geltung gebracht. In dem »Lehrbuche der Anatomie des Menschen« von LANGER (Wien, 1865) wird nämlich für alle Wirbel des Menschen, mit alleiniger Ausnahme der beiden letzten Sacralwirbel und der Steisswirbel, das Auftreten von Rippen oder deren Rudimenten behauptet. Er sagt nämlich : »die verkummerten Visceralspangen der Hals-, Lenden- und Kreuzgegend verschmelzen mit den Wirbeln und erzeugen verschieden geformte Anhänge derselben, deren wahre Bedeutung als Acquivalente von Rippen erst neuerer Zeit erkannt Und weiter sagt er (S. 44) : »In der Lendengegend treten die wurde«. Rippenrudimente als längere, plattgedrückte Spangen auf, wachsen an die Seitentheile der Wirbelbogen an und stellen quer abtretende Fortsätze dar, welche man ebenfalls Querfortsätze nennt, aber richtiger mit

em Namen processus costarii bezeichnen sollte«. Wie aber schon dem ntdecker der ventralen Seitenstücke am Sacrum, ALBIN, kein Homologon erselben an den Lendenwirbeln bekannt war, so ist nicht einzusehen, ass Querfortsätze und ventrale Seitenstücke denselben anatomischen Verth haben sollen. Wenn die einen Rippen sind, dann können es die ndern nicht sein; denn es können nicht zwei nach ihrem Ursprungo anz verschiedene Stücke ein und dasselbe vorstellen.

Mit den Brust- und Halsrippen wurden dagegen die ventralen Seitentücke zuerst in QrAIN's Anatomie (1. Bd., 7. Aufl. 1867) zusammengestellt. Es findet sich hier (S. 22) angegeben, dass diese Knochentücke den sogenannten vorderen Schenkeln der Querfortsätze der Halswirhel entsprechen, und da diese als Rippenrudimente betrachtet werden müssen, so sind nach ihm auch die ventralen Seitenstücke nur Hs solche anzusehen.

Durch die von GEGENBAUN ("Beiträge zur Kenntniss des Beckens ler Vögel«, diese Zeitschrift, Bd. VI) aufgeführten vergleichend analenischen Thatsachen wurde es endlich ausser allen Zweifel gesetzt, des die bisher nur beim Menschen bekannten ventralen Seitenstücke der Sacralwirbel als Sacralrippen betrachtet werden müssen, wie lie unteren Schenkel der Querfortsätze der echten Sacralwirbel der Vögel oder die den Beckengürtel tragenden Querfortsätze am Sacrum der Crocodile, und damit waren alle Einwände gegen eine derartige Deutung der ventralen Seitenstücke, welche noch kurz vorher von HASSE und SCHWARK ("Studien zur vergleichenden Anatomie der Wirbelsäules a: Anatomische Studien, Heft 1, 1870) erhoben worden waren, als Bicht stichhaltig zurückgewiesen.

Obgleich demnach die Verhältnisse des Sacrums beim Menschen bereits in vielen Stücken genau bekannt sind, so ist doch über die Beziehungen zu den Darmbeinen und über die häufigen Anomalien des Serums, welche mit dem Auftreten der Sacralrippen in Zusammenhang stehen, noch wenig, über die Grössenunterschiede der Sacralrippen bei beiden Geschlechtern meines Wissens nach nichts Zusammenhangendes veröffentlicht worden. Neben den hierüber zu machenden Bemerkungen dürfte eine kurze Besprechung auch der schon bekannten Thatsachen der Entwickelung, welche mit dem Verhalten bei anderen Bingethieren verglichen in einem neuen Lichte erscheinen, und im Binblick darauf gerechtfertigt sein.

In dem frühesten von mir untersuchten Stadium ist das Sacrum Insserlich noch ganz knorpelig. Die Länge der Wirbelsäule beträgt 5 Centimeter. Das Kreuzbein besteht aus 5 mit ihren Seitentheilen nnig verschmolzenen, aber durch hohe Zwischenwirbelbänder in der

F. Frenkel,

Mitte von einander geschiedenen Wirbeln. Es zeigt gegen spätere Zustände keine wesentliche Gestaltverschiedenheit, abgesehen davon, dass die vorderen Kreuzbeinlöcher relativ grösser sind, als später, weil die Seitenfortsätze zu dieser Zeit noch schlank und weniger verdickt erscheinen. Das Ganze stellt einen Keil dar mit zwei convergirenden Seitenflächen, die theilweise an die Darmbeine grenzen. Die beiden Seitenflächen fallen schräg nach aussen und unten ab und neigen in dorsaler Richtung unter einem Winkel zusammen. Daher ist die ventrale Oberfläche des Sacrums grösser, als die dorsale, und übertrifft sie in diesem und in allen noch zu besprechenden Stadien an Breite um so mehr, je grösser der Winkel ist, unter dem die beiden Seitenflächen nach oben convergiren. Nach hinten zu nehmen die das Sacrum vorstellenden Wirbel schnell an Grösse ab, und zwar weniger durch Volumsverminderung der Körper, als vielmehr der Seitenfortsätze. Während die Querfortsätze der Lendenwirbel noch ganz kurze, zwischen Körper und oberem Bogen seitlich abtretende, stumpfe Fortsätze darstellen, sind die Seitenfortsätze besonders der vorderen Sacralwirbel distal stark verbreiterte, flügelartige Anhänge des Wirbelkörpers, derei ventraler Abschnitt stärker als der dorsale lateral hervorragt. Die mit breiter Fläche nach vorn schenden Seitenfortsätze speciell des ersten Sacralwirbels besitzen in der Mitte dieser Fläche eine seichte Vertiefung und nach aussen von ihr am Rande eine Einbuchtung, durch welche ein dorsaler und ventraler Abschnitt bereits in diesem frühen Stadium erkennbar ist. Der dorsale Abschnitt entspricht durch seine Lage zum Wirbelkörper und zum oberen Bogen wie durch seine geringe seitliche Ausdehnung dem Querfortsatze eines Lendenwirbels, mit dem er auch darin übereinstimmt, dass er in gerader Richtung nach aussen geht. Der ventrale Schenkel dagegen füllt den einspringenden Winkel aus, der zwischen dem nach unten gewölbten Körper eines Lendenwirbels und dem nach oben zurücktretenden Querfortsatze sich herstellt, sodass es schon an dem äusserlich noch ganz knorpeligen Kreuzbeine in die Augen fällt, man habe es nicht mit einer blossen Volumenzunahme einer Verdickung der Querfortsätze, sondern mit einem in den Seitenfortsätzen der Sacralwirbel neu auftretenden Bildungsstücke zu thun.

In wievielen Wirbeln dieses vorhanden sei, ist mit Bestimmtheit hier noch nicht anzugeben; indessen lässt sich vermuthen, dass es nicht in allen auftritt, weil die beiden hinteren Sacralwirbel sich nicht durch flügelartig verbreiterte Seitentheile auszeichnen. Die Seitenfläche des Sacrums ist zudem sehr breit, soweit sie den drei vorderen Wirbeln angehort, und endigt nach binten schmal und spitz, wo sie sich auf die

Beiträge zur anatomischen Kenntniss des Kreuzbeines der Sängethiere. 397

beiden letzten Wirbel fortsetzt. Auch in ihrer Richtung stimmen die ventralen Schenkel der Seitenfortsätze mit den dorsalen nicht überein; besonders die ventralen Schenkel der Seitenfortsätze des ersten Kreuzwirbels sind stark nach hinten und unten gerichtet, am zweiten ist dies etwas weniger der Fall, am dritten gehen sie rechtwinklig quer vom Wirbelkörper ab. Aus der Richtung der Seitenfortsätze erklärt sich die Verschmelzung derselben an ihren Enden; denn so stark die vorderen nach hinten gerichtet sind, so stark sind es die hinteren (dem 4. und 5. Sacralwirbel angehörigen) nach vorn. Sie neigen also mit ihren Enden alle zusammen und verschmelzen hier so innig, dass die Grenze zwischen zwei Wirbeln nicht zu bestimmen ist.

Die (bei horizontal gedachter Stellung der Wirbelsäule) von aussen und oben den Seitenflächen des Sacrums sich auflagernden Darmbeine berühren unmittelbar nur einen Theil derselben, nämlich nur den vorderen, den Enden der Seitenfortsätze der drei vorderen Sacralwirbel angehörigen Abschnitt jeder Seitenfläche und zwar den am weitesten vorragenden ventralen Rand derselben. Daher sind es die ventralen, niemals die dorsalen Schenkel der Seitenfortsätze, welche die Darmbeine tragen. Die Gelenkfläche, mittelst welcher die Berührung mit dem Ilium stattfindet, ist die sogenannte facies auricularis. Sie erhebt sich um ein Weniges über das Niveau der Seitenfläche, von der sie ein Theil ist. Der zwischen dem nicht erhabenen Theile der letzteren und dem auf der Gelenkfläche knapp aufliegenden Darmbeine übrig bleibende Raum, ist mit weicher Bandmasse ausgefüllt.

Da der Seitenfortsatz des ersten Kreuzbeinwirbels in jeder Richtung am meisten entwickelt ist, so bildet er auch einen verhältnissmässig grossen Theil der Seitenfläche des Sacrums. Sein distales Ende ist ganz besonders verbreitert. Demgemäss hat er auch an der Bildung der facies auricularis den grössten Antheil, mehr als die Hälfte derselben gehört ihm an. Am Ilium entspricht ihm eine tiefe Grube, in die er sich mit seinem Antheil an der facies auricularis hincinlegt, während die Anlegestelle der beiden anderen Sacralwirbel weniger ausgedehnt und fast nicht vertieft ist. Zwischen beiden Abschnitten der am Darmbeine für die ohrförmige Fläche des Kreuzbeines befindlichen Gelenkgrube erhebt sich eine schmale Knorpelleiste, welche die Grenzscheide zwischen dem Gebiete des ersten Wirbels und dem des zweiten und dritten darstellt. Auf der Gelenkfläche des Sacrums entspricht dieser Leiste eine zwischen dem ersten und zweiten Wirbel hinziehende, nach oben laufende kleine Vertiefung¹).

1) Das hier über die Theilnahme der einzelnen Sacralwirbel an der Gelenk-

F. Frenkel,

Da, wo der erste Sacralwirbel dem Darmbein sich anfügt, ist dieses ventral stark aufgeworfen und verdickt. Die Verdickung zieht sich nach unten und hinten bis zum Schambeinkamme, bildet später, wenn sie als eine noch schärfer ausgeprägte Linie hervortritt, die linea arcuata interna. Sie stellt die Grenze zwischen dem grossen und dem kleinen Becken dar. Die gleichnamigen beiden Linien der rechten und linken Seite gehen über den ventralen Rand der Seitenfortsätze des ersten Sacralwirbels am Körper desselben ineinander über. Durch die grössere Ausdehnung seiner Seitentheile, durch die selbständige Art seiner Einlenkung an die Darmbeine und durch die Beziehung, welche zwischen seinen eingestemmten Fortsätzen und der Gestaltung eines wichtigen Abschnittes der Darmbeine besteht, erhält der erste Sacralwirbel eine hervorragende Wichtigkeit. Nach unten und hinten von der Verbindungsstelle mit dem Sacrum beginnt die Verknöcherung der Darmbeine, welche sich von da aus, concentrisch fortschreitend, allmälig über die Knorpelmasse derselben ausbreitet.

Wie weit an diesem embryonalen Skelete die Verknöcherung der Wirbel vorgeschritten sei, konnte erst durch Querschnitte festgestellt werden, welche gleichzeitig durch Wirbelkörper, Seitenfortsätze und Bogen geführt wurden. Es zeigte sich, dass die Mehrzahl aller Wirbel bereits damit begonnen hatte und dass, je weiter ein Wirbel nach vorn lag, um so grösser die in seiner knorpeligen Grundmasse eingebetteten Knochenkerne sich erwiesen. An den letzten Wirbeln, vom dritten Sacralwirbel an, zeigte sich noch keine Spur von beginnender Ossification und selbst der zweite Sacralwirbel besass nur inmitten seines Körpers einen kleinen Knochenkern. Am ersten Kreuzbeinwirbel und an den Lendenwirbeln hatten sich bereits drei von einander unabhängige Ossificationscentren gebildet, eins im Wirbelkörper, zwei seitliche dorsal davon als knöcherne Grundlage der oberen Bogen. Soviel über den Befund an dem frühesten von mir untersuchten Stadium des menschlichen Sacrums. Die im Folgenden kurz beschriebenen Vorgänge bei der Ossification dieses Skelettheiles wurden theils an fötalen Wirbelsäulen, theils an solchen von Kindern aus den ersten Lebensjahren beobachtet.

Die erst nach aussen und oben, dann nach innen und oben gewendeten Bogen, welche sich dorsal vereinigend den von jedem Wirbel

verbindung mit dem Darmbeine Gesagte, findet in demselben Maasse auch auf spätere Stadien volle Anwendung. Selbst an Skeleten Erwachsener kann man die hier festgestellten Thatsachen beobachten.

gebildeten Ring über dem Rückgratcanal abschliessen, senden von ihrer am weitesten nach aussen ragenden Ecke an den Lendenwirheln die Ouerfortsätze ab, als deren entsprechende Stücke wir die oberen Schenkel der Seitenfortsätze der Sacralwirbel erkannten. In dem dieser Ecke entsprechenden, von den divergirenden Richtungen eines Bogens eingeschlossenen Winkel, zunächst dem Rückgratcanale, bildet sich jederseits der Knochenkern aus, durch dessen Wachsthum allmälig der ganze Bogen in den knöchernen Zustand übergeht. Von diesem Kerne aus schreitet die Ossification nach drei verschiedenen Richtungen hin mit verschiedener Schnelligkeit fort: nach ohen bis zur Berührung mit dem Knochen der anderen Seite und ihrer Verschmelzung zur Bildung des Dornfortsatzes; nach der Seite in den sich verlängernden Querfortsatz hinein; und endlich abwärts in den Wirbelkörper, wo des Wachsthum so lange fortdauert, his unter Berührung mit dem sich rasch vergrössernden Knochenkerne des Wirbelcentrums die Möglichkeit einer weiteren Ausdehnung aufhört.

An jedem Lendenwirbel bleiben, auch nach Umwandlung alles Knorpels in Knochensubstanz, die Spuren seiner Entwickelung aus drei Knochenkernen noch längere Zeit erhalten, indem durch erst in späterer Zeit verstreichende Nähte die Grenzen der von den Knochenkernen aus ossificirten Theile bezeichnet sind. Diese längst bekannten Thatsachen der Entwicklungsgeschichte der Lendenwirbel finden nicht minder ihre volle Anwendung auf die fünf Sacralwirbel, und es würde überhaupt kaum ein Unterschied in der Entwickelung beider Arton von Wirbeln stattfinden, wenn nicht die ventralen Schenkel der Seitenfortsätze der vorderen drei Kreuzbeinwirbel einen selbständigen Verknöcherungsprocess durchmachten. Diese verharren, während im Wirbelkörper und in den oberen Bogen bereits ganz deutliche Knochenkerne aufgetreten sind, wie es scheint, noch ziemlich lange Zeit im knorpeligen Zustande, ohne durch eine auf Querschnitten im Knorpel etwa sichtbare Grenze von den dorsalen Schenkeln der Seitenfortsätze und vom Wirbelkörper geschieden zu sein. Selbst unter dem Mikroskop war es nicht möglich, an der Stelle, wo man diese Grenzlinie der ventralen Schenkel der Seitenfortsätze hätte vermuthen können, einen Unterschied im Gewebe zu entdecken.

In den ersten Monaten des fötalen Lebens findet, abgesehen von einer mit der Entwickelung der Wirbelsäule Schritt haltenden Volumenzunahme, an dem nur langsam ossificirenden Sacrum so gut wie keine Veränderung statt. Als Beweis dafür dienen mir die Skelete zweier menschlicher Embryonen, die beide vom Atlas bis zum Schwanzende circa 11 Centimeter Länge haben und deren eines besonders kräftig entwickelte Wirbel aufweist. An beiden ist noch keine relative Grossenzunahme der in jedem Sacralwirbel angelogten drei Knochenkerne und, was das Wichtigste ist, ebenso wie an der oben besprochenen 5 Centimeter langen Wirbelsäule, noch keine Spur einer selbständigen Verknöcherung der ventralen Schenkel zu bemerken. Macht man dagegen Operschnitte durch die Seitenfortsätze am Sacrum Neugeborener, so findet man stets im ventralen Abschuitte derselben einen isolirten Knochenkern, bereits mehr oder minder ausgebildet, vor. Da in diesen Skeleten stets, mindestens am ersten Sacralwirbel, die selbständigen Knochenkerne vorhanden und oft schon recht ansehnlich gross sind, so ist es ganz sicher, dass sie noch vor der Geburt sich entwickeln. Da sie aber andererseits kurz nach der Geburt im zweiten Sacralwirbel verhältnissmässig noch klein und im dritten (an dem Skelete eines mehrere Wochen alten Kindes) nach gar nicht aufgetreten sind, so ist auch ihre Entstehung im ersten Sacralwirbel, was durch die 11 Centimeter langen Wirbelsäulen bestätigt wird, in eine späte Zeit des fötalen Lebens zu setzen. Selbst an der 26 Centimeter langen Wirhelsäule eines Kindes (von angeblich einem halben Jahre) war, trotz vorhandener Verdickung der Seitenfortsätze, im dritten Sacralwirbel ein Auftreten der »ventralen Seitenstücke« (wie diese Knochenstückchen vorderhand am besten genannt werden) noch nicht bemerkbar, und im ersten und zweiten Wirbel waren sie kaum grösser, als an den entsprechenden Stellen des mehrere Wochen alten, nur 22 Centimeter messenden Vertebral-Skeletes eines Neugeborenen.

Die erste Anlage dieser ȟberzähligen« Knochenkerne findet näher dem äusseren, als dem inneren Ende der ventralen Schenkel der Seitenfortsätze statt. Wenn sie unter Verbrauch des umgebenden Knorpels wachsen, so besitzen sie im Querdurchschnitte der Seitenfortsätze eine ovale Umrandung. Sie dehnen sich bald bis an die Oberfläche derselben aus und erstrecken sich in die Wand des Canals hinein, zu denen die unteren Kreuzbeinlöcher den Eingang bilden. Sie sind stets durch eine breitere Knorpelgrenze von dem Knochenkerne des Wirbelcentrums, als von dem in die dorsalen Schenkel der Seitenfortsätze sich ausbreitenden Knochenkerne getrennt. (Fig. 4.)

Bezüglich der späteren Veränderungen ist bekannt, wie erst die einzelnen Knochenstücke jedes Sacralwirbels und dann die Sacralwirbel selbst untereinander verschmelzen und alle zu einem einzigen Knochen verwachsen. Zuerst fliessen die beiden oberen Bogen (an den drei vorderen Wirbeln) oben zu dem Rudimente eines Dornfortsatzes zusammen; dann verschmelzen die ventralen Seitenstücke mit dem entsprechenden dorsalen Schenkel der Seitenfortsätze; nicht lange nach dieser Verschmelzung

vollzieht sich die Verwachsung der Seitentheile mit dem Wirbelkörper, zuerst mit dem, einem Quorfortsatze entsprechenden Schenkel, dann, aber viel später, mit dem ventralen Seitenstücke. Die Nähte zwischen den Bildungsstücken der Wirbel verschwinden um so cher, je kleiner ein Wirbel ist. Daher verschwinden die Spuren der ventralen Seitenstücke am dritten Kreuzheinwirbel cher als am zweiten und erhalten sich am längsten am ersten Wirbel.

Am Ende des ersten Lebensjahres haben alle Knochenkerne im Kreuzbeine ihre gehörige Grösse erreicht, sodass die einzelnen Stücke nur noch durch schmale Nähte getrennt sind. Diese verschwinden nur sehr langsam nach einer Anzahl von Jahren und sind im neunten Lebensjahre, wie an dem mir vorliegenden Skelete eines Knaben zu sehen ist, noch nicht ganz verschwunden. Erst im Pubertätsalter beginnen die Wirbel des Kreuzbeines untereinander und zwar in der Reihenfolge von hinten nach vorn zu verwachsen, sodass die vollständige Verschmelzung des ersten und zweiten Sacralwirbels, bei der Langsamkeit des ganzen Processes, erst zwischen dem 25. und 30. Lebensjahre eintritt. (Vergl. CRUVEILMER, Traité d'anatomie, I. S. 406 ff.)

Nachdem die Verknöcherung des Sacrums bis zu einer gegenseitigen Berührung der Knochenkerne vorgeschritten, lässt sich der Antheil bemessen, den die oberen und unteren Schenkel der Seitenfortsätze an der Bildung der Seitenfläche des Kreuzbeines und an der Verwachsung der Wirbel desselben nehmen. Es wurde bereits oben gezeigt, dass die Verwachsung der Seitentheile der Sacralwirbel eine Folge der ausserordentlichen Verdickung ihrer Enden und ihrer Convergenz nach einem Puncte hin ist. Es lässt sich nun beweisen, dass eine Verwachsung der Seitenfortsätze gar nicht eintreten würde, wenn nicht ventrale Seitenstücke am Sacrum vorhanden wären, sowie, dass die Wölbung des Kreuzbeines nach oben (oder, bei aufrechter Stellung, nach hinten) unmittelbar durch die Gestalt der ventralen Seitenstücke bedingt ist. Die letzteren haben nämlich im fertigen Zustande die Gestalt eines mit seinem abgestumpften Ende dem Wirbelkörper anliegenden Kegels, der mit einem etwas abgeplatteten Theile seiner Mantelfläche dem oberen Schenkel des Seitenfortsatzes angefügt ist, während der übrige Theil der Mantelfläche der freien Oberfläche des Seitenfortsatzes angehört. Die breite, kreisförmige Grundfläche des Kegelstumpfes schaut seitwärts nach aussen und stellt einen Theil der Seitenfläche des Kreuzbeins dar. Die dorsalen Schenkel der Seitenfortsätze nehmen mit ihrem distalen Ende an der Bildung der Seitenflächen einen kaum nennenswerthen Antheil, indem sie durch die stark verbreiterten Enden der ventralen Seitenstücke an den drei

F. Frenkel,

vorderen Sacralwirbeln von der Berührung mit den Seitentheilen der angrenzenden Wirhel fast ausgeschlossen sind. Anders verhält es sich an den beiden letzten Sacralwirbeln, an denen die ventralen Seitenstücke gänzlich fehlen. Die Enden ihrer Ouerfortsätze sind durch schmale, allmälig verknöchernde Knorpelbrücken mit den Enden der seitlichen Fortsätze des je vorhergehenden Wirbels verbunden. Von der Seitenfläche des Kreuzbeines gehört daher nur der schmale, dorsale, auf die beiden letzten Wirbel fortgesetzte Rand den Querfortsätzen der Sacralwirbel an, die ganze übrige Seitenfläche wird von den ventralen Seitenstücken durch Verschmelzung der Ränder ihrer Grundflächen gebildet. Die Convexität des Kreuzbeines nach oben erscheint dadurch als eine Folge der starken ventralen Verbreiterung und dorsalen Verschmälerung durch die Enden der Seitenfortsätze der drei vorderen Wirbel. Die Theilnahme der den processus transversi der Lendenwirbel entsprechenden dorsalen Schenkel der Seitenfortsätze an der Verwachsung der Seitentheile erklärt sich vielleicht aus der Annäherung ihrer Enden infolge der Krümmung des Kreuzbeines und aus der nahen Beziehung, in welche sie zu den ventralen Seitenstücken durch Verschmelzung mit ihnen getreten sind.

Die hier beschriebenen Lagerungsbeziehungen der letzteren lassen sich am besten an Skeleten drei- bis vierjähriger Kinder beobachten, an denen die Grenzen der einzelnen Knochenstücke auch äusserlich deutlich durch Nähte bezeichnet sind. Da dies auch auf den Seitenflächen noch der Fall ist, so sicht man an jenen Skeleten genau, dass die glatte überknorpelte Gelenkfläche, facies auricularis, welche den grösseren, ventralen Abschnitt der Seitenfläche bildet, an keiner Stelle den Querfortsatzenden angehört, sondern nur den ventralen Seitenstücken. Indessen treten auch diese nicht mit ihrer ganzen Aussenfläche mit dem Darmbeine in Berührung; der kleinere dorsale Abschnitt dieser Fläche besitzt keinen Knorpelüberzug, er hat eine rauhe, knöcherne Oberfläche und zeigt sich, nach Ablösung des Darmbeins vom Sacrum durch straffe Bandmasse mit ersterem verbunden. Immer, und es wurde darauf hin eine grössere Anzahl Kreuzbeine untersucht, gehört der grösste Theil der facies auricularis dem ventralen Seitenstücke des ersten Sacralwirbels an. Dagegen ist die Grösse ihrer Ausdehnung auf den zweiten und dritten Kreuzbeinwirbel nicht nur individuellen Verschiedenheiten unterworfen, sondern oft sogar auf beiden Seiten eines und desselben Sacrums ungleich. Gewöhnlich nimmt die facies auricularis den ganzen ventralen Rand der Seitenfläche des zweiten und mit ihrem hinteren Ende noch den

Beiträge zur anatomischen Kenntuiss des Krenzbeines der Säugethiere. 403

vorderen Abschnitt der Seitenfläche des dritten Sacralwirbels ein. Doch kommen hiervon auch manche Abweichungen vor, oder sogar asymotrisches Verhalten, wie ich z. B. an dem Sacrum eines neunjährigen Knaben finde, welches auf einer Seite den gewöhnlichen Befund, auf der andern Seite aber die facies auricularis nur dem ersten und zweiten Sacralwirbel angehörig aufweist.

Es wurde bereits mehrfach darauf hingewiesen, dass die dorsalen Abschnitte in den Seitenfortsätzen der vorderen Sacralwirbel, sowie die Seitenfortsätze der beiden letzten, in ihrer ganzen Ausdehnung den Querfortsätzen der Lendenwirbel entsprechen. Genauer ausgedrückt entsprechen sie der Wurzel der oberen Bogen am Körperstücke des Wirbels und deren seitlicher, einen kurzen Querfortsatz darstellenden Verlängerung. Darüber kann bei Vergleichung durch die Kreuzbeinwirbel gelegter Querschnitte, mit Querschitten durch Lendenwirhel des nämlichen Skelets kaum ein Zweifel sein. Denkt man sich die durch Nähte noch deutlich abgegrenzten ventralen Seitenstücke hinweg, so gewährt der Durchschnitt durch einen Sacralwirbel vollkommen das Bild eines quer durchschnittenen Lendenwirbels, dessen Querfortsätze mit getroffen sind. Die Querfortsätze der Lendenwirbel nehmen von vorn nach hinten bis zum vierten stetig an Länge zu, und sind am fünften in demselben Maasse verkürzt. In der That folgen die processus transversi, die wir in den Seitentheilen des Kreuzbeins als Enden der dorsalen Schenkel wiederfinden, genau diesem Verhalten und setzen es fort indem sie von vorn nach hinten eine relative Abnahme der Länge Sie unterscheiden sich von den processus transvorsi der erfahren. Lendenwirbel nur durch die der Function des Kreuzbeins angepasste Verdickung ihres mit dem nächsten Wirbel verwachsenden Endes.

Das ventrale Seitenstück zeigt sich auf solchen Querschnitten mit dem oberen Bogen auf einer grösseren Strecke als nit dem Wirbelkörper in Berührung. Am zweiten und dritten Sacralwirbel, wo es quer durchschnitten einen dreieckigen Umriss hat, berührt es den Wirbelkörper sogar nur mit seiner inneren Ecke in einer kaum linearen Ausdehnung.

Eine besondere' Bedeutung erhalten die ventralen Seitenstücke wenn man den Einfluss des Sacrums auf die Configuration des Beckens in beiden Geschlechtern in Betracht zieht. Bekanntlich sind am weiblichen Becken alle Durchmesser relativ grösser, als am männlichen. Das weibliche Sacrum ist kürzer und breiter, als das Sacrum des Mannes. Im Allgemeinen kann man es als Regel ansehen, dass die grösste Breite des weiblichen Sacrums gleich ist seiner Länge, während das männliche F. Frenkel,

Sacrum dadurch schmäler erscheint, dass es weniger breit als lang ist. Der Grund dieser wichtigen sexuellen Verschiedenheit in den Maassverhältnissen dieses Knochens ist, dass, bei sich gleichbleibender Breite der Wirbelkörper, am weiblichen Sacrum die ventralen Seitenstücke länger sind, als am männlichen. Wenn man die Breite des Zwischenraumes zwischen dem rechten und linken vordersten Sacralloche (statt der nicht bestimmbaren Breite des mittleren Theiles eines Wirbelkörpers) und die grösste Breite des ersten Sacralwirbels (auf seiner ventralen Fläche hin) misst, die Breite jenes intervertebralen Abschnitts == 1 setzt, und dies an einer Anzahl männlicher und weiblicher Kreuzbeine vollführt, so ergiebt sich als das aus den so erhaltenen Verhältnisszahlen für beide Geschlechter gefundene Mittel, dass beim weiblichen Geschlechte die Breite des intervertebralen Abschnitts zur grössten Breite des ersten Sacralwirbels sich wie 1: 4,01, beim männlichen wie 1: 3,52 verhält. Das ventrale Seitenstück erreicht demnach am weiblichen Sacrum die relative Länge 4,50, am männlichen dagegen nur 4,26. Man sieht dass die letztere Zahl zur ersteren in dem Verhältnisse 4 : 1,19, also fast = 1 : 1,2 steht. Diese Verlängerung der ventralen Seitenstücke beim Weibe, welche mit den veränderten Grössenverhältnissen des ganzen Beckens in innigster Beziehung steht, muss, wie alle Veränderungen am Becken, als eine Anpassungserscheinung an die geschlechtlichen Functionen betrachtet werden. Wie durch sie die Configuration des Beckens beherrscht wird ist verständlich, wenn man den bei ihrem Auftreten weniger steil ventralwärts erfolgenden Abfall der Seitenflächen und deren dorsale Convergenz beachtet.

Die den Seitenflächen angefügten Darmbeinplatten stehen daher ventral weiter auseinander, und, indem diese grössere Divergenz durch Verlängerung der linea arcuata interna und des horizontalen Schambeinastes compensirt wird, gewinnen alle Beckendurchmesser an Länge, während zugleich der Schambogen flacher und weiter und das foramen obturatum eckiger ist.

Abgesehen von dieser, je nach dem Geschlechte verschiedenen, Längenentwickelung seiner Seitentheile ist das Sacrum noch so vielfachen Variationen unterworfen, dass man es mit Recht als den veränderlichsten Abschnitt der Wirbelsäule bezeichnet findet. Die an demselben wahrgenommenen Abweichungen von seinen normalen Verhältnissen betreffen am häufigsten die Zahl der in ihm verwendeten Wirbel, und zielen theils auf eine Abnahme, theils auf eine Zunahme jener Zahl, mit oder ohne eine gleichzeitige Reduction oder eine Neubildung ventraler Seitenstücke hin. Durch die Beziehung zu letzteren

Beiträge zur anatomischen Keuntniss des Kreuzbeines der Säugethiere.

geben mir diese Anomalien zu eingehender Aeusserung Anlass. Meine hierüber gemachten Beobachtungen schliessen sich an die von Dr. Dürr (Zeitschrift für rationelle Medicin 3. Reibe mitgetheilten Fälle an. VIII. Bd. S. 485.)

Eine Verminderung der sacralen Wirbelzahl auf vier kann durch ein Ausscheiden des ersten oder des letzten Wirbels aus dem Verbande des Kreuzbeins hevorgebracht sein. Beide geben in solchem Falle ihre characteristischen Eigenschaften als Sacralwirbel auf. indem sie das Streben zeigen, sich durch ihre Form dem anstossenden Abschnitte der Wirbelsäule anzuschliessen und dadurch ihre Selbständigkeit zu erhalten. - Den fünften Sacralwirbel findet man oft ohne seitliche Verbindung dem vierten beweglich ansitzend, wodurch die Zahl der Schwanzwirbel um einen vermehrt erscheint. Dagegen verliert der erste Sacralwirbel, wenn keine ventralen Seitenstücke an ihm zur Entwickelung kommen, durch Verschmälerung seiner nicht mehr an das Darmbein stossenden Seitenfortsätze das Aussehen eines Sacralwirbels und gleicht einem bloss mit Querfortsätzen ausgestatteten Lendenwirbel. Man findet diesen Fall nicht selten erwähnt, obgleich nicht angegeben ist, ob ein gänzliches Fehlen der ventralen Seitenstücke nachgewiesen wurde oder ob wenigstens noch Spuren davon am ventralen Rande der Querfortsätze zu sehen waren. Das Wahrscheinlichere ist jedenfalls das Letztere; denn obgleich ich diesen Fall an mehreren Belegstücken aus der hiesigen anatomischen Sammlung beobachten konnte, so habe ich doch an keinem Sacrum die ventralen Seitenstücke des ersten Wirbels ganzlich vermisst; im Gegentheil fand ich immer noch recht deutliche Rudimente derselben erhalten. Das ausgeprägteste Beispiel dafür ist ein ausgewachsenes weibliches Becken, dessen zugehöriges Sacrum nur mit dem zweiten und dritten Wirbel die Darmbeine berührt, während der erste Wirbel eine vollständige Rückbildung nach der Form eines Lendenwirbels erfahren hat; denn sein nicht mit dem Sacrum verwachsener Körper ist, wie der eines Lendenwirhels, ventral länger als dorsal, er hat dicke, mit ihren Enden frei nach aussen und etwas nach oben schende processus transversi, und auch seine Gelenkfortsätze sind mit dem zweiten Sacralwirbel nicht durch Synostose verbunden, sondern bieten wie jene anderer Lendenwirbel eine Articulation. Was ihn aber vor einem Lendenwirbel auszeichnet und ihn zu einer Mittelform zwischen beiden Wirbelarten stempelt, sind die seinen Querfortsätzen anhaftenden Rudimente der ventralen Seitenstücke, welche mittelst Gelenkflächen auf den Seitentheilen des zweiten Sacralwirbels articuliren. Das ventrale Seitenstück am rechten Quer-

405

¢

F. Frenkel,

fortsatze ist breiter und länger gestaltet, als am linken. Je mehr so der erste Sacralwirbel rückgebildet erscheint, um so mächtiger sind die Seitentheile des zweiten entwickelt, sodass dem Umfang der Auricularfläche durch diese Abnormität kein Abbruch geschieht (s. Fig. 22). Ob dieser Lumbosacralwirbel die Zahl der Lumbalwirbel vermehrte, muss ich dahin gestellt sein lassen, da mir bezüglich des Verhaltens der übrigen Wirbelsäule nichts bekannt wurde. Da nur vier Sacralwirbel bestanden, glaube ich jedoch zur Annahme, dass der fragliche Wirbel ein ursprünglich sacraler war, berechtigt zu sein.

So selten vielleicht die gleichzeitige Rückbildung der ventralen Seitenstücke auf beiden Seiten des ersten Sacralwirbels auftreten mag. so ist doch wenigstens eine einseitige Reduction kein ungewöhnliches Vorkommniss. Die in der hiesigen Sammlung repräsentirten Fälle betreffen gleichfalls weibliche Becken. Einen davon habe ich in Fig. 23 darge-Die anderen stimmen damit im Wesentlichen überein. An dem stellt. Dargestellten ist wieder ersichtlich, dass es sich um einen Sacralwirbel handelt, denn auf ihn folgen nur vier unter einander verschmolzene Wirbel, deren letzter entschieden auch der letzte Sacralwirbel ist. Der erste Sacralwirbel ist linkerseits lumbal, rechterseits sacral geformt. Er steht auf der rechten Seite mit dem Ilium in Gelenkverbindung und unterscheidet sich von seinem regelrechten Verhalten nur durch das deutliche Hervortreten eines abgesonderten Querfortsatzes (p. tr.) Auf der linken Seite ist der Querfortsatz (p. tr.) dem eines Lumbalwirbels ähnlich gestaltet und nur ventral ziemlich stark verdickt, indem an dieser Stelle eine Spur des ventralen Seitenstückes (c s) sich bemerkbar macht, welches an seinem Ende durch einen leichten Einschnitt von dem Querfortsatze sich absetzt. Der erste Sacralwirbel bietet zugleich durch die ungleiche Entwickelung seiner beiden Seiten auf der lumbal gestalteten Seite in der Weise eine Verkürzung dar, so dass die ganze nach vorn hin sich ihm anschliessende Lendenwirbelsäule nach dieser Seite hingedrängt und verkrümmt wird, was durch eine entgengesetzt unsymmetrische Gestaltung der Lendenwirbelkörper meist wieder ausgeglichen wird.

Im Allgemeinen ist die Verminderung der Zahl der eigentlichen Sacralwirbel auf eine der angegebenen Arten immerhin nicht häufig. Zahlreicher dagegen sind die Fälle, in denen man eine Vermehrung der Sacralwirbel durch Hinzutreten eines oder mehrerer Wirbel aus dem präsacralen und postsacralen Abschnitte der Wirbelsäule beobachten konnte. Wenn das Sacrum von letzterem her einen Zuwachs erhält, so ist es zunächst der erste Steissbeinwirbel, der durch Verschmelzung scines Körpers und seiner Seitentheile mit dem fünften Sacralwirbel

Beiträge zur anatomischen Keuntniss des Kreuzbeines der Sängethiere. 407

seine Selbständigkeit aufgiebt. Findet eine Vermehrung der Sacralwirbel auf sieben statt, ohne dass der nächste präsacrale Wirbel dabei betheiligt ist, so ist auch der zweite Steissbeinwirbel in derselben Weise wie der erste, oder nur mit seinem Körper mit dem nunmehrigen letzten Wirbel des Kreuzbeins verschmolzen.

Der häufige Fall einer abnormen Sacral-Bildung unter Zutritt eines fremden Elementes ist der theilweise oder völlige Uebergang des letzten Lumbalwirbels in einen Sacralwirbel. Die Umbildung, welche dieser Wirbel in diesem Falle erleidet, geschieht durch die Verbindung mit einem ventralen Seitenstücke, die in der ventralen Verbreiterung des Seitenfortsatzes sich ausdrückt. Dies dürfte aus folgenden Umständen hervorgehen: 1. aus der Form und Lagerung der unteren Schenkel der Seitenfortsätze; 2. aus ihrer Beziehung zum Darmbeine, mit welchem sie in Berührung treten oder gegen welches sie gerichtet sind.

Bei nur einseitiger Ausbildung dieses Knochenkerns bleibt der Wirbel auf der andern Seite mehr oder weniger einem Lendenwirbel ähnlich; er ist aber wenigstens mit einem sehr verdickten Querfortsatze ausgestattet, welchem das ventrale Seitenstück als ein schmaler Streifen unten angefügt ist. Die sacral gestaltete Seite zeigt ein wohl entwickeltes, mit dem ersten Sacralwirbel verschmolzenes, ventrales Seitenstück, das zur Vergrösserung der facies auricularis beiträgt und über dem der dorsale Schenkel des Seitenfortsatzes als wohl entwickelter und mit seinem Ende frei nach aussen tretender processus transversus deutlich vorhanden ist. Ist das ventrale Seitenstück einseitig sehr mächtig entwickelt, so kann sich auch in diesem Falle, wie bei der entsprechenden Gestaltung des ersten Sacralwirbels (s. oben), der Wirbel auf dieser Seite heben, und wird auf der anderen niedriger sein, was eine Verkrümmung der nach vorn sich anschliessenden Lendenwirbelsäule zur Folge hat (s. Fig. 24 Taf. XXII). Hierher scheint auch die Mehrzahl der von Dürr beschriebenen Fälle zu gehören, sicher seine drei ersten, von denen der erste und zweite niedere Stadien der Entwicklung des ventralen Seitenstückes vorstellen, indess der dritte Fall eine mächtige linksseitige Ausbildung desselben repräsentirt.

Entwickeln sich die ventralen Seitenstücke am letzten Lumbalwirbel auf beiden Seiten gleich mächtig, so nimmt er, unter vollständigem Eingehen in das Sacrum, bilateral die Gestalt eines Sacralwirbels an, und nur die stärker hervorragenden Querfortsätze verrathen, zusammen mit der Abnahme der Lendenwirbel auf vier und der Zunahme der Sacralwirbel auf sechs, seine Natur als Lendenwirbel. Dass die Beurtheilung dieser Fälle nicht an einzelnen Kreuzbeinen, sondern mit Bd. VII. 4. Berücksichtigung der gesammten Wirbelsäule zu geschehen hat, ist selbstverständlich.

Es ist nicht schwer zu verstehen, warum gerade von der Lendenwirbelsäule aus das Sacrum am häufigsten einen Zuwachs erhält. Wenn auch der letzte Lendenwirbel ganz normal gebildet ist, so ist er wenigstens durch das ligamentum ilio-lumbale mit dem llium sowohl als mit dem Kreuzbeine in innigster Verbindung; denn dieses breite und straffe Band erscheint in der Regel in zwei Schenkel gespalten, deren einer zur tuberositas ossis ilei, der andere zum Ende des Seitenfortsatzes des ersten Sacralwirbels geht An Bänderpräparaten der Wirbelsäule kann man schen, wie ähnlich schon dadurch der letzte Lendenwirbel einem Sacralwirbel wird, und dass es dadurch zwischen ihm und dem ersten Wirbel des Kreuzbeines zur Bildung zweier foramina sacralia kommt. Treten nun auch an ihm ventrale Seitenstücke auf, so ist ihnen durch das lig. ileo-lumbale der Weg bereits vorgezeichnet, den sie bei ihrer Ausdelnung und Vergrösserung einschlagen müssen; denn indem sie sich in dem unteren Schenkel dieses Bandes ausbreiten, verwachsen sie schliesslich mit dem Sacrum und nehmen durch Berührung mit den Darmbeinen an der Bildung der facies auricularis Theil. Der kürzere processus transversus aber verbindet sich nur durch das Band mit dem Darmbeine und gelangt nicht mit ihm in directe Berührung.

In der Anordnung des Bandes ist immerhin eine Andeutung auf die Bezichungen zu jenen Seitenstücken wahrzunehmen, wenn auch eine festere Begründung der Homologie jenes Bandes und des Knochens unthunlich erscheint, denn dazu bedürfte es des Nachweises, dass das Band aus dem Knorpel hervorginge, und dass die ventralen Seitenstücke am letzten Lumbalwirbel in ihrer Verbindung mit den Darmbeinen einen primitiven Zustand repräsentirten, in welchem also der letzte Lumbalwirbel ein Sacralwirbel war. Dafür fchlte jedoch jede thatsächliche Begründung, vielmehr kommen auch an den weiter nach vorn zu liegenden Lumbalwirbeln Andeutungen costaler Rudimente vor, welche zur Verbreiterung der Querfortsätze beitragen. Sehr häufig ist diese Verbreiterung der Querfortsätze am letzten Lumbalwirbel, gegentiber denen der vorhergehenden Wirbel, an den Skeleten Erwachsener wahrzunchmen. Die Entwickelungsgeschichte zeigt, dass ventrale Seitenstücke, die aber nicht zur vollen Ausbildung kommen, dabei im Spiele sind, indem an manchen Kinderskeleten die überzähligen beiden Knochenkerne zuweilen schon äusserlich wahrnehmbar (vergl. Fig. 2 cs) oder doch auf Querschnitten nachweisbar sind. Diese Fälle geben zugleich die zuverlässigsten Beweise für die Richtigkeit der oben vertretenen Auffassung der Querfortsätze der Lendenwirbel.

408

K

Kaninchen und Feldhase.

In der Gattung Lepus finden wir das Sacrum in der Regel aus drei Wirbeln zusammengesetzt. Nur der erste besitzt die typischen Beziehungen eines echten Sacralwirbels, die beiden anderen unterscheiden sich nur durch ihre Grösse und Unbeweglichkeit, kaum ihrer Gestalt nach, von den vordersten Schwanzwirbeln. Da im Gegensatze dazu der erste Sacralwirbel mit den Lendenwirbeln Manches gemeinsam hat, so muss seiner Beschreibung die Kenntnissnahme derselben vorausgehen.

Die Körper der Lendenwirbel sind langgestreckt, mehr breit als dick; alle ihre Fortsätze sind mächtig entwickelt. Die Bauchfläche jedes Wirbelkörpers zeigt eine Mittelkante, zu deren beiden Seiten, besonders vorn, die Fläche ausgehöhlt und vertieft ist. Durch zwei scharfe Seitenkanten ist sie nach aussen gegen die Seitenflächen des Wirbels abgegrenzt. Die langen, nach vorn und aussen stehenden Querfortsätze sind plattgedrückt; ihre untere Fläche ist eine Fortsetzung der unteren Fläche des Wirbelkörpers, ihr hinterer scharfer Rand geht im Bogen aus den Seitenkanten des Körpers hervor. Von den sechs Lumbalwirbeln hat der fünfte die längsten Querfortsätze; nach vorn und hinten von ihm nimmt die Länge derselben stetig ab.

Der erste Sacralwirbel theilt mit den Lendenwirbeln den Besitz dieser characteristischen Querfortsätze; sie bilden einen Theil seiner Seitenfortsätze und bewahren sich in vielen Fällen eine gewisse Selbstständigkeit, indem wenigstens ihr Ende am Vorderrande der Seitenfortsätze frei hervorragt. Sie entsprechen nach Richtung, Gestalt (soweit sie erkennbar ist) und relativer Länge (indem sie um ebensoviel von den Querfortsätzen des letzten Lendenwirbels an Länge übertroffen werden, als diese von denen des fünften) und, was besonders wichtig erscheint, ihrer Entwickelung nach genau den Ouerfortsätzen der Lendenwirbel. Die letzteren entwickeln sich aber ganz so, wie die entsprechenden Fortsätze beim Menschen, indem sie langsam von ihrer an den oberen Bogen liegenden Wurzel her nach der Spitze fortschreitend verknöchern und niemals grössere eigene Knochenkerne besitzen. Wie beim Menschen, wird der Wirbelkörper auch bei diesen Nagern unter Betheiligung aller drei in jedem Wirbel auftretenden Knochenkerne in seinen fertigen Zustand übergeführt. Dies gilt ebensowohl für die Lendenwirbel, wie für alle ihnen folgenden Wirbel, soweit sie nicht wie die letzten Schwanzwirbel, verkümmert sind. Nur der erste Sacralwirbel macht von dieser gleichartigen Entwickelung eine bemerkenswerthe Ausnahme, da wieder in seinen Seitenfortsätzen die selbständigen Knochenkerne auftreten, die wir am menschlichen Sacrum als ventrale Seitenstücke bezeichnet haben.

Auch wenn sie nicht in Jugendzustünden des Sacrums als unabhängige Verknöcherungspuncte nachweisbar wären, würde man schon aus der Gestalt der Seitenfortsätze, besonders aus der distalen Abgliederung der processus transversi von einem ventralen Stücke auf ihr Vorhandensein schliessen können.

In der That kann man solche als selbständige Knochenstücke im Sacrum der Ilasen noch einige Zeit nach der Geburt beobachten; sie verschmelzen aber weit eher, als beim Menschen, mit den übrigen Bildungsstücken des Wirbels. An einem halberwachsenen Kaninchen, dessen Wirbelsäule vom Atlas bis zum Sacrum 20 Centimeter maass, fand ich auf einem Querschnitt bereits alle Nahtspuren verwischt. Um so deutlicher sind die ventralen Seitenstücke noch beim neugeboreneu Kaninchen. Auch bei Lepus timidus habe ich sie bei einem 9 Centimeter langen Embryo gefunden. Sie bilden immer die Hauptmasse des Seitenfortsatzes und liegen nach unten und hinten dem Querfortsatze, nach innen dem Wirbelkörper an. In ihrer Entwickelung bis zum Verschmelzen mit den übrigen Stücken bieten sie nichts Besonderes dar, da sie sich dabei wie die entsprechenden Theile im menschlichen Sacrum verhalten. (Fig. 5 Taf. XXI).

Die Seitenfläche des ersten Sacralwirbels, welche hinten an der Verbindungsstelle mit dem zweiten Sacralwirbel am breitesten erscheint, verschmälert sich nach vorn zusehends und endigt in einen spitzen Winkel ausgezogen über dem Ende des zugehörigen Querfortsatzes, dessen nach aussen und oben schende Rückenflüche ihren vorderen Abschnitt darstellt. Der hintere Abschnitt ist überknorpelt und erhebt sich um ein Beträchtliches, oft um 1 Mm., über das Niveau der übrigen Seitenfläche. Er bildet die Gelenkfläche für das Darmbein und verfällt durch einen Einschnitt in eine ohere und untere Hälfte (s. Fig. 7 Taf. XXI), die schräg nach binten convergiren und schliesslich zusammenfliessen. Die grössere untere Hälfte erstreckt sich am ventralen Rande der Seitenfläche bis nach deren vorderem Ende hin; an jungen Skeleten, mit noch sichtbaren Knorpelgrenzen zwischen den Bildungsstücken des Wirbels, erkennt man sofort, dass dieser grössere Abschnitt der Gelenkfläche die Aussenfläche des ventralen Seitenstückes darstellt. Die kleinere dorsale Hälfte der Gelenkfläche gehört dem Verknöcherungsbezirke des oberen Bogens an, der som it an der Gelenkverbindung mit dem Darmbeine betheiligt ist. Gewöhnlich bildet die Aussenfläche des ventralen Seitenstückes zwei Drittel und der Antheil des oberen Bogens ein Drittel der ganzen

Gelenkfläche (s. Fig. 7). An den breiten Hinterrand des Seitenfortsatzes des ersten Sacralwirbels schliesst sich der nur sehr kurze processus transversus des zweiten durch eine später verknöchernde Knorpelbrücke an. Das ventrale Seitenstück des ersteren bleibt durch sein Vorspringen nach unten zu mit diesem rudimentären Querfortsatze nicht oder kaum in Berührung. Die seitliche Verschmelzung des zweiten mit dem dritten Sacralwirbel erfolgt dadurch, dass der sehr kurze Querfortsatz des letzteren einem nach hinten gerichteten Fortsatze, der aus dem oberen Bogen des zweiten Wirbels entspringt, entgegenwächst, und die schon vorhandene Knorpelbrücke zwischen beiden Wirbeln auf diese Weise verknöchert.

Von der hier geschilderten Regel finden sich vorzüglich an der mit dem Darmbeine in Contact tretenden Seitenfläche grössere individuelle Verschiedenheiten, wie ich aus Vergleichung einer Anzahl von Kreuzbeinen finde. Bald ist sie mehr breit als lang, bald schmal und besonders nach vorn ausgedehnt, beides je nach der Länge des in ihr auftretenden Querfortsatzes, dessen Antheil an der Ilio-sacral-Verbindung als das variabelste Moment erscheint. Ich glaube nicht zu fehlen, wenn ich diesen Umstand aus der secundären Natur jener Verbindung zu deuten versuche.

Das Auftreten des ventralen Seitenstückes ist ebensowenig wie beim Menschen nur auf typische Sacralwirbel beschränkt, denn auch der letzte Lendenwirbel kann damit ausgestattet sein. Dies ist besonders deshalb wichtig, weil es unmittelbar darauf hinweist, was am ersten Sacralwirbel als Querfortsatz und was als ventrales Seitenstück zu betrachten sei. Einen solchen Fall habe ich in Fig. 27 Taf. XXI abgebildet. Man sieht am linken Querfortsatze des letzten Lendenwirbels ein ventrales Seitenstück aufgetreten, das, mit dem Seitenfortsatze des ersten Sacralwirbels verwachsen, ihn verhindert hat, sich wie auf der rechten Seite nach vorn auszudehnen. Der Querfortsatz ist infolge seiner mächtigen Entwickelung medial gedrängt und steht, statt lateral und vorwärts gerichtet zu sein, parallel mit der Axe des Wirbelkörpers. In der Seitenansicht sicht man dieses ventrale Seitenstück einen Theil der hier in einen vorderen und einen hinteren Abschnitt zerfallenen Gelenkfläche zum Ansatz an das Ilium bilden. Der Ouerfortsatz des ersten Sacralwirbels ist durch das Auftreten jenes ventralen Stückes am letzten Lendenwirbel in seinem Wachsthume gehemmt und wird als kurzer Höcker mit ausgesprochener Lage und Richtung eines processus transversus lateral vom vorderen Gelenkfortsatze sichtbar. (S. Fig. 27 Taf. XXI.)

F. Frenkel,

Meerschweinchen.

Auch hier fand ich bei jungen Thieren die ventralen Seitenstücke im ersten, aber auch im zweiten Sacralwirbel, wenn auch weniger als im ersten, entwickelt. Der dritte und vierte hatten wieder ganz das Aussehen der Schwanzwirbel, wie die letzten Sacralwirbel beim Hasen. Die Spuren der ventralen Seitenstücke waren durch Verschmelzung mit den oberen Bogen bereits fast verwischt, gegen den Körper jedoch erschienen beide Bildungsstücke des Wirbels noch deutlich abgegrenzt. Die oberen Bogen scheinen auch bei diesem Thiere sich an der Bildung der Gelenkfläche zu betheiligen.

Hauskatze.

Das Kreuzbein der Katze stellt eine aus drei Wirbeln bestehende, viereckige Platte mit ausgezogenen Ecken dar. Die beiden hinteren Wirbel desselben sind sich an Grösse und Gestalt ziemlich gleich: sie sind breiter als lang, ihr Körper plattgedrückt, die Seitentheile unverdickt und schmal. Der letzte gleicht durch zwei nach hinten und aussen ragende Fortsätze, von den Querfortsätzen der Lendenwirbel entgegengesetzter Lage und Richtung, bereits sehr den vorderen Schwanzwirbeln, die alle zwei so gelagerte, fast hakenförmige Fortsätze besitzen. (Fig. 8, a,a Taf. XXI.)

Der erste Sacralwirbel unterscheidet sich von den anderen durch grössere Breite und Dicke und durch seine am ventralen Rande nach unten gebogenen und in der Seitenansicht schr verbreiterten seitlichen Fortsätze.

Die Körper der Lendenwirbel sind nicht viel länger als breit, an dem letzten überwiegt sogar die Breite die Länge. An ihrem vorderen Ende entspringen seitlich die langen, säbelförmigen Querfortsätze, die, nach vorn und aussen gerichtet, am fünften und sechsten die grösste Länge erreichen. Am siebenten sind sie etwas kürzer und breiter. (Fig. 8 p tr.Taf. XXI.)

Der erste Sacralwirbel bietet bei seitlicher Ansicht weder mit den vor noch mit den hinter ihm folgenden Wirbeln grosse Achnlichkeit. Seine weit nach unten vorspringenden Seitenfortsätze mit der fast quadratischen Aussenfläche kennzeichnen ihn vor jedem anderen Wirbel.

Als Gelenkfläche für das Darmbein dient die hintere Hälfte der Aussenfläche; sie ist überknorpelt, glatt, etwas über den übrigen Theil der ganzen Seitenfläche erhaben, und sendet einen schmalen, zungenförmigen Fortsatz am ventralen Rande der Seitenfläche nach vorn. Der

Umriss der Gelenkfläche ist etwa halbmondförmig, mit hinterer Convexität, und abgerundeter oberer Spitze.

Betrachtet man ebendiese Gelenkfläche am Sacrum eines ganz jungen Thieres (and deutlichsten ist es an Skeleten neugeborener Katzen zu schen), so sieht man auf ihr eine horizontal gerichtete schwache Furche, durch die ein oberer schmaler Abschnitt der Fläche von einem unteren, viel breiteren unterscheidbar wird. Verfolgt man die Grenzlinie über die Gelenkfläche hinaus nach vorn bis an den Rand des Seitenfortsatzes, was nach Entfernung der die Seitenfläche bedeckenden Bandmasse leicht geschehen kann, so lässt sich ein dorsaler und ein ventraler Abschnitt der Seitenfläche unterscheiden. Was über der Furche liegt, gehört dem Verknöcherungsgebiete des oberen Bogen an; dieser entsendet einen kurzen nach vorn gerichteten processus transversus, der infolge der Anlagerung des Darmbeines an die Seitenfläche des ersten Sacralwirbels nur rudimentär auftritt. Er entspricht der Wurzel der stark verlängerten processus transversi an den Lendenwirbeln. Der über der Furche gelegene Abschnitt der Gelenkläche wird demnach ebenfalls vom oberen Bogen gebildet.

Denkt man sich den unter der Furche gelegenen Theil der Seitenfläche hinweg, so gewinnt der Wirbel ganz das Aussehen eines Lendenwirbels. Die Verschiedenheit zwischen dem ersten Sacralwirbel und den Lendenwirbeln ist also auch hier durch das Auftreten eines selbständigen Bildungsstückes unterhalb der oberen Bogen in den Seitentheilen dieses Wirbels bedingt. Durch Lage, Gestalt und Entwickelung ist es als ventrales Seitenstück characterisirt. Von unten betrachtet zeigt der erste Sacralwirbel den ovalen Knochenkern des Wirbelkörpers noch durch breite Knorpelgrenzen von den schon sehr grossen Knochenkernen der ventralen Seitenstücke gesondert. (Fig. 8 cs.)

Der zweite und dritte Sacralwirbel entwickeln sich, wie die Lendenwirbel, anfänglich mit nur drei Knochenkernen. Erst kurz vor der Geburt treten in jedem noch zwei neue Knochenkerne auf, welche sich bis kurze Zeit nach der Geburt selbständig erhalten. (Fig. 8.)

Nachdem die Knochenkerne der oberen Bogen im Knorpel die Bauchfläche des Wirbels erreicht und sich in den Seitentheilen, besonders im hinteren Abschnitte derselben, beträchtlich vergrössert und seitlich dem Knochenkerne des Wirbelkörpers genähert haben (sie nehmen auch in diesen Wirbeln an der Bildung des knöchernen Wirbelkörpers Theil), gleicht bis dahin ein solcher Wirbel, von unten betrachtet, in der Gruppirung seiner drei Knochenkerne einem Lendenwirbel. Es dauert aber nicht lange, so tritt im vorderen noch knorpeligen Abschnitte der Seitentheile, etwas mehr nach aussen, im Rande derselben je ein kleiner linsenförmiger Knochenkern auf, der auch bei Betrachtung der Rückenfläche rings von Knorpel umgeben erscheint (s. Fig. 8 cs). Wahrscheinlich verschmilzt er frühzeitig mit dem Knochenkerne des oberen Bogen. Sein Verbreitungsbezirk scheint besonders die Knorpelbrücke seitlich zwischen je zwei Sacralwirbeln zu sein. Ob er den Wirbelkörper erreicht, muss ich in Frage lassen, da dieser Beziehung seine Lage nach aussen vom Knochenkerne des oberen Bogens wenig günstig ist. Eine Erklärung dieser überzähligen kleinen Knochenkerne erhält man durch ihre Vergleichung mit den ventralen Seitenstücken des ersten Wirbels: es sind rudimentare ventrale Seitenstücke, die den Wirbelkörper nicht berühren und sich daher ebenso verhalten. wie die entsprechenden Knochenstücke im zweiten und dritten Sacralwirhel des Menschen, die nicht oder kaum mit dem Knochenkerne des Körpers in Verbindung stehen. Eine Betheiligung an der Gelenkfläche, wie beim Menschen, findet von Seiten dieser Rudimente nicht statt, da die llio-sacral-Verbindung auf den ersten Sacralwirbel beschränkt erscheint.

Hund.

Auch beim Hunde besteht das Sacrum wie bei allen Carnivoren aus drei verwachsenen Wirbeln. Die Aehnlichkeit mit dem Sacrum der Katze ist so gross, dass alles darüber Gesagte, wenigstens in Hinsicht des ersten Wirbels, von kleinen unwichtigen Verschiedenheiten abgesehen, auch für den Hund seine Geltung hat. Es ist mir sehr wahrscheinlich, dass wenigstens auch am zweiten Sacralwirbel Rudimente ventraler Seitenstücke sich entwickeln, indem die vordere Hälfte seines Seitenfortsatzes, allmälig nach vorn zu verdickt, an der Bildung der Gelenkfläche für das llium mit einer kleinen Strecke seiner schmalen Seitenfläche betheiligt ist. Das Vorkommen ventraler Seitenstücke am letzten Lumbalwirbel, bildet dieselben Anomalien wie sie oben mehrfach erwähnt wurden. So finde ich am Sacrum eines vierteljährigen Hundes, dessen Skelet mir vorliegt, linkerseits ein ganz normales Ver-, halten, indess rechterseits der letzte (siebente) Lendenwirbel sacral ausgebildet ist, indem er ein mit dem Seitenfortsatze des ersten Sacralwirbels verwachsenes, mit dem Darmbeine articulirendes ventrales Seitenstück trägt, welches, nach unten und hinten von dem unverbundenen, mit freiem Ende nach aussen ragenden Querfortsatze gelegen, durch eine Kerbe deutlich von ihm geschieden ist. Durch die Verwachsung mit dem ersten Sacralwirbel ist zwischen beiden Wirbeln ein foramen sacrale gebildet. (Vergl. Fig. 26 Taf. XXII.)

Rind.

Beim Rinde wird das Sacrum aus fünf an mehreren Stellen verschmolzenen Wirbeln zusamengesetzt, von welchen die vier hinteren an Grösse und Gestalt einander fast gleich sind, und bei Embryonen an den wenig entwickelten, schmalen Seitentheilen der selbständigen Knochenkerne entbehren. Ihr Uebergang aus dem knorpeligen Zustande in den knöchernen erfolgt daher ganz wie an anderen Wirbeln und bietet nichts Bemerkenswerthes dar.

Der erste Sacralwirbel dagegen besitzt breite, weit nach aussen reichende Seitentheile, überragt deshalb alle folgenden Wirbel und ist damit seiner Gestalt nach von den anderen verschieden. Seine Seitenfläche hat den Umriss eines gleichschenkligen Dreieckes, ist sehr ausgedehnt und springt mit stumpfer Spitze nach unten weit über den Seitenrand der nachfolgenden Sacralwirbel vor.

Der ventrale Schenkel des schon im knorpeligen Stadium von dem dorsalen Abschnitte sich deutlich abhebenden Seitenfortsatzes (vergl. Fig. 9 Taf. XXI) ist besonders lang, von vorn nach hinten weniger als in verticaler Richtung verdickt, an seinem distalen Ende verbreitert, wie ein Fuss nach seiner Sohle zu. Vom Wirbelkörper geht er schräg nach hinten und aussen und trägt auf der Aussenseite die Gelenkfläche für das Darmbein, die ihn aber nicht einmal ganz, sondern nur sein äusserstes Ende überzieht.

Obgleich dieser ventrale Schenkel des Scitenfortsatzes in ausgesprochenster Weise die Form des ventralen Seitenstückes, wie bei den schon besprochenen Säugethieren, besitzt, war bei einem schon sehr grossen Rinderembryo, an dessen Sacruni ich Querschnitte untersuchen konnte, von selbständigen Knochenkernen noch keine Spur zu sehen. Gleichwohl war die 35 Centimeter lange Wirbelsäule (vom Atlas bis Anfang des Schwanzes gemessen) noch ziemlich weit in der Verknöcherung zurück, die Knorpelgrenzen zwischen den Knochenkernen der Wirbel noch breit und die langen Fortsätze zum grössten Theile noch knorpelig (s. Figg. 10a und 10b.). Am ersten Sacralwirbel zeigte jeder Seitenfortsatz einen grossen, ihn fast schon ausfüllenden Knochenkern und gegen den Wirbelkörper hin eine Knorpelgrenze von 2 Mm. Breite. Der Durchschnitt machte vollkommen den Eindruck, als sei der ganze Seitenfortsatz vom oberen Bogen aus allmälig verknöchert. Von einer bereits erfolgten Verschmelzung eines ventralen Knochenkornes mit dem regelmässigen dorsalen des oberen Bogens sah man keine Andeutung, obgleich, wenn überhaupt ein ventraler Knochenkern sich entwickelt gehabt hätte, in der Umrandung des knöchernen Theiles der

F. Freukel,

Schnittfläche die Spuren desselben als Einschnitte des Randes hätten sichtbar sein müssen. Andere Embryonen boten mir eine Bestättigung dieses Verhaltens dar. In diesen Fällen ist es daher höchst wahrscheinlich, dass das ventrale Seitenstück, obgleich durch die Form des ersten Sacralwirbels, ursprünglich wenigstens durch Knorpel angedeutet, seine Selbständigkeit einhüsste, indem der ventrale Schenkel des Seitenfortsatzes vom oberen Bogen aus verknöcherte.

In einem anderen Embryo fand ich dagegen den unteren Abschnitt des Seitenfortsatzes (s. Fig. 11) mit einem grossen Knochenkern versehen, der schon theilweise an die Oberfläche trat und überall nach dem Körper des Wirbels und nach dem oberen Bogen zu von Knorpel umgeben war. Er nahm die stark verbreiterte Aussenhälfte des ventralen Schenkels bereits fast ganz ein, nach innen zu war er noch weit entfernt, das Körperstück zu berühren, und auch vom Knorchenkern des oberen Bogen durch eine dicke Knorpellage geschieden (s. Fig. 14 cs.).

Aus diesen beiden Befunden muss ich schliessen, dass der Knochenkern des ventralen Seitenstückes entweder mit dem des oberen Bogens sehr frühzeitig verschmilzt, oder gar nicht mehr selbständig auftritt, und das letztere scheint die Regel zu sein.

Schwein.

Das eine grössere Wirbelzahl (manchmal 8) umfassende Kreuzbein zeigt wieder einen Wirbel vor allen anderen entwickelt. Die breite Seitenfläche des erston Sacralwirbels trägt an ihrem ventralen Rande eine schmale, eiförmige Gelenkfläche, die sich auf die Seitenfläche des zweiten Wirbels mehr oder weniger mit ausdehnt. Indessen trägt der erstere immer den grössten Theil davon. (In Fig. 13 gehört sie nur dem ersten Sacralwirbel an.) Der erste Sacralwirbel ist breiter als die anderen, nach allen Richtungen hin voluminöser und durch die nämliche Characteristische Form, wie bei anderen Thieren, vor ihnen ausgezeichnet. Wenn es auch keinem Zweifel unterliegt, dass ventrale Seitenstücke auch hier dem ersten Sacralwirbel zukommen, so ist doch eine selbstständige Verknöcherung dieser Stücke nicht mehr nachweisbar.

Zur Beantwortung der Fräge, ob beim Schweine zu irgend einer Zeit des embryonalen Lebens jene Knochenkerne im Knorpel auftreten, untersuchte ich eine grössere Anzahl von Embryonen und von jungen Thieren verschiedener Stadien, fand aber in allen, bis zur Verwachsung der Bildungsstücke und zur vollständigen Verknöcherung des Wirbels (vor Ablauf des ersten Lebensjahres scheint sie vollzogen zu sein) im ersten Sacralwirbel niemals mehr als drei Knochenkerne vor. Es wird also hier der beim Rinde noch schwankende Zustapd ip ein festes

Verhalten eingetreten sein, so dass die dort nur in einzelnen Fällen von den oberen Bogen aus besorgte Verknöcherung des ventralen Seitenstückes hier constant vom oberen Bogen her erfolgt. Die Selbständigkeit der Seitenstücke ist also ganz verloren gegangen, und nur die Gesammterscheinung des ersten Sacralwirbels deutet auf die ursprüngliche Existenz eines solchen Stückes. Denn jener erste Wirbel des Sacrums ist auch durch den Umriss seines Querschnittes vor allen vor und nach ihm folgenden Wirbeln ausgezeichnet, und, wie bei allen von mir beschriebenen Formen des Sacrums, bleibt auch hier die Knorpelgrenze zwischen dem Körperstücke und dem ventralen Abschnitte des Seitenfortsatzes, der aussen die Gelonkfläche trägt, am längsten von allen Knorpelgrenzon des Wirbels erhalten (s. Fig. 12 und 15 Taf. XXI); sie verschwindet zuletzt. Auf dem Querschnitte des seiten Sacralwirbels eines vierteljährigen Schweines sah ich sie noch sehr deutlich.

1 g e l.

Von den fünf Sacralwirbeln des Igels sind die drei vordersten mit den Darmbeinen in Berührung. Ibre gemeinsame Seitenfläche trägt eine vorn breite, nach hinten zu verschmälerte Gelenkfläche, die den unteren Abschnitt der Seitenfläche einnimmt (s. Fig. 19 Taf. XXI).

Wie an den Lendenwirbeln die Querfortsätze, so sind an den Sacralwirbeln die Seitenfortsätze sehr kurz. Dagegen sind die Wirbolkörper alle von hedeutender Breite, und die Seitenfortsätze treten an Volumen bedeutend hinter ihnen zurtick (Fig. 18 Taf, XXI).

Die Wirbel des Sacrums nehmen nach hinten zu an Breite ab, die hinteren erscheinen daher länger und schmäler als die vorderen, welche ziemlich gleich breit und lang sind. Ein Ueberwiegen des vordersten über die übrigen Wirbel in Breite und Masse findet nicht statt. Die ersten drei Wirbel stimmen in Gestalt und Grösse auffallend überein. Die sehr kurzen, gedrungenen, in Seitenansicht quadratischen Seitenfortsätze, fassen enge foramina sacralia zwischen sich. Sie sind nicht von Anfang an knorpelig verschmolzen, sondern ihre benachbarten Ränder sind nur durch später verknöchernde Bindegewebsbrücken untereinander in Zusammenhang (s. Fig. 48, 6).

Die Seitenflächen des Sacrums fallen fast senkrecht nach unten ab, ihr ventraler Rand tritt nur wenig über den dorsalen nach aussen vor. Der Form des Sacrums entspricht bekanntlich das ganze, sehr schmale und langgestreckte Becken.

Der Querschnitt durch einen Lendenwirbel zeigte sich von dem Querschnitte eines vorderen Sacralwirbels wieder sehr verschieden. An jungen Thieren fand ich dem Körperstücke dos Lendenwirbels seitlich auf eine Strecke weit die oberen Bogen anliegen (Fig. 20. Taf. XXI), welche an der Bildung des Körpers nur einen ganz geringen Antheil hahen. Von der Ansatzstelle geben die kurzen Querfortsätze rechtwinklig nach aussen ab. Der Wirbelkörper ist nach unten stark gewölbt; seine Seitenfläche ist daher breit und hoch.

Der Querschnitt durch Körper und Scitenfortsätze eines Sacralwirbels ist rechteckig, denn der Körper entbehrt der ventralen Wölbung, welche den Lendenwirbeln in hohem Maasse zukommt. (Vergl. Figg. 20 und 24.) Die vontrale Fläche geht geradlinig auf die Seitenfortsätze über. In der grossmaschigen, schwammigen Knochensubstanz sieht man nur zwei Knorpelgrenzen: rechts und links zwischen den oberen Bogen und den unteren Bildungsstücken des Wirbels, die hier mit dem Körper in ein Ganzes verschmolzen scheinen. (In Fig. 24 entspricht p tr der Spitze eines Querfortsatzes.) Der bei den Lendenwirbeln zwischen Seitenfläche des Körpers und ventraler Fläche des Querfortsatzes gelegene einspringende Winkel ist daher durch Knochenmasse ausgefüllt zu denken, welche den Wirbelkörper lateral verbreitert.

Der Vorgang, durch den diese Veränderung des Querschnittbildes möglich wurde, kann auf zweierlei Weise gedacht werden. Entweder hat sich das Körperstück so verbreitert, dass es bis an die Enden der Querfortsätze ausgedehnt wurde, oder es sind auch hier ventrale Seitenstücke entwickelt, die den Eckraum zwischen Körper und Querfortsatz ausfüllen, aber wegen zu geringer Grösse vom Körperstücke aus verknöchern, so wie sie in anderen Fällen (s. oben) von den oberen Bogen aus verknöchern konnten. Das Körperstück ist an den Wirbeln des Igels so mächtig entwickelt, dass es keine Schwierigkeit hat, sich vorzustellen, wie bei geringer Entwickelung der ventralen Seitenstücke ihre Verknöcherung vom Körperstücke aus besorgt werden konnte, indem sie ihre Selbständigkeit aufgaben.

Da die Stelle, an der man das Ende des ventralen Seitenstückes auf der Seitenfläche des Wirbels suchen könnte, wirklich die über-knorpelte Gelenkfläche mit trägt; da ferner kein Beispiel einer so abnormen Verbreiterung des Körperstückes, wie sie hier hätte stattfinden müssen, bekannt ist; endlich, da die Querfortsätze genau dieselbe Stellung zum Wirbelkörper haben, wie an einem Lendenwirbel, während sie im Falle einer Verbreiterung des Körperstückes und einer Anlagerung desselben an die Darmbeine doch nach oben gedrängt sein müssten, ist es mehr als wahrscheinlich, dass die ventralen Seitenstücke in den vorderen drei Sacralwirbeln auch beim Igel ursprünglich vorhanden und völlig in den Körperstücken aufgegangen sind. Diese Deutung gewinnt eine Stütze an dem Factum, dass überall wo die

ventralen Theile der Seitenfortsätze selbständig ossificiren, der Knochenkern vom Wirbelkörper ziemlich entfernt auftritt. Eine bedeutende Verkurzung jenes Theiles, wie sie beim Igel besteht, wird demnach gar keinen Kern mehr auftreten lassen.

Vergleichung.

Wir fanden die ventralen Seitenstücke in gleicher oder ganz ähnlicher Weise, wie beim Menschen, als selbständige Bildungsstücke in der Sacralregion auftreten 1) bei zwei Vertretern der Raubthiere (Katze und Hund);

2) bei drei Vertretern der Nagethiere (Kaninchen, Feldhase, Meerschweinchen).

Dieses übereinstimmende Verhalten entspricht der nahen Verwandtschaft, welche zunächst zwischen den Affen und den Nagethieren als Ordnungen der Discoplacentalia stattfindet.

Die Abtheilung der Discoplacentalia steht nach rückwärts zu keiner anderen, grösseren Gruppe der Säugethiere in näherer Beziehung als zu den Zonoplacentalia, von denen die Raubthiere ein Zweig sind. Schen wir nun bei zwei wichtigen Vertretern dieser Ordnung, als Repräsentanten der katzen- und bundeartigen Raubthiere, an dem sacralen Abschnitte der Wirbelsäule der Hauptsache nach ein gleiches Verhalten, wie bei jenen ausgesprochen, so ist dies ein neuer Beweis für die anzunehmende nähere Verwandtschaft der Deciduata. Es würde daher naheliegen, bei allen Deciduaten das Fortbestehen selbständiger ventraler Seitenstücke, als eines ursprünglich vererbten Merkmales, vorauszusetzen, wenn dem nicht der Umstand widerspräche, dass bei einem Geschlechte der Insectivora, Erinaceus, (vielleicht bei allen Insektenfressern) die Selbständigkeit dieser Bildungsstücke verloren gegangen scheint.

Dieses Aufhören einer selbständigen Ossification in den ventralen Seitenstücken muss beim Igel um so nabeliegender erscheinen, als hier die lateralen Fortsätze eine sehr untergeordnete Rolle spielen. Wie in der Lendenregion, bildet in der Sacralregion des Igels der Körper die überwiegende Hauptmasse jedes Wirbels; die Querfortsätze sind wegen der starken ventralen Wölbung des Wirbelkörpers weit dorsalwärts gerückt und erscheinen als unbedeutende seitliche Anhänge. Bei dieser geringen Längenausdehnung der seitlichen Abschnitte eines Sacralwirbels muss ein hier auftretendes vontrales Seitenstück ebenfalls sehr verkürzt erscheinen, es grenzt in einer grösseren Ausdehnung an den Wirbelkörper, als an den Querfortsatz, den Appendix eines oberen Bogens. Was liegt daher näher, als die Annahme, dass die ventralen Seitenstücke

F. Freakel,

hier insofern eine Rückbildung erlitten haben, als sie aufhörten, selbstständig zu ossificiren und dass ihr Verknöcherungsgebiet zu dem des frühzeitig mächtig entwickelten Körperstückes des Wirbels geschlagen wurde?

So ergiebt sich also aus den Verhältnissen des Sacrums, und damit im Zusammenhange aus der Gestaltung des Beckens ein Erklärungsgrund für das Verschwinden jener unteren Seitenstücke, und ihres Aufgehens in den Wirbelkörper, welch' letzterer damit die Ilio-sacralverbindung zu vermitteln scheint. Durch diese Beziehung löst sich zugleich die scheinbare Uebereinstimmung, welche Erinaceus im Mangel jener ventralen Seitenstücke mit den Artiodactylen besitzt, denn hier hält sich der Knochenkern des Wirbelkörpers stets fern von den Seitentheilen des Sacrums welche vielmehr vom Kerne des oberen Bogens ossificiren.

Von monodelphen Säugethieren ohne Decidua wurden nur Wiederkäuer und Schweine auf die Entwickelung der ventralen Seitenstücke untersucht. Auch bei ihnen finden wir diese Knochenstücke in der Regel nicht mehr selbständig entwickelt. Wahrscheinlich infolge einer raschen Ausdehnung des Knochenkernes im oberen Bogen jeder Seite unterbleibt bei ihnen das Auftreten eigener Knochenkerne im ventralen Abschnitte der Seitenfortsätze. Umgekehrt wie bei den Insektenfressern sind bei den Artiodactylen die Querfortsätze der Wirbel sehr entwickelt, die ventralen Seitenstücke daher auf eine weit grössere Strecke hin den Bogenstücken, als dem Körperstücke, das sie nur an einer schmalen Stelle berühren, angefügt. Dieser Umstand und das rasche Anwachsen der seitlichen oberen Knochenkerne, ehe noch die Verknöcherungspuncte in den ventralen Seitenstücken entstehen, scheinen die hauptsächlichen Ursachen für das Verlorengehen ihres selbständigen Verhaltens zu sein. An mehreren Rinderembryonen, bei einem Schafembryo und bei allen untersuchten Schweineembryonen ohne Ausnahme fand ich in diesem Puncte die grösste Uebereinstimmung. Wie richtig aber die hier gegehene Auffassung eines Verlorengehens der selbständigen Verknöcherung zu Gunsten der Bogenstücke ist, das ergiebt sich aus dem von mir in einem Falle beobachteten Vorkommen einer Wiederholung jenes früheren Zustandes, worin die ventralen Seitenstücke selbständig verknöcherten. Dieser als Rückschlag aufzufassende Fall beweist, dass an dem ursprünglichen Vorhandensein jener Bildungsstücke in den Sacralwirbeln auch der Wiederkäuer und Schweine, trotz ihres scheinbaren Fehlens, nicht zu zweifeln ist.

Aus den angeführten Beispielen geht hervor, dass die den ventralen Seitenstücken entsprechenden knorpeligen Abschnitte der Seiten-

fortsätze sich bei ihrer Verknöcherung auf dreifache Weise verbalten können. Entweder besitzen sie eigene Knochenkerne, welche erst spät mit den übrigen Bildungsstücken des Wirbels verschmelzen; oder sie ossificiren nicht selbständig, sondern von einem benachbarten Knochenkerne und zwar entweder vom Körperstücke oder vom Bogenstücke aus. Wo überhaupt ventrale Seitenstücke vorhanden sind (der Augenschein lehrt, dass sie im Sacrum aller Säugethiere vorkommen), ist nur einer dieser drei Fälle möglieb. Wir vermögen sie alle von dem ersten Fall, der selbstständigen Verknöcherung, als dem ursprünglichen Zustand abzuleiten.

In Bezug auf das übrige Verhalten dieser Theile ergeben sich folgende Resultate.

1) Beziehung zur facies auricularis. Wo ventrale Seitenstücke auftreten, nehmen sie Antheil an der Bildung der Gelenkfläche für das Darmbein. Bei einigen Thieren kommen sie mit dem Darmbeine ausschliesslich in Berührung, so dass sie die einzigen Träger desselben darstellen. Sie sind in diesem Falle länger als die Ouerfortsätze, überragen sie nach aussen hin bedeutend und erlauben ihnen daher nicht, an der Berührung Theil zu nehmen. Beim Menschen und bei den Wiederkäuern, sowie bei den Schweinen, die alle durch flach abfallende Seitenflächen des Sacrums ausgezeichnet sind, ist dies die Regel. Fallen aber die Seitenflächen steil ab, d. h. sind die ventralen Schenkel der Seitenfortsätze nicht viel länger als die dorsalen, so können auch die oberen Bogen an der Bildung der Gelenkfläche betheiligt sein und dies umsomehr, je kurzer die ventralen Seitenstucke, je schmaler daher das Kreuzbein ist. So sehen wir auf eine kleine Strecke hin bei den Fleischfressern, in grösserer Ausdehnung bei den Nagern und in grösster Ausdehnung bei den Insektenfressern die oberen Bogen an der Bildung der Gelenkfläche betheiligt. Bei letzteren nimmt die ganze Seitenfläche des Sacrums an der Berührung mit dem Ilium Theil, ist überall mit dünnem Knorpel überzogen und nur rings am Rande mit demselben durch Bandmasse verbunden.

Es ist die Frage, welche Art der Verbindung man für die ursprüngliche halten könnte. An den meisten Säugethierskeleten findet man nach Entfernung aller Bänder vorzüglich den unteren Abschnitt der Seitenfortsätze mit dem Darmbeine in Berührung, während zwischen diesem und dem dorsalen Abschnitte der Seitenfläche sich meist eine breite, nach unten hin verschmälerte Kluft vorfindet, die im lebenden Thiere mit Bandmasse ausgefüllt ist. Die Kluft ist oben um so weiter, je breiter die ventrale Fläche der Sacralwirbel ist. Indem nur die überknorpelte Gelenkfläche als die ursprüngliche Verbindungsstelle gelten kann, finden sich bei der Mehrzahl der Säugethiere die ventralen Seitenstücke als die einzigen Träger der Darmbeine. Sie sind es beim Menschen und wahrscheinlich bei allen Affen, bei den Wiederkäuern und Schweinen; beim Pferde, Tapir, Elephant; fast ausschliesslich sind sie es bei den Raubthieren und Nagethieren. Bei manchen der letzteren, sowie bei Insektenfressern (Igel), geht mit einer Verkürzung der ventralen Seitenstücke eine Verbindung der Gelenkfläche des Iliums mit dem einen Querfortsatz vorstellenden dorsalen Theile des Seitenfortsatzes der Sacralwirbel vor sich.

2) Zahl der Wirbel, in denen ventrale Seitenstücke als Bildungselemente vorhanden sind. Das Auftreten derselben ist, selbst bei grosser Zabl der dem Sacrum einverleibten Wirbel, immer nur auf einen oder einige wenige diesem benachbarte heschränkt. Nur auf ein en und zwar den ersten Saralwirbel sahen wir sie angewiesen bei den Hasen, den Wiederkäuern und den Schweinen; auf mehr als einen Wirbel bei allen anderen untersuchten Embryonen oder jungen Thieren. So fanden wir sie in allen drei Sacralwirbeln vor bei der Hauskatze, allein im zweiten und dritten waren ihre Spuren so geringfügig, dass sie, nur in Rudimenten nachweisbar, auf die Form dieser Wirbel keinen verändernden Einfluss ausübten. weshalb nur der erste Sacralwirbel die typische Form eines echten Sacralwirbels hatte. Bei einem neugeborenen Löwen und bei einem vierteljäbrigen Hunde sah ich nur im ersten Sacralwirbel die ventralen Seitenstücke sich ausbilden; sollte dies auch bei anderen Fleischfressern, was sehr wahrscheinlich, die Regel sein, so würde man auch dieser Ordnung im Allgemeinen nur Einen typischen Sacralwirbel zuschreiben dürfen. Beim Menschen sind meist drei, selten zwei oder gar vier Sacralwirbel mit den überzähligen Knochenkernen ausgestattet; sie sind in dem zweiten und dritten Wirbel verhältnissmässig weit mehr, als bei der Katze, zur Ausbildung gelangt. Auch beim Igel sahen wir in drei Sacralwirbeln, den drei ersten in der Reihe, wenigstens die Andeutung des Vorhandenseins ventraler Seitenstücke ausgesprochen. Ein einseitiges oder beiderseitiges Auftreten derselben am letzten Lendenwirbel, theils mit, theils ohne Beziehung zum Darmbeine, konnten wir beim Menschen, beim Hunde und bei den Hasen beobachten. Aus dieser Zusammenstellung geht hervor, dass immer der erste Sacralwirbel und dieser in einigen Ordnungen ausschliesslich, häufig auch der zweite und dritte mit überzähligen Knochenkernen, die als ventrale Seitenstücke aufzufassen sind, sich entwickeln und dass nur in seltenen Fällen noch ein weiterer Sacralwirbel, nicht zu selten dagegen der letzte Lendenwirbel mit diesen Knochenkernen ausgestattet sind.

3) Zahl der Sacralwirbel, welche ventrale Seitenstücke besitzen und mit den Darmbeinen verbunden sind. Beim Menschen und beim Igel waren es deren drei, von denen beim Menschen wenigstens der erste den grössten Antheil an der Gelenkfläche hatte. Beim Meerschweinchen waren zwei Wirbel dem Darmbeine angeheftet und beide allem Anscheine nach mit ventralen Seitenstücken versehen. Nur ein Sacralwirbel, der erste nämlich, zeigte sich in dieser Verbindung begriffen bei den Hasen, bei Katze und Hund (bei diesem der zweite Wirbel nur mit der vorderen Ecke der Seitenfläche), beim Rinde, Schafe und Schweine (auch hier bisweilen mit der Gelenkfläche auf den zweiten Wirbel übergreifend).

4) Deutung der ventralen Seitenstücke. Es wurde bereits bei Besprechung des menschlichen Sacrums eine kurze geschichtliche Uebersicht über die verschiedenen Versuche einer Deutung der ventralen Seitenstücke gegeben. Der Erste, der nach dieser Darstellung dieselben als Rippenrudimente oder besser Homologa der Rippen auffasste, war J. FR. MECKEL. Der wissenschaftliche Beweis für diese Hypothese wurde, wie schon erwähnt, von Professor GEGENBAUR geführt, welcher, auf Grund vergleichend-anatomischer Untersuchungen am Sacrum von Vögeln und Reptilien, auch für den Menschen Sacralrippen in Anspruch nahm. Der Schluss, dass ein so wichtiges anatomisches Merkmal nicht blos auf den Menschen und seine Ordnungsverwandten beschränkt sein könne, sondern höchst wahrscheinlich allen Säugethieren zukommen müsse, war schon deshalb eine Nothwendigkeit, weil, so gut wie der Mensch, auch alle übrigen Säugethiere nach rückwärts mit den Stammformen aller höheren Wirbelthiere, von denen her sich diese Einrichtung vererbt haben muss, in genealogischem Zusammenhange sind. Was demnach der Mensch mit niederen Wirbelthieren an anatomischen Characteren theilt, das muss in demselben Masse oder nur wenig verändert auch allen anderen Mammalien zukommen. Diesen Satz auf die Sacralrippen angewandt, so müssen bei allen Säugetbieren ursprünglich Sacralrippen vorhanden sein, wenn beim Meuschen solche nachgewiesen wurden. Die Begründung dieser Auffassung der bisher so genannten ventralen Seitenstücke ist folgende (vergl. GEGENBAUR, op. cit. S. 208).

Offenbar sind in Hinsicht der ventralen Seitenstücke zwei Fälle möglich : entweder sind sie eine Wiederholung an vorbergehenden Wirbeln schon dagewesener Theile oder nicht.

Sind sie es nicht, so sind sie etwas den Wirbeln, an denen sie auftreten, Eigenthümliches. Dann kann ihre Entstehung nur mit der Function, welche diese Wirbel etwa zu erfüllen haben oder früher

Bd. VII. 4.

einmal erfüllten, in Zusammenhang stehen; denn ohne jede äussere Veranlassung würde eine solche Neubildung von Knochenstücken, noch dazu von so characteristischer Form, nicht denkbar sein. Nun ist aber die Function der Sacralwirbel, den Darmbeinen und damit der hinteren Extremität an der Wirbelsäule einen festen Halt zu geben. Diesem Zwecke zu entsprechen, wäre es schon möglich, dass sich an dem oder an den Wirbeln, welche die Gelenkflächen für die Darmbeine tragen, die Querfortsätze ganz besonders entwickelt hätten und dass infolge ihrer grossen Volumenzunahme selbständige Knochenkerne in ihrem unteren Abschnitte auftraten, für die an präsacralen Wirbeln nichts Vergleichbares zu finden wäre. Wenn aber auch an solchen Sacralwirbeln, die mit dem Darmbeine in keinerlei Berührung sind, ventrale Seitenstücke auftreten können, wenn selbst in manchen Fällen am nächsten präsacralen Wirbel solche überzählige Knochenkerne ohne irgend welche Beziehung zum llium sich im Knorpel der Seitenfortsätze ausbilden, so ist es mehr als gewiss, dass nicht die Bertibrung mit diesem Knochen, also nicht die functionelle Beziehung, die Ursache ihrer Entstehung ist.

Es bleibt daher nur der andere denkbare Fall: die ventralen Seitenstücke sind eine Wiederholung an vorhergehenden Wirbeln schon dagewesener Einrichtungen. Da sie aber mit Querfortsätzen nicht vergleichbar sind, weil die Wirbel der Sacralregion einmal schon deutlich solche besitzen und zweitens die Querfortsätze immer nur im Zusammenhange mit den oberen Bogen, aber nicht selbständig verknöchern; da es ferner unmöglich ist, sie für selbständig gewordene Anhänge des Körperstückes zu erklären, indem das Körperstück sich an den Sacralwirbeln genau so verhält, wie an den Lendenwirbeln: so bleibt noch ein Drittes denkbar und wird bei Betrachtung aller thatsächlichen Umstände sofort zur Gewissheit, dass die ventralen Seitenstücke Homologa der Rippen sind.

Dass die Rippen sich sehr bedeutend rückbilden können, so dass es schwer hält, sie da, wo sie als Rudimente noch auftreten, wieder zu erkennen, das sehen wir an den sogenannten Halsrippen des Menschen, die man sehr lange für Theile der Querfortsätze gehalten hat, bis ihre selbständige Verknöcherung, ihre in einzelnen Fällen am letzten Halswirbel auftretende bedeutende, mit Beweglichkeit verbundene Ausbildung und endlich die Vergleichung mit ausgebildeten Rippen in der Halsregion anderer Wirbelthiere ihren wahren Werth erkennen liessen.

Von allen Begründungen besitzt die auf die vergleichend-anatomische Betrachtung sich stützende unstreitig die grösste Bedeutung auch für die Auffassung der ventralen Seitenstücke. Wenn Amphibien, Reptilien und Vögel im Besitze von Sacralrippen übereinstimmen, so ist die Wahrscheinlichkeit, dass die Säugethiere keine Ausnahme machen werden, schon an und für sich gross. Dies bestätigt sich durch den Befund der ventralen Seitenstücke im Sacrum aller Säugethiere; man kann daher keinen Anstand nehmen, sie als Sacralrippen zu betrachten. GEGENBAUR hat an den Sacralrippen des Alligators sogar einen dem Capitulum und einen dem Tuberculum entsprechenden Theil nachgewiesen, und von den Salamandrinen ist es sicher, dass sie an ihrem Sacralwirbel beiderseits eine bewegliche Rippe besitzen, die wie jene der vorhergehenden Wirbel mit zwei Höckern an dem Querfortsatze sitzt, und mit dem wenig voluminöseren Ilium durch ein Gelenk verbunden ist.

Die Art und Weise, wie bei den Säugethieren die Sacralrippen den übrigen Bildungsstücken der Wirbel angefügt sind, ist ganz ähnlich dem ursprünglichen Verhalten der Rippen an den Brustwirbeln. Die Brustrippen liegen anfangs mit ihrem vertebralen Ende dem Wirbel, zu dem sie gehören, vom Körper bis zur Spitze des Querfortsatzes ohne Zwischenraum an; erst mit der Ausbildung eines tuberculum und eines collum costae sieht man nach und nach jene Oeffnung entstehen, die durch das ligamentum colli costae internum geschlossen wird, und der an den Halswirbeln das foramen intertransversarium entspricht. Bei den Sacralrippen erhält sich der ursprüngliche Zustand; es wird kein solches foramen gebildet, die Rippe ist in der ganzen Ausdehnung ihres vertebralen Endes mit dem Körper und Querfortsatze in Contact, niemals frei beweglich und ohne ein eigentliches Capitulum und Tuberculum.

Ihren Character als Rippen haben sie sich am meisten in den Ordnungen bewahrt, wo sie die einzigen Träger der Darmbeine sind, z. B. beim Menschen und bei allen Ungulaten, überhaupt bei allen Säugethieren mit stark nach unten divergirenden Darmbeinen. So zeigen sie z. B. bei Rinderembryonen nicht nur ganz die Gestalt kurzer, am Wirbel festgewachsener Rippen, sondern auch dieselbe Richtung nach hinten und unten, wie sie an den letzten Brustrippen bemerkt wird. Auch beim Menschen und bei vielen anderen Säugethieren zeigen sie, besonders am ersten Wirbel, die Tendenz im Bogen nach unten zu gehen. Von den Querfortsätzen sind sie, wenn nur einigermassen entwickelt, meist deutlich abgesetzt und sofort als untere Schenkel der Seitenfortsätze erkennbar (z. B. bei den Nagern, beim Menschen, beim Rinde). Nur wo sie ganz kurz und, wie es den Anschein nimmt, rückgebildet sind, wie beim Igel, treten sie aus der Masse des Seitenfortsatzes nicht mehr als deutlich gesonderte Gebilde hervor.

5) Einfluss der Sacralrippen auf die Gestalt der Wirbel. Ueberall, wo Sacralrippen zur Ausbildung kommen, erscheint die Gestalt der Wirbel durch sie wesentlich verändert; denn dadurch, dass sie den Eckraum zwischen dem Wirbelkörper und dem Querfortsatze jeder Seite ausfüllen, bewirken sie, dass der Wirbelkörper nicht voluminöser erscheint als die Seitenfortsätze, weshalb auch in der menschlichen Anatomie für die Seitentheile des Sacrums die Benennung »massae laterales« gebräuchlich ist. Die Seitenfortsätze erscheinen flügelförmig, wenn das distale Ende der Sacralrippen, wie es meist der Fall, stark verbreitert ist. Die Sacralwirbel besitzen dann jene characteristische Form, welche das sichere Anzeichen für das Auftreten von Sacralrippen in ihren Seitentheilen ist und die man als die typische Form eines ursprünglichen Sacralwirbels bezeichnen kann.

Die Verwachsung von Sacralwirbeln untereinander wird durch die Sacralrippen vermittelt, wenn sie an aufeinanderfolgenden Wirbeln auftreten und durch Bandmasse oder Knorpel an ihren Endigungen verbunden sind. Sind sie nur am ersten Sacralwirbel entwickelt, so haben sie in der Regel auf die Verwachsung keinen Einfluss, indem sie über die Seitentheile des folgenden Wirbels zu weit nach unten vorspringen, um sie noch berühren zu können.

Folgerungen.

Die Thatsache, dass in der Sacralregion der Säugethiere Rippenrudimente nachweisbar sind, führt zu einigen wichtigen Schlüssen in Bezug auf die richtige Erkenntniss eines ganzen Abschnittes der Wirbelsäule, der von präsacralen Wirbeln gebildet ist.

Es wurde bereits mehrfach darauf hingewiesen, dass die immer noch viel verbreitete Ansicht, die Querfortsätze der Lendenwirbel seion festgewachsene Rippen oder sie repräsentirten einen indifferenten Zustand zwischen Rippe und Querfortsatz, durch keine Thatsache weder der Entwickelungsgeschichte noch der vergleichenden Anatomie unterstützt wird. Ich will nur kurz die Gründe aufführen, die dagegen sprechen: a. Die Entwickelungsgeschichte lehrt und Untersuchungen, die ich an Embryonen verschiedener Säugethiere machte, bestütigen es, dass die processus transversi der Lendenwirbel stets nur von den oberen Bogen aus verknöchern. Kommt noch ein Ossificationskern hinzu, so findet sich dieser stets nur terminal, und entspricht den accessorischen Ossificationen, welche, meist sehr spät, auch an Querfortsätzen auftreten. Wenn daher einige Anatomen behaupten, dass »durch vergleichend - anatomische Untersuchungen und durch die Ergebnisse der Entwickelungsgeschichte der Wirbelsäule« es sich beweisen lässt, »dass die processus transversi der Lendenwirbel eigentlich den

Rippen, nicht aber den Fortsätzen der übrigen Wirbel, analog sind^a (z. B. HYRTL, Lehrb. der Anat. des Menschen, S. 298), so ist dies keineswegs richtig.

b) Nicht selten stützt sich diese Auffassung auf das Vorkommen überzähliger Rippen; im Falle ein Lendenwirbel auf einer oder auf beiden Seiten in einen Brustwirbel übergeht, sollen die Querfortsätze immer in bewegliche Rippen umgewandelt werden. Es lässt sich beweisen, dass dem eine ungenaue Beobachtung zu Grunde liegt. Denn an solchen Thoracolumbalwirbeln ist immer, ausser der an ihm befestigten Rippe, wie viel oder wenig sie auch ausgebildet sein mag, ein Querfortsatz, wenn auch etwas kürzer als an den wahren Lumbalwirbeln vorhanden. Ausser an mehroren Präparaten von Wirbelsäulen Erwachsener finde ich dieses Verhalten an einem Kinderskelete. Der betreffende Wirbel war auf der einen Seite vollkommen lumbal gebildet, auf der andern aber trug er eine bewegliche Rippe. Trotzdem fehlte auch auf der Seite, wo er einem Brustwirbel glich, durchaus nicht der Querfortsatz, sondern war nur kürzer, als auf der lumbal gestalteten Seite. Er diente dem ligamentum costo-transversarium posterius zum Ansatze. ---Aber auch an ganz normalen Skeleten sicht man sehr oft schon am elften, mit Sicherheit aber am zwölften Brustwirbel die Insertions-Stelle dieses Bandes, als einen kurzen, pyramidalen Fortsatz, der durchaus einem processus transversus eines Lendenwirbels vergleichbar ist, hervortreten. Das Letztere hat schon RETZIUS (Ueber die richtige Deutung der Seitenfortsätze etc.) gerade beim Menschen genau nachgewiesen und selbst durch Abbildungen erläutert. Wenn aber an Rippen tragenden Wirbeln, ausser diesen Rippen auch noch den processus transversi der Lendenwirbel homologe Fortsätze auftreten, so können die proc. transv. der Lendenwirbel keine Rippen sein, denn es giebt kein Wirbelthier, das an demselben Segmente seiner Wirbelsäule zweierlei Arten von Rippen besässe.

c) Bei vielen Säugethieren kann man die Querfortsätze der Lendenwirbel nach vorn zu allmälig in Fortsätze der Brustwirbel übergehen sehen, welche einen Theil der sogenannten Querfortsätze der Brustwirbel ausmachen. Wenn man von vorn nach hinten fortschreitet, so sieht man den einfachen sogenannten Querfortsatz der vorderen Brustwirbel nach hinten zu allmälig in drei discrete und je weiter nach hinten, desto mehr auseinanderweichende Fortsätze sich auflösen. Diese sind: a) der processus obliquus anterior (mit dem mehr oder weniger entwickelten mammillaris) s. articularis; b) der Fortsatz, der an den Lendenwirbeln als processus transversus (fälschlich costarius) bezeichnet wird und c) der (nicht immer) zwischen beiden auftretende processus verschiedenartig; sie bleiben sich bei allen Arten mehr oder weniger gleich.

Vielleicht dürfte das Angeführte genügen, um jeden Zweifel an der Natur der processus transversi, als blosser Fortsätze der oberen Bogen, schwinden zu lassen. Die grossen Verschiedenheiten dieser Querfortsätze der Lendenwirhel in Lage, Grösse, Richtung, Gestalt etc. sind höchst wahrscheinlich aus einer Anpassung an die bei verschiedenen Säugethieren je nach ihrer Lebensweise verschieden entwickelte Muskulatur des Rückens zu erklären.

Sind wir aber zu der Einsicht gekommen, dass jene Querfortsätze keine Rippen sind: so folgt daraus, dass die Lendenwirbel nichts den Rippen Vergleichbares besitzen; denn, wenn auch öfters am letzten Lendenwirbel Rudimente derselben, gleichwie an echten Sacralwirbeln, auftreten, und ebenso am ersten Lumbalwirbel ein Rippenrudiment vorkommen kann, so zeigen um so weniger die übrigen dazwischen liegenden Lendenwirbel auch nur eine Spur davon. Bei den Säugethieren finden wir daher Rippen nur an der Halsregion, in der Brustregion und in der Sacralregion (bisweilen auch in der Caudalregion); ausschliesslich fehlen sie in der Lendenregion.

Diese Thatsache ist um so auffallender, je allgemeiner wir beim Hinabsteigen in der grossen Reihe der Wirbelthiere die Rippon in allen Regionen der Wirbelsäule verbreitet finden und je weiter wir von den höchsten Classen uns entfernen, um so seltener eine Unterbrechung in der Aufeinanderfolge der Rippen an der Wirbelsäule beobachten. Die niedersten Rippen tragenden Wirbelthiere besitzen sie an allen Wirbeln vom Schädel bis zum Schwanzende hin; so ist es fast durchweg in der grossen Classe der Fische. Auch unter den Amphibien finden wir Rippen an der Mehrzahl der Wirbel auftretend; allein von diesem gewiss ursprünglichen Verhalten machen bereits die Anuren eine bemerkenswerthe Ausnahme. Sie besitzen keine Rippen, sondern nur lange Querfortsätze an ihren Wirbeln, sie besitzen aber auch ein Sternum. welches der beste Beweis ist, dass auch die Anuren früher einmal Rippen besessen haben müssen. So allgemein die Rippen in der Classe der Reptilien auftreten, so finden sich doch Beispiele ihres gänzlichen Fohlens an Rumpfwirbeln, die sonst damit versehen sind (Lendenregion der Crocodile). Auch in diesen Fällen müssen wir entschieden das frühere Vorhandensein derselben annehmen, wie denn auch verwandte Formen, wie noch heute die Eidechsen, an allen Rumpfwirbeln damit ausgestattet sind. Kann daher am Sacrum der Säugethiere der Nachweis geführt werden, dass an einigen Wirbeln desselben (oder

wenigstens am ersten) sich Rippen, wenn auch nur als Rudimente, erhalten haben, so liegt der Schluss nahe, dass sie an den Lendenwirbeln, wo selbst ihre Rudimente fehlen, aus ähnlichen Ursachen verloren gegangen sind, wie in derselben Region der Wirbelsäule z. B. der Reptilien, und ebenso der Vögel, wo gerade die vor dem primitiven Sacrum befindliche, somit einer Lumbalregion entsprechende Strecke der Wirbelsäule stets jeder Andeutung von Rippen entbehrt.

Die Ursachen eines völligen Verlorengehens der Rippen in dieser Gegend sind uns bis jetzt noch unbekannt; sie können so verschiedenartige sein, es können so viele Einflüsse bei dieser Rückbildung gewirkt haben, dass es bedenklich sein würde, mit Anführung eines einzigen Argumentes die ganze, höchst auffallende Erscheinung erklären zu wollen. Jedenfalls bedürfte es vielseitiger Untersuchungen, um sie alle ans Licht zu ziehen. Da durch das Ausfallen der Rippen in der Lendenregion die Beweglichkeit der Wirbelsäule erhöht und besonders die Seitwärtsdrehung, Beugung und Streckung, wie durch die Rückbildung der Rippen in der Halsregion, bedeutend erleichtert werden musste, so könnte man versucht sein, aus dem darin beruhenden Vortheile auf eine Anpassung an die erhöhte Beweglichkeit des Rumpfes der Säugethiere zu schliessen.

Die sehr häufig und in den verschiedensten Abtheilungen der Säugethiere bestehende Erscheinung des Auftretens von Rippen am ersten Lendenwirbel, der dadurch zum letzten Brustwirbel wird, oder der Rückbildung der letzten Brustrippen, wodurch der letzte Brustwirbel den ersten Lendenwirbel vorstellt; diese Erscheinung ist ein unzweifelhafter Beleg für eine ursprünglich auch auf die Lumbalregion ausgedehnte Verbreitung der Rippen. Im ersteren Falle haben wir eine Wiederholung eines früher einmal dagewesenen Zustandes; im letzteren Falle ein Beispiel jener Rückbildung vor uns, welche den Unterschied zwischen Brustwirbeln und Lendenwirbeln bedingt. Was hier als abnorme Bildung an einem Individuum erscheint, ist oft ein unterscheidendes Merkmal zwischen zwei ganz nahe verwandten Arten oder zwischen Geschlechtern, für die man wegen ihrer sonstigen anatomischen Charactere eine nicht fern liegende gemeinsame Abstammung annehmen muss. So stellt sich die Zahl der Thoracolumbalwirbel bei der Gattung Bos auf 19, wohei in den einzelnen Arten die Thoracalwirbel. wie die Lendenwirbel an Zahl variiren, so dass letztere in dem Masse sich vermehren, als die Zahl der Brustwirbel eine Abnahme zeigt. In viclen anderen Gattungen, ja selbst innerhall) der Familien, ist das Gleiche wahrzunehmen: ein bei der einen Art als Brustwirbel erscheinender Wirbel, spielt in der nächstverwandten Art, oder in einem

F. Frenkel,

naheverwandten Genus die Rolle eines Lendenwirbels, indem er seine Rippen verlor und unter dem Einflusse der umgebenden Muskulatur grössere processus transversi entwickelte, die in ihrer Entwickelung gehindert waren, so lange Rippen den dazu nöthigen Raum beschränkten.

Die Kenntniss der anatomischen Verhältnisse des Sacrums ist, wie schon aus diesen Andeutungen hervorgehen wird, für die Beantwortung einer Anzahl in Bezug auf die Lendenregion der Wirbelsäule schwebenden Fragen eine nothwendige Voraussetzung. Es hielt nicht schwer, nachdem wir das Vorhandensein der Sacralrippen festgestellt hatten, das frühere Bestehen und spätere Ausfallen der Rippen an den Wirbeln einer dadurch gebildeten Lendenregion denkbar erscheinen zu lassen. Noch ein Punct, der vielleicht nicht minder wichtige Resultate liefern kann, blieb in Hinsicht des Sacrums von mir unerörtert: die Zahlenverhältnisse der Sacralwirbel.

Man pflegt unter der Benennung »Sacralwirbel« alle diejenigen Wirbel eines hinteren Abschnittes der Wirbelsäule zusammenzufassen, welche durch ihre schon frühzeitig eintretende Verwachsung (Synostose) zu den frei beweglichen Wirbeln der vorderen Abschnitte der Wirbelsäule in einen starken Gegensatz treten. Durch die stets vorhandene Gelenkverbindung eines oder mehrerer derselben mit den Darmbeinen, wird die Sacralregion noch ganz besonders characterisirt. Die mit den Darmbeinen in Gelenkverbindung stehenden vorderen Sacralwirbel mussten wir auch desbalb als typische Sacralwirbel von den hinteren Wirbeln des Sacrums unterscheiden, weil sie fast ausschliesslich Sacralrippen besitzen, wodurch ihre Gestalt wesentlich verändert erscheint.

Wenn wir, von diesem Morkmale absehend, die Sacralwirbel in die zwei Kategorien der mit den Darmbeinen verbundenen vorderen und der unverbundenen hinteren eintheilen wollen, so steht zunächst soviel fest, dass die ersteren an Zahl meist hinter den letzteren zurückstehen. Das Kreuzbein verbindet sich, wie es scheint, nie durch mehr als 3 Wirbel mit den Darmbeinen; doch ist dies schon ein seltener Fall (abgesehen vom Menschen sind 3 verbundene Wirbel die Regel bei den Insectenfressern und beim Faulthiere), in der überwiegenden Mehrzahl tindet sich in Wirklichkeit nur ein Sacralwirbel, der vordersto, mit Gelenkflächen für die Darmbeine verschen. Die Angabe, dass die Säugethiere durchschnittlich zwei echte, d. h. eben verbundene Sacralwirbel besitzen, erweist sich meist als unrichtig, indem sich vielfach zeigen lässt, dass der zweite Sacralwirbel nur scheinbar an dem llio-

Beiträge zur anatomischen Kenntniss des Kreuzbeines der Säugetbiere. 433

Sacral-Gelenk theilnimmt. Nur, wenn er einen Theil der Auricularfläche trägt, kann man ihn mit Recht diesem Gelenk zurechnen; ist er dagegen nur von den Darmbeinen überlagert und überall durch Bandmasse mit ihnen verbunden (wic z. B. bei manchen Fleischfressern), so darf man ihn nicht als »echten« Sacralwirbel (um diesen Ausdruck zu gebrauchen) betrachten. Nur einen echten Sacralwirbel besitzen: ein Theil der Beutelthiere (Döring, de pelvi ejusque per animantium regnum metamorphosi dissertatio. S. 4 ff. führt sogar zwei Beutelthiere, Didelphys murina und D. volans, an, die überhaupt nur einen Sacralwirbel haben), fast alle Hufthiere, die Mchrzahl der Fleischfresser und Nagethiere und eine ganze Anzahl Affen und Halbaffen. Die Mehrzahl der jetzt lebenden Säugethiere scheint demnach nur einen echten Sacralwirbel zu besitzen. Bei vielen Säugethieren, denen man zwei echte zuschreibt, nimmt der zweite Sacralwirbel nur mit dem vorderen Abschnitte seiner Seitenfläche an der Berührung mit dem Ilium Theil.

Die Zahl der nicht mit den Darmbeinen in Berührung stehenden, hinteren Sacralwirbel ist selbst innerhalb derselben Art bedeutenden Schwankungen unterworfen, woraus sich die grosse Verschiedenheit der Angaben über die Zahl der Sacralwirbel überhaupt erklärt. (Man vergl. hierzu MECKEL, System der vergl. Anatomic. II, 1. S. 243, der vielfach andere Zahlen fand, als sie Cuvier in der 1. Aufl. seiner Leçons etc. angegeben hatte.) Noch grösser sind die Schwankungen zwischen nahverwandten Arten und Geschlechtern, indem z. B. einige Wiederkäuer hinter dem echten Sacralwirbel noch 2, andere noch 5 Wirbel an ihrem Sacrum aufweisen. In jeder Ordnung findet man immer einige Arten mit ausnehmend wenig hinteren Sacralwirbeln. Da nun der discrete Zustand des Wirhels unbestreitbar als der primitive zu gelten hat, der durch Concrescenz der Wirbel characterisirte dagegen als der secundäre, so werden in jeder Ordnung der Säugethiere diejenigen Arten das ursprünglichere Zahlenverhältniss der Sacralwirbel repräsentiren, bei denen das Sacrum aus einer Minderzahl sich zusammensetzt.

Die hintersten Sacralwirbel bilden bei allen Säugethieren sehr deutliche Uebergangsformen in die vordersten Schwanzwirbel, und ebenso ist wieder bei allen Säugethieren der erste Sacralwirbel constant mit dem Darmbeine verbunden, und selbst wenn noch eine Anzahl folgender Wirbel dieselben Beziehungen besitzt, trifft den ersten entweder ein überwiegender Antheil an der Bildung der Auricularfläche, oder er ist auch durch grössere Breite ausgezeichnet. Auf diesen Wirbel

F. Frenkel,

folgt bei den meisten Beutelthieren nur noch ein Sacralwirbel. Bei den Monotremen kommt noch ein zweiter dazu.

Bei einer Anzahl placentaler Säugethiere, besonders bei Halbaffen, Affen, Chiroptern, Fleischfressern, Nagethieren, hat sich die Zahl der hinteren Sacralwirbel nicht oder nur wenig vermehrt, z. B. besitzen die Halbaffen und die Klammeraffen zum Theil nur einen hinteren Sacralwirbel, wie die Marsupialien, bei den Garnivoren und Rodentien ist in der Regel noch einer hinzugekommen, so dass die durchschnittliche Zahl ihrer Sacralwirbel 3 ist. In den von den Stammformen der Säugethiere weiter entfernten Abtheilungen, wie bei den Edentaten und Ruminantien, ist diese Zahl oft sehr erhöht. Erstere haben zwischen 3 und 9, letztere zwischen 3 und 6 Sacralwirbel. (Bei den Zahnlosen treten die hinteren Sacralwirbel auch mit den Sitzbeinen in Bertthrung.) Auch unter den Schweinen kommen Beispiele einer starken Vermehrung der hinteren Sacralwirbel vor (Dicotyles torquatus hat z. B. hinter dem ersten, typischen noch 8).

Alle diese Thatsachen gewinnen Zusammenhang durch die Annahme einer Vergrösserung des Sacrums nach hinten zu, indem sich allmälig ein Schwanzwirbel nach dem andern mit den schon vorhandenen Sacralwirbeln verband. Je länger ein Gaudalwirbel sich dem Verbande des Kreuzbeines angeschlossen hatte, um so mehr änderte sich seine ursprüngliche Gestalt, so dass er mit der Zeit einem beweglichen Schwanzwirbel unähnlich wurde. Je weniger Gaudalwirbel ein Sacrum enthält, desto mehr gleichen sie den ihnen sich anschliessenden vordersten Schwanzwirbeln.

Wenn es demnach keinem Zweifel unterworfen ist, dass alle nicht mit den Darmbeinen verbundenen Sacralwirbel ursprünglich Caudalwirbel waren, so bleibt noch die Verschiedenheit zu erklären, welche in Hinsicht der sogenannten echten oder mit den Darmbeinen verbundenen Sacralwirbeln obwaltet. Die meisten Säugethiere besitzen, wie wir sehen, nur einen, eine geringe Anzahl hat zwei und die wenigsten drei. Man hat allen Grund anzunehmen, dass auch bei den Ordnungen, innerhalb deren mehr als ein echter Sacralwirbel vorkommt, ursprünglich nur einer die Gelenkflächen für die Darmbeine trug. Eine Anzahl Umstände sprechen für die Richtigkeit dieser Annahme: 1) die grosse Verbreitung eines einzigen typischen Sacralwirbels in allen Ordnungen der Sängethiere, ohne dass bei den meisten derselben Spuren bestehen, welche zu der Annahme berechtigen, dass in einer früheren Zeit mehr als ein echter Sacralwirbel bei ihnen bestanden hätte.

2) Die Thatsache, daas der erste Sacralwirbel immer den grössten,

oft fast ausschliesslichen Antheil an der Gelenkfläche hat und daher stets auf eine grössere Strecke hin mit dem Darmbeine in Berührung ist, als der zweite und dritte Sacralwirbel zusammengenommen, falls sie in das Gelenk mit eingehen.

3) Der Umstand, dass die Beutelthiere, welche der Stammform der placentalen Säugethiere am nächsten stehen, immer nur einen echten Sacralwirbel besitzen.

Die Bezichung zum Darmbein erklärt zugleich die Erhaltung der Rippenrudimente in den Seitenfortsätzen der Sacralwirbel, denn als eigentlicher Träger des Darmbeins wird jenes Knochenstück eine practische Bedeutung, die nur in dem Masse sich minderte, als mit dem endlichen Aufgehen jener Stücke in die Seitenfortsätze von den Wirbelfortsätzen selbst jene Function übernommen ward.

Wenn eine Vergleichung aller Verhältnisse des Sacrums uns dahin führte, für die Stammeltern der Säugethiere einen ursprünglichen Sacralwirbel anzunehmen, der an den Enden der von ihm abgehenden kurzen Rippen die Darmbeine trägt, so ergiebt sich das primitive Sacrum der Säugethiere in Uebereinstimmung mit dem Sacrum der jetzt noch lebenden Amphibien, bei denen allen nur ein Sacralwirbel existirt, welcher die Grenzscheide zwischen den Rumpf- und Schwanzwirbeln darstellt. Bei den Salamandrinen trägt dieser eine Sacralwirbel sogar bewegliche Rippen, die auch allen vorhergehenden Wirbeln zukommen (s. oben), an den Schwanzwirbeln aber fehlen. Dass bei den Säugethieren ursprünglich auch die Schwanzwirbel Rippen trugen, bezeugen die stellenweise noch nachweisbaren Rudimente derselben. Diese Rippenrudimente erhielten sich besonders lange an den auf den eigentlichen Sacralwirbel folgenden ersten Caudalwirbeln. Eine grössere oder geringere Anzahl Caudalwirbel schlossen sich durch Verwachsung dem Sacralwirbel an, die vordersten traten nachträglich mittelst ihrer Rippenrudimente mit den Darmbeinen in Berührung oder verloren diese Rudimente, wenn sie nicht mit zur Bildung der Gelenkfläche berangezogen wurden.

F. Frenkel,

Erklärung der beigefügten Abbildungen.

Tafel XXI und XXII.

Fig. 4. Erster Sacralwirbel eines vierteljährigen Kindes in Querdurchschnitte: wk Knochenkern des Wirbelkörpers oder »Körperstück«; Knochenkerne der beiden oberen Bogen oder »obere Bogenstücke«, welch sich bei sp durch eine Knorpelleiste zur Bildung des späteren, niedrigen Dornfortsatzs vereinigen; cs costae sacrales, Sacralrippen oder »ventrale Seitenstücke«. Bei sich die breitere Knorpelgrenze zwischen Körperstück und ventralem Seitenstück, be b die schmale Knorpelgrenze zwischen letzterem und dem oberen Bogenstücke; fa Stelle der facies auricularis; tr ist die dem Querfortsatze eines Lendenwirbes entsprechende Stelle.

Fig. 2. Ventralansicht des Kreuzbeines und der letzten Lenderwirbel eines dreijährigen Kindes: *vl* IV und *vl* V vertebra lanbalis IV und V. — *vs* I—V vertebra sacralis I—V. — *wk* Wirbelkörper; *ø* obere Bogenstucke; *ptr* Stelle der vorhandenen oder angedeuteten processe transversi, *cs* costa sacralis. Am 4. und 2. Sacralwirbel sind die Knochenkene der Sacralrippen noch ganz von Knorpel umschlossen, soweit nicht bereits ihr knöcherne Oberfläche zu Tage tritt. Am dritten Sacralwirbel ist ihre Grenze gege das Körperstück schon fast verwischt. Am 5. Lendenwirbel sind kleine Knocheskerne, welche als unentwickelte Sacralrippen zu betrachten sind, sichtbar.

Fig. 3. Diese und die folgenden Figuren (bis 7) veranschaulichen die Aneinanderlagerung der Bildungsstücke der Wirbel beim neugeborenen Kaniachen. Fig. 3 zeigt den letzten Lendenwirbel halb von vorn, halb von unka. Wiederum bedeuten: *wk* Körperstück, *ob* obere Bogen, *ptr* processus transversi, *pa* processus articularis anterior.

Fig. 4. Derselbe Lendenwirbel von unten. z ligamentum intervertebrale.

Fig. 5. Erster Sacralwirbel, halb in vorderer Ansicht. Die Bezeichnungen wie vorher.

Fig. 6. Derselbe Wirbel von unten betrachtet.

Fig. 7 zeigt den Antheil des oberen Bogen *ob* an der Bildung der Gelenkfläche *fa*. Die Grenze zwischen ventralem Seitenstücke cs und oberem Bogen ist eine deutliche Furche. — *p* tr Stelle des Querfortsatzes eines Lendenwirbes.

Fig. 8. Letzte Lendenwirbelund Sacrum einer neugeborenen Katze, in Ansicht von unten. Mit *cs* sind überell die Rippenrudimente, mit ob die den oboren Bogen angehörigen Verknöcherungen bezeichnet.

Fig. 9. Ansicht des Sacrums eines Rinderembryo von unten. *ob* die oberen Bogen; *cs* die Sacralrippen; *p* tr processus transversi.

Fig. 40a. Erster Sacralwirbel eines Rinderembryo, welcher das gewöhnliche Verhalten zeigt, d. h. die Sacralrippe mit dem oberen Bogen ihrer Seite verschmolzen.

Fig. 10b. Durchschnitt des zweiten Sacralwirbels.

,

Beiträge zur anatomischen Keuntniss des Kreuzbeines der Säugethiere.

Fig. 44. Erster Sacralwirbel eines anderen Rinderembryo, von vorne. Die Sacralrippen, *cs*, verknöchern ausnahmsweise selbständig. *li* ligamentum intervertebrale.

Fig. 42. Sacrum eines Ferkels von unten. Die Sacralrippen sind von Anfang an mit den oberen Bogen verschmolzen.

Fig. 43. Seitenansicht. fa Gelenkfläche.

Fig. 14. Letzter Lendenwirbel.

Fig. 15. Erster Sacralwirbel und

Fig. 46. Zweiter Sacralwirbel im Durchschnitte.

Fig. 47 Durchschnitt durch den ersten Sacralwirbel eines 43 Centimeter langen Embryovon Susscrofa

Fig. 18. Ansicht des Sacrums eines mehrere Monate alten Igels von unten. rs I-V sind die fünf Sacralwirbel; b die seitlichen Bänder.

Fig. 19. Seitenansicht. fa Gelenkfläche. Fig. 20. Letzter Lendenwirbel.

Vom Igel.

Fig. 21. Zweiter Sacralwir bel; beide im Durchschnitte.

Fig. 22—25 stellen Kreuzbeine des Menschen vor. Fig. 22. Unregelmässig gebildetes, ausgewachsenes weibliches Sacrum. *ptr* processus transversus des fast selbständig gewordenen, wie im Uebergange zu einem Lumbalwirbel stehenden ersten Sacralwirbels (vs. 1); cs costa sacralis.

Fig. 23. Weibliches Sacrum, dessen erster Wirbel (vs I) auf seiner linken Seite fast lumbal gestaltet ist. Dieselben Bezeichnungen.

Fig. 24. Weibliches Sacrum mit zur Hälfte einverleibtem fühften Lendenwirbel (V). cs bezeichnet die an seinem rechten Querfortsatze zur Ausbildung gekommene Sacralrippe.

Fig. 25. Sacrum (Geschlecht unbestimmt) mit völlig einverleibtem fünften Lendenwirbel (6 Wirbel).

Fig. 26. Unregelmässig gebildetes Sacrum eines Hasen, von unten geschen. Linkerseits ist auch am letzten Lendenwirbel ein ventrales Seitenstück ausgebildet (cs).

Fig. 27. Ansicht des Sacrums eines vierteljährigen Hundes in Verbindung mit den Darmbeinen, von unten. Bei VII der letzte Lendenwirbel; vs I ist der erste Sacralwirbel.

Zur Bildungsgeschichte lumbosacraler Uebergangswirbel.

Von

C. Gegenbaur.

Sowohl durch das äussere Verhalten als auch durch den Besitz eines selbständigen, vom Wirbelbogen unabhängigen Knochenkernes ist die Bedeutung der ventralen Schenkel der Seitenfortsätze des Kreuzbeines als Rippenrudimente in hohem Masse sichergestellt und wird durch die Vergleichung der bei Wirbelthieren gegebenen Befunde über jeden Zweifel gehoben. Etwas anders liegt die Frage bezuglich der lumbosacralen Uebergangswirbel. In dem Masse als man das Verhalten der ventralen Schenkel der Seitenfortsätze der Sacralwirbel. - beim Menschen ferner der drei ersten - aus dem Fortbestehen von Costalrudimenten hegreift, wird man freilich sofort geneigt sein, auch jene Uebergangswirbel in gleichem Sinne zu beurtheilen. Doch können lumbosacrale Uebergangswirbel bekanntlich auf sehr differentem Wege entstanden sein, und danach wird auch jedes Urtheil sich etwas verschieden gestalten müssen. Die eine Art jener Uebergangswirbel kommt dadurch zu Stande, dass ein Sacralwirbel das costale Element seines Seitenfortsatzes verloren hat. Es besteht dann bei über 17 normalen Thoracolumbalwirbeln ein sechster Lumbalwirbel der einerseits den Character eines Sacralwirbels trägt; oder genauer, es ist der erste Sacralwirbel einseitig einem Lendenwirbel ähnlich gestaltet. In diesem Falle kann kein Zweifel daran sein, dass der erste Sacralwirbel die Abnormität herstellte, sobald nach diesem nur noch vier Sacralwirbel folgen. Würden dagegen dem Zwitterwirbel noch fünf Sacralwirbel folgen, so bestände Grund ersteren aus einem sogenannten überzähligen sechsten Lendenwirbel entstanden anzusehen. Dafür sind ebenfalls Fälle bekannt.

Hier ware nun die Frage berechtigt, ob die einseitig aufgetretene

Verbreiterung des Seitenfortsatzes, des Uebergangswirbels, auf dieselbe Weise sich als costales Rudiment nachweisen liesse wie an den echten Sacralwirbeln, und dieselbe Frage gilt für jene Fälle, wo der fünfte Lendenwirbel bei fünf Sacralwirbeln einen ventralen Schenkel am Seitenfortsatze besitzt. In beiden Fällen handelt es sich nicht mehr um Sacralwirbel, sondern um Lendenwirbel mit sacralen Attributen. Wenn auch wenig wahrscheinlich, so wäre es doch möglich, dass die bezügliche Modification nicht einem besondern Skeletelement, sondern vielleicht einer Deformität des Querfortsatzes ihre Entstehung zu danken hätte. Ein Theil der der anderen Auffassung entgegenstehenden Bedenken ist nun durch die Beobachtung FRENKEL's bezüglich des Vorkommens kleiner Knochenkerne am vordern (ventralen) Rande des letzten Lendenwirbels hinweggeräumt. Dadurch wird die Annahme, dass durch die weitere Ausbildung der durch jene überzähligen Knochenkerne ausgezeichneten Knorpelpartien der Seitenfortsätze ein Lumbalwirbel zu einem Sacralwirbel sich umbilden könne, auf einen festeren Boden gestellt, aber die Gleichartigkeit der ventralen Schenkel am Lumbalwirbel und am Sacralwirbel ist damit noch nicht erwiesen. Dazu würde der Nachweis gleichartiger Ossification des ventralen Schenkels des Seitenfortsatzes des letzten Lendenwirbels mit dem ventralen Schenkel des Seitenfortsatzes der drei ersten Sacralwirbel erbracht werden Soviel mir bekannt, ist das bis jetzt noch nicht geschehen. müssen.

Die Untersuchung der Wirbelsäule eines dreijährigen Kindes gab mir zu jener Prüfung Gelegenheit. Bei normaler Wirbelzahl in allen Abschnitten der Wirbelsäule (den Sacral- und Lumbaltheil mit inbegriffen) zeigte der letzte Lendenwirbel linkerseits eine sacralwirbelartige Gestaltung. Es bestand hier ein zwar nicht so bedeutend wie am ersten Sacralwirbel entfalteter, aber doch immerhin anschnlicher ventraler Schenkel des Seitenfortsatzes, und an demselben erstreckt sich die Facies auricularis fast bis zur Hälfte der Höhle hinauf. Dieselbe Gelenkfläche reichte dagegen nur bis zum Rande des Seitenfortsatzes des dritten Sacralwirbels herab, kaum darauf übergreifend. Rechterseits erstreckte sich die Facies auricularis entschieden bis auf den dem dritten Wirhel zugehörigen Seitenfortsatz herab. Dass dennoch die linke Auricularfläche um vieles bedeutender ausgedehnt war als die rechte, indem sie sich über den Seitenfortsatz des fünften Lumbalwirbels emporerstreckte, ist selbstverständlich. Die Ossificationen der Sacralwirbel Die ventralen Schenkel der ergaben kein abweichendes Verhalten. Seitenfortsätze des ersten Sacralwirbels besassen die diesem Stadium entsprechenden grossen Knochenkerne, ebenso jene des zweiten Sacral-Im dritten Sacralwirbel war nur linkerseits ein sehr kleiner wirbels. Bd. VII. 4. 29

Knochenkern im ventralen Schenkel bemerkbar; rechterseits fehlte er noch. Die Praeponderanz der linken Seite gab sich also auch darin zu erkennen.

Was nun den linkerseits am fünften Lendenwirbel vorhandenen ventralen Schenkel angeht, so besass dieses bei bedeutender vorgeschrittener Ossification des Körpers wie des Bogens (beide Theile waren nur durch eine schmale ca. 4 mm. dicke Knorpelschichte getrennt) noch grossentheils knorpelige Stück doch einen völlig selbständigen Knochenkern, der zwar nahe dem Knochen des Bogenstückes gelegen, aber durch einen $1/_2$ mm. breiten Knorpel davon getrennt war. Durch eine Anzahl feiner Schnitte vermochte ich mich zu überzeugen, dass noch keine Knorpelkanäle vom Bogenkern, zu jenem »überzähligen« Knochenkerne traten. Die Knorpelkanäle führten vielmehr zur freien vordern (ventralen) Oberfläche des Knorpels hin. Somit ist also an diesem Knorpeltheile des fünften Lendenwirbels dieselbe Ossificationsweise erkannt, wie sie an den Costalrudimenten der Sacralwirbel besteht, und es darf ausgesprochen werden, dass die lumbo-sacralen Uebergangswirbel durch die Ausbildung ihrer in der Regel gänzlich fehlenden Rippenrudimente hervorgehen. Sowie also der einseitige Mangel eines Rippenrudimentes am ersten Sacralwirbel aus dem letzteren einen sacro-lumbalen Uebergangswirbel bildet, so kann ein ähnlicher aber doch durch seinen Platz in der Wirbelreihe wesentlich verschiedener, also nicht mit jenem homodynamer Uebergangswirbel durch die Ausbildung eines Rippenrudimentes am letzten Lumbalwirbel entstehen.

An derselben Wirbelsäule fand sich noch eine den selteneren Vorkommnissen beizuzählende Eigenthümlichkeit, deren ich hier nebenbei gedenken will. Am ersten Lendenwirbel zeigte sich nämlich der ganze einem Brustwirbelquerfortsatz entsprechende Abschnitt beiderseits als ein bewegliches Knorpelstück. An demselben war sehr deutlich der Processus mamillaris und der accessorische Fortsatz ausgeprägt, dagegen war der lumbale Querfortsatz nur als ein ganz unansehnliches Höckerchen unterscheidbar. Das ganze Stück war ohne Ossification, und articulirte durch ein wahres Gelenk. Es bildete eine längliche Pfanne, welche auf einem von der hinteren und seitlichen Fläche des Wirbelbogens dargebotenen, entsprechend geformten Gelenkkopfe sass, der sich am Processus articularis empor erstreckte.

Bestäubungsversuche an Abutilon.

Von

Fritz Müller.

II. Beispiele von Unfruchtbarkeit als Folge zu naher Verwandtschaft.

Die völlige Unfruchtbarkeit gewisser Pflanzen mit Blüthenstaub derselben Blume (Corydalis cava) oder selbst aller Blumen desselben Stocks (Arten von Abutilon, Bignonia, Oncidium u. s. w.) bildet nur einen besonderen Fall des Gesetzes, dass Selbstbestäubung minder kräftige Nachkommenschaft liefert, als Kreuzung. Und dieses Gesetz, für welches jede Blume einen Beleg bietet, die durch Duft oder Farbenschmuck Bienen und Schmetterlinge zum Honiggenuss und dadurch zur Vermittelung der Kreuzung einladet, ist wieder nur ein besonderer Fall eines allgemeineren Gesetzes, dass nämlich enge Inzucht zwischen nahen Verwandten nachtheilig wirkt; denn, als Einzelwesen betrachtet, sind ja eben Staubgefässe und Stempel desselben Pflanzenstocks oder gar derselben Blume die denkbar nächsten Verwandten. Eine noch allgemeinere Fassung lässt sich letzterem Gesetze geben, wenn man in dasselbe die Verminderung der Fruchtbarkeit mit einschliesst, die in allen Graden bis zu völliger Unfruchtbarkeit eintritt als Folge zu geringer Verwandtschaft der gekreuzten Pflanzen, also bei der Bastardzeugung. Jede Pflanze, könnte man sagen, erfordert zur Erlangung möglichst kräftiger und zeugungsfähiger Nachkommenschaft einen gewissen Betrag von Verschiedenheit zwischen den sich vereinigenden männlichen und weiblichen Zeugungsstoffen; sowohl wenn dieser Betrag abnimmt (bei zu naher Verwandtschaft), als wenn er steigt (bei zu geringer Verwandtschaft) nimmt die Fruchtharkeit ab. Die vollständige Uebereinstimmung zwischen

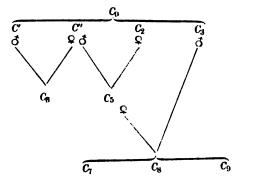
Fritz Müller,

442

»illegitimen« Sprösslingen dimorpher und trimorpher Pflanzen einerseits und den Bastarden verschiedener Arten andrerseits berechtigt wohl zu einer solchen Zusammenfassung der beiden durch entgegengesetzte Ursachen bedingten Arten der Unfruchtbarkeit unter einen gemeinsamen Gesichtspunct. Selbstverständlich soll damit das thatsächlich Gegebene nur ausgesprochen, nicht aber erklärt sein. Ebenso soll damit natürlich nur eines der vielen, die grössere oder geringere Fruchtbarkeit einer Verbindung bedingenden Verhältnisse ausgesprochen sein.

Je grösser bei einer Art die zur Erzielung des höchsten Grades der Fruchtbarkeit erforderliche Verschiedenheit der Zeugungsstoffe ist, um so grösser wird im Allgemeinen — (ceteris paribus) — die Verschiedenheit der Pflanzen sein dürfen, die überhaupt noch Nachkommen mit einander zeugen können. Mit anderen Worten: Arten, die mit Blüthenstaub desselben Stockes völlig und selbst mit Blüthenstaub nahe verwandter Stöcke mehr oder weniger unfruchtbar sind, werden im Allgemeinen besonders leicht durch Blüthenstaub anderer Arten sich befruchten lassen. Die selbst unfruchtbaren, dagegen zur Bastardbildung so überaus geneigten Arten der Gattung Abutilon liefern ein gutes Beispiel zu diesem Satze, der auch bei Lobelia, Passiflora, Oncidium sich zu bestätigen scheint.

Ich will diese allgemeinen Betrachtungen hier nicht weiter fortsetzen. Dieselben sollten nur andeuten, in welchem Sinne und in welchem Zusammenhang ich die im Folgenden mitzutheilenden Beispiele von Unfruchtbarkeit zwischen nahen Verwandten aufgefasst zu sehen wünschte.

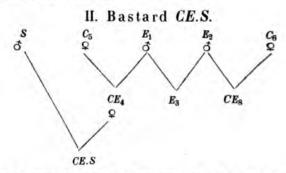

Im Folgenden bezeichnen A, C, E, F, M, P sechs einheimische Abutilon-Arten, von denen ich C als Abutilon vom Capivary, E als Embira branca, F als Abutilon vom Pocinho schon in einem früheren Aufsatze erwähnt habe 1). Das Abutilon vom Capivary ist von Fenzl Abutilon Hildebrandi getauft worden. Die Namen der übrigen Arten hoffe ich später mittheilen zu können. Mit S ist Abutilon striatum, mit V Abutilon vexillarium bezeichnet. Zur Bezeichnung der einfachen Bastarde sind die Buchstaben der stammelterlichen Arten ohne weiteres Zeichen nebeneinander gestellt, und zwar die mütterliche Art voran. So bezeichnet EF einen Bastard, dessen Mutter E, dessen Vater F ist. Bei Verbindungen dieser einfachen Bastarde unter sich oder mit einfachen Arten ist ein Punct zwischen das vorangehende Zeichen der Mutter und

1) Diese Zeitschrift, Bd. VII. S. 23.

das nachfolgende des Vaters gesetzt; F.CF hat also F zur Mutter, CFzum Vater, CE.S hat CE zur Mutter, S zum Vater. Die Zahlen rechts unten neben den Buchstaben bezeichnen die einzelnen Stöcke einer Art oder eines Bastards. FS_1 , FS_2 , FS_3 , sind also z. B. drei verschiedene Stöcke des Bastards FS.

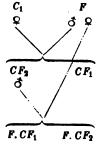
I. C (Abutilon Hildebrandi, Fenzl).

Von dieser Art habe ich bereits einige Fälle mitgetheilt, in denen Befruchtung durch die nächsten Verwandten zwar reichlichen Samen, aber nur wenige schwächliche Nachkommenschaft erzeugte¹). Ein weiteres Beispiel lieferten meine Versuche im Jahre 1871. Die Verwandtschaftsverhältnisse der betheiligten Pflanzen erhellen aus nachstehender Uebersicht.



Aus Samen einer Frucht der am oberen Capivary wildwachsenden Pflanze C_0 wurden die Geschwister C', C'', C_2, C_3, gezogen. C_5 hat C_2 zur Mutter, C" zum Vater; C_8 hat zur Mutter C", zum Vater C'; endlich die Geschwister C_7 , C_6 , C_9 , haben C_5 zur Mutter, C_3 zum Vater. Die mit eigenem Blüthenstaub völlig unfruchtbare Pflanze C_7 wurde nun befruchtet mit Blüthenstaub ihrer Geschwister C_8 und C_9 , ihrer Mutter C_5 , ihres Vaters C_3 und der minder nahe verwandten Pflanze C_6 . Im Sa-Am 17. Femenertrage zeigte sich keine erhebliche Verschiedenheit. bruar 1872 wurden je 30 Korn dieser fünferlei Samen gesät. Die durch Blüthenstaub des Vaters C_3 und des Bruders C_9 erzeugten Samen gingen gar nicht auf. Von den durch Blüthenstaub der Mutter C_5 erzeugten Samen keimten zwei oder drei, aber die Pflänzchen gingen schon nach wenigen Tagen wieder ein. Zahlreichere Pflanzen entsprossten den durch C_8 und C_6 erzeugten Samen. Erstere, die Kinder des Bruders C_8 , wuchsen sehr kümmerlich; nach vier Monaten waren die grössten kaum zoll-

¹⁾ Diese Zeitschrift, Bd. VII. S. 40.


Fritz Müller,

hoch, die kleinsten dagegen der durch Blüthenstaub von C_6 erzeugen mindestens doppelt so hoch.

 E_1 und E_2 sind zwei wilde Pflanzen, die ich in meinen Garten versetzt habe, E_3 ein in meinem Garten aufgegangener Sämling der wahrscheinlich E_1 zur Mutter, E_2 zum Vater hat. Das Uebrige ergiebt vorstehende Uebersicht.

Bestäubung des Bastards CE.S mit CE_4 , CE_8 , E_3 und S lieferte samenreiche Früchte¹). Die Samen wurden am 6. September auf demselben Beete ausgesät. Zuerst keimten, nach 43 Tagen, die durch CE_8 und E_3 erzeugten, — dann, nach 45 Tagen, die durch den Vater S, zuletzt, nach 48 Tagen, die durch die Mutterpflanze CE_4 erzeugten Samen. Von den drei ersteren erschienen zahlreiche Pflanzen, von den durch CE_4 erzeugten 46 Samen keimten nur 5, und diese 5 Pflänzchen wachsen bis jetzt (Ende October) sehr kümmerlich; kaum kräftiger sind die durch S erzeugten; am besten von allen gedeihen die durch CE_8 erzeugten und ihnen kommen die durch E_3 erzeugten nahe.

III. Bastard F.CF.

Die Geschwister CF_1 und CF_2 haben zur Mutter C_1 , zum Vater F, die Geschwister $F.CF_1$ und $F.CF_2$ zur Mutter F, zum Vater CF_2 .

 $F.CF_2$ ist nun völlig unfruchtbar mit seinem Vater CF_2 ; 40 mit Blüthenstaub des letzteren bestäubte Blumen fielen ab, ohne auch nur Frucht auzusetzen;

¹) GÄRTNER (Bastardzeugung S. 507) fand »zusammengesetzte Bastarde« d. h. solche »deren welbliche Unterlage ein fruchtbarer Bestard, der männliche Factor aber eine andere reine Art ist«, meist vollig un fruchtbar und dies namentlich in den Fällen, wo dieselben durch »vermittelnde Verwandtschaft« entstanden waren, d. h. zwei Arten enthielten, die direct nicht oder nur schwierig zu ver-

dagegen brachten 10 gleich zeitig¹) mit Blüthenstaub des Oheims CF_1 bestäubte Blumen ebenso viele Früchte mit keimfähigen Samen. Auch

mit Blüthenstaub der Mutter F, des Bruders $F.CF_1$, sowie der Pflanzen A_2 , C_6 , und $F.EF_1$ lieferte $F.CF_2$ keimfähige Samen. Mit eigenem Blüthenstaube ist $F.CF_2$ völlig unfruchtbar.

Umgekehrt fielen zwei Blumen von CF_2 nach Bestäubung mit $F.CF_2$ unbefruchtet ab, während zwei ebenso bestäubte Blumen von CF_1 reife Früchte brachten, deren Samen leider durch Raupen ausgefressen waren.

Die Pflanze $F.CF_1$, an welcher nur wenige Versuche gemacht wurden, scheint sich ähnlich zu verhalten, wie ihr Bruder $F.CF_2$.

IV. Bastard FS.

Von den Arten F und S besitze ich nur je eine Pflanze; die Bastarde FS_1 , FS_2 , FS_3 und SF sind also sämmtlich Geschwister. Alle vier zeichnen sich aus durch üppigen Wuchs (sie sind jetzt, ein Jahr nach der Aussaat, von mehr als doppelter Manneshöhe) und durch grosse Fruchtbarkeit²; ohne mein Zuthun, durch Vermittlung der Kolibris, haben sie sich mit Hunderten von Früchten bedeckt. Zu Bestäubungsversuchen wurde die Pflanze FS_1 ausgewählt. 10 Blumen mit Blüthenstaub desselben Stockes bestäubt, fielen unbefruchtet ab, während 9 Blumen be-

binden waren, wie es in dem Bastard *CE.S* mit den Arten *E* und *S* der Fall ist. Er fand ferner diese durch vermittelnde Verwandtschaft entstandenen znsammengesetzten Bastarde »dem väterlichen Typus so sehr ähnlich, dass sie nur Varietäten desselben zu sein scheinen«. Die von ihm und Kölmeuren beobachteten derartigen Bastarde gehörten den Gattungen Nicotiana, Lobelia und Verbascum an. Für Abutilon kann ich die von Gärtner aufgestellten Regeln nicht bestätigen. Die hierher gehörigen Bastarde *CE.S*, *EF.S* und *CS.E* sind sämmtlich fruchtbar und keineswegs ihren Vätern besonders ähnlich; in der Blattform steht sogar *CE.S* der Mutter *CE* sebr viel näher als dem Vater *S*.

¹) D. h. es wurden gleichzeitig nicht alle 20 Blumen, sondern jedesmal eine Blume mit CF_1 und zugleich eine andere mit CF_2 bestäubt.

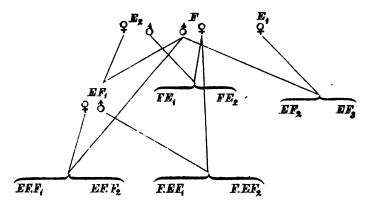
³) Soweit meine Erfahrung reicht, sind überhaupt die am üppigsten wachsenden Bastarde auch die fruchtbarsten. Auch nach Güntnen's so ungemein reichen, ein Vierteljahrhundert umfassenden Erfahrungen »zeigen gerade diejenigen Bastarde, bei welchen man die meiste Fruchtbarkeit bemerkt hat, unter allen die stärkste Luxuriation in allen Theilen« (Bastardzeugung S. 529). Dass umgekehrt kümmerlich wachsende, zwerghafte Bastarde völlig unfruchtbar zu sein pflegen, ist bekannt. Den üppigen Wuchs so vieler Bastardepflanzen ihrer Unfruchtbarkeit zuzuschreiben, wie Kölkeuten wollte, und darin »un cas très — remarquable d'application de la loi du balancement organique et physiologique« sehen zu wollen, wie noch ganz neuerdings QUATREFAGES es thut (CHARLES DARWIN et ses précurseurs français. 1870. S. 246. Anm.) ist hiernach (und aus anderen von GÄRTNER a. a. O. entwickelten Gründen) durchaus unstatthaft.

Fritz Müller,

stäubt mit F, 10 Blumen mit F. EF, 2 Blumen mit FV ebensoviele samenreiche Früchte brachten. Auch mit A, mit EF, mit FE, mit M^2 , mit S^1 , sowie mit ihren Geschwistern FS_2 und SF zeigte FS_1 sich fruchtbar. Die aus diesen verschiedenen Kreuzungen hervorgegangenen Samen erwiesen sich, soweit sie ausgesät wurden, als keimfähig, darunter auch die durch Bestäubung mit SF erhaltenen. Völlig unfruchtbar dagegen zeigte sich die Pflanze FS_1 mit ihrem Bruder FS_3 ; sieben mit dessen Blüthenstaube bestäubte Blumen fielen unbefruchtet ab.

Um zu ermitteln, ob die Unfruchtbarkeit dieser beiden.Geschwister eine gegenseitige sei, wurde auch an FS_3 eine Reihe von Versuchen gemacht. 4 Blumen mit A, 4 Blume mit FV, 5 mit FS_2 , 5 mit SF bestäubt lieferten ebensoviele Früchte; ebenso erhielt ich Früchte mit gutem Samen von der Mehrzahl der mit F, FP, M und S bestäubten Blumen, dagegen nicht eine einzige Frucht von 5 Blumen, die mit Blüthenstaub von FS_1 bestäubt wurden.

Der Blüthenstaub von FS_1 , der FS_3 nicht zu befruchten vermochte, erzeugte Früchte mit reichlichen keimfähigen Samen an den Pflanzen CP, EF_2 , EV_1 , F, F. EF_1 , S und SV; ebenso befruchtete der auf den Narben von FS_1 wirkungslose Blüthenstaub von FS_3 die Pflanzen CV, EV_1 , F. FE_2 , P und S.


V. Bastard FP.

Die beiden Geschwister FP_1 und FP_2 scheinen ebenso unfruchtbar mit einander zu sein, wie FS_1 und FS_3 ; zwei Blüthen von FP_2 , bestäubt mit FP_1 , fielen unbefruchtet ab; ebenso vier von den fünf mit FP_2 bestäubten Blumen der Pflanze FP_1 ; auch die Frucht, welche die fünfte dieser Blumen angesetzt hatte, fiel jung ab. Dagegen lieferten beide Pflanzen Früchte und keinfähige Samen mit dem Blüthenstaub ihrer Eltern F und P; ausserdem FP_1 mit A, CS_1 und CV. — Der Blüthenstaub beider Pflanzen ist zeugungskräftig; denn er erzeugte keimfähige Samen an den Pflanzen CV, EV_1 , F, M_1 und M_2 . An der Pflanze P, dem Vater von FP_1 und FP_2 , erhielt ich von fünf mit Blüthenstaub dieser Kinder bestäubten Blumen nur eine, ziemlich samenreiche Frucht, deren Samen noch nicht auf ihre Keimfähigheit geprüft wurden.

VI. Bastard F.EF.

Die vier Pflanzen $EF.F_1$, $EF.F_2$, $F.EF_1$ und $F.EF_2$ sind Geschwister; sie haben dieselben Eltern F und EF_1 . —

Neun Blumen von $F. EF_1$ bestäubt mit Blüthenstaub anderer Blumen desselben Stocks, lieferten keine einzige Frucht. Zwanzig Blumen von $F. EF_1$ bestäubt mit Blüthenstaub der Geschwister $F. EF_2, EF. F_1$ und $EF. F_2$

brachten drei Früchte mit durchschnittlich 1,3 Samen im Fach; die samenreichste der drei Früchte hatte durchschnittlich 2,2 Samen im Fach.

			von F. EF bestäubt mit FE_1 und FE_2 : 40 Früchte mit 4,5																
10	Blu	men	von	F.	EF	be	stär	ubt	mi	it <i>FE</i> 1	und	FE_2	:	10	Fr	ücht	e mit	4,5	Se
44	•		•	•	•	•	•	•		EF ₂	und	EF_3	:	10	•	•		4,6	B
										FCF ₁									
1											FS ₁		:	1	F	rucht	l mit	4.7	ē.

Der geringe Erfolg der Bestäubung mit dem Blüthenstaub der Geschwister lag nicht etwa an der schlechten Beschaffenheit dieses Blüthenstaubes, der sich an anderen Pflanzen vollkommen zeugungskräftig erwies; der Blüthenstaub von $F. EF_2$ erzeugte samenreiche Früchte an der Pflanze FS_1 , der von $EF.F_1$ an FE_2 , der von $EF.F_2$ an F. Auch der Blüthenstaub von $F. EF_1$ erzeugte zahlreiche und, soweit sie ausgesät wurden, sich keimfähig erweisende Samen an den Pflanzen $F, F. CF_2$, FS_1 und FS_2 . —

Die durch $F. EF_2$ erzeugten Samen von $F. EF_1$ haben übrigens gekeimt und kräftige Pflanzen gegeben, die bis jetzt im Wachsthum mit den durch EF_2 , durch F, durch $F. CF_2$ und durch FS_1 erzeugten gleichen Schritt halten.

VII. Bastarde EF und FE.

Die Verwandtschaftsverhältnisse der betreffenden Pflanzen erhellen aus der bei F.EF gegebenen Uebersicht.

Sowohl die Geschwister EF_2 und EF_3 , als ihre Halbgeschwister EF_1 , FE_1 und FE_2 wetteifern in Uppigem Wuchs und Fruchtbarkeit mit den Bastarden FS und SF^1). — Als Versuchspflanzen dienten die Halb-

¹) »Wenn zwei Arten fruchtbare Bastarde erzeugen, so müssen wir sie in eine Art zusammenzichen« sagt Professor Китинт in seinem »Berichte über die

geschwister EF_2 und FE_2 . Dieselben sind unfruchtbar mit einander. Sieben Blumen von EF_2 lieferten mit Blüthenstaub von FE_2 keine, 10 Blamen von FE_2 mit Blüthenstaub von EF_2 eine einzige sehr dürftige Frucht, die in 15 Fächern nur 11 Samen enthielt. Die Samen scheinen taub m sein, haben wenigstens, vor 18 Tagen ausgesät, noch nicht gek eimt.

Auch mit Blüthenstaub von FE_1 zeigten sich beide Versuchspflanzen unfruchtbar; 10 Blumen von FE_2 gaben mit Blüthenstaub von FE_1 gar keine, 4 Blumen von EF_2 eine einzige dürftige Frucht mit nur 8 Samen in 11 Fächern und diese Samen erwiesen sich bei der Aussaat als taub.

Dagegen erzeugte der Blüthenstaub von EF_3 ziemlich reichlichen Samenertrag, sowohl bei seinem Bruder EF_2 , als bei seinem Halbbruder FE_2 ; 42 Blumen von EF_2 gaben mit EF_3 bestäubt 40 Früchte mit durchschnittlich 3,5 Samen und 40 Blumen von FE_2 , ebenso bestäubt, 9 Früchte mit durchschnittlich 4,2 Samen in einem Fache.

Mit allen sonstigen Arten und Bastarden, mit denen sie bestäuht wurden, zeigten sich beide Pflanzen fruchtbar; so EF_2 mit E, EF.V, F, FS, M und FS, sowie FE_2 mit CV, EF.F, EF.S, E.FV, EV, F, FS und M.

Umgekehrt befruchtete Blüthenstaub von EF_2 und FE_2 fast alle Pflanzen, an denen er versucht wurde; so der von EF_2 die Pflanzen C_7 , CP, CV, EF.S, FS_1 , SV und der von FE_2 die Pflanzen F, $F.EF_1$ und FS_1 .—

Es beweisen die ehen mitgetheilten Beispiele, dass bei den Bastarden von Abutilon und wahrscheinlich ganz ehenso bei den reinen Arten dieser Gattung ziemlich häufig Fälle mehr oder minder vollständiger Unfruchtbarkeit zwischen nabe verwandten Pflanzenstöcken, zwischen Eltern und Kindern, zwischen Geschwistern und selbst Halbge-

Fortschritte der Generationslehre im Jahre 1567« (S. 490). Diese Forderung des Berichterstatters dürfte wohl kaum unter die »Fortschritte in der Generationslehren Schon GARTNER war über diesen Standpunct weit hinaus. So zu zählen sein. sagt er, um nur eine der vielen bezüglichen Stellen seines Buches anzuführen (Bastardzeugung, S. 382): «KNIGHT hat behauptet, dass die Fruchtbarkeit eines Bastards ein directer Beweis davon seie, dass die beiden Eltern zu der nämlichen Species gehören, und dass ein steriler Bastard von verschiedenen Arten abstamme. --Im Folgenden wird sich aber die Unrichtigkeit des von KNIGHT behaupteten Satzes unzweideutig ergeben«. --- Nach alle dem, was schon Gärtner und was später DARWIN über diesen Gegenstand gesagt, bedarf derselbe keiner erneuten Besprechung. Ich möchte nur Herrn Professor Kefenstein fragen, in welcher Weise er seine kalegoriche Forderung ausführen würde, wenn zwei Arten (E und S) zwar mit derselben dritten (F) fruchtbare Bastarde (EF, FE, FS, SF) erzeugeu, nicht aber unter sich. — Oder wenn zwei direct nicht zu fruchtbaren Bastarden vereinbare Arten (E und S) sich durch Vermittlung einer dritten Art (C oder F) zu fruchtbaren Bastarden (CB.S, EF.S, CS.E) verschmelzen lassen. ---

schwistern vorkommen. Ist die oben ausgesprochene Auffassung des Zusammenhanges zwischen Verwandtschaft und Fruchtbarkeit richtig, so darf man hoffen, ähnliche Beispiele durch zu nahe Verwandtschaft verminderter Fruchtbarkeit auch bei anderen Pflanzen nachweisen zu können, wird aber völlige Unfruchtbarkeit zwischen Verwandten nur bei solchen Arten zu finden erwarten dürfen, die wie Abutilon mit Blüthenstaub desselben Stockes unfruchtbar sind.

Die üblen Folgen der Inzucht, die sich, wie Abutilon zeigt, schon bei der ersten Verbindung zu nahe verwandter Pflanzen bis zu völliger Unfruchtbarkeit steigern können, sind bei allen bisherigen und namentlich auch bei Gäntner's »Versuchen und Beobachtungen über die Bastardzeugung im Pflanzenreich« unberücksichtigt geblieben, und es bedürfen daher mehrere der aus diesen Versuchen abgeleiteten Sätze einer Nachprüfung. Dies gilt z. B. von dem Satze, dass Bastarde »niemals so viele vollkommene und keimfähige Samen erzeugen, als ihre Stammeltern« (GÄRTNER a. a. O. S. 540). Ebenso von dem Satze, »dass der stammelterliche Pollen auf die Bastarde kräftiger wirkt, als der eigene« (GÄRTNER a. a. O. S. 425). In keinem einzigen der vielen von GÄRT-NER für beide Sätze angeführten Fälle ist aus seinem Buche zu ersehen, ob die geringere Fruchtbarkeit der Bastarde, ob die minder kräftige Wirkung des Bastardpollens Folge gewesen sei der Bastardnatur oder nicht vielmehr zu naher Verwandtschaft der gekreuzten Pflanzen. Kaum findet sich bei GARTNER ein Fall, der schlagender die Richtigkeit des zweiten Satzes zu beweisen scheint, als die oben erwähnte Pflanze F.EF1, an welcher 29 theils mit Blüthenstaub desselben Stocks, theils mit dem von $F.EF_2$, $EF.F_1$ und $EF.F_2$ bestäubte Blumen nur drei dürftige Früchte, dagegen 34 mit »stammelterlichem Pollen« (von F, EF2, EF3, FE_1 , FE_2) bestäubte Blumen 29 Früchte brachten, die mehr als dreimal so samenreich waren, als jene. Und doch beweist die Fruchtbarkeit dieser Pflanze mit andern Bastarden (FS und FCF), sowie die kräftige Wirkung ihres Blüthenstaubes und des Blüthenstaubes ihrer Geschwister auf zahlreiche andere Pflanzen, dass der überaus dürftige Samenertrag der Pflanze $F. EF_1$ nach Bestäubung mit $F. EF_2$, $EF. F_1$ und $EF. F_2$ nicht davon herrührte, dass diese Pflanzen Bastarde, sondern einzig davon, dass sie Geschwister sind. --- Für eine grosse Zahl von Bastarden ist allerdings die Richtigkeit beider Sätze ausser Frage, für alle diejenigen nämlich, deren Geschlechtstheile mehr oder minder verkummert sind; für diese aber besagen sie nur, was sich ganz von selbst versteht und ebenso für alle übrigen Pflanzen gilt, dass gesunde Geschlechtstheile und Zeugungsstoffe zur Zeugung tauglicher sind, als verkümmerte, un-Vollkommen entwickelte.

Fritz Müller, Bestäubungsversuche an Abutilon.

Auch der Satz, dass »die meisten fruchtbaren Bastarde in forgesetzten Generationen in ihrem Zeugungsvermögen immer mehr und mehr abnehmen« (GÄRTNER a. a. O. S. 418), bedarf einer neuen Prüfung. Es ist auf diesen Satz von Gegnern DARWIN's ganz besonderes Gewicht gelegt worden und FLOURENS glaubt mit demselben eine scharfe Grenze zwischen Art und Abart ziehen zu können ¹). Während Blendlinge mit unverminderter Fruchtbarkeit sich dauernd fortpflanzen, soll die Fruchtbarkeit der Bastarde von Geschlecht zu Geschlecht abnehmen und bald völlig erlöschen. DARWIN hat bereits mit gewohntem Scharfblick die Vermuthung ausgesprochen, dass diese vielfach beobachtete Abnahme der Fruchtbarkeit Folge sei nicht der Bastardnatur, sondern zu enger Inzucht²) und ich freue mich in den hier mitgetheilten Beispielen verminderter Fruchtbarkeit und völliger Unfruchtbarkeit als Folgo zu enger Inzucht bei Abutilon-Bastarden einen neuen Beleg für die Richtigkeit der Vermuthung DARWIN's bieten zu können ³).

Itajahy, October 1872.

²) »I believe in nearly all these cases, that the fertility has been diminished... by too close interbreeding« Origin of species. 4th edition. pag. 295.

³) Gerade in dem von GÄRTNER (a. a. O.) als Beleg seines Satzes angeführten Falle des »sehr fruchtbaren Bastards Dianthus Armeria-deltoides«, der sich Jahre lang in GÄRTNER'S Garten von selbst aussäte, dessen Fruchtbarkeit aber von Jahr zu Jahr abnahm und im zehnten Jahre völlig erlosch, ist es kaum zweifelhaft dass enge Inzucht stattgefunden hat. So viel aus GÄRTNER'S Verzeichniss seiner Versuche zu ersehen ist, (Bastardzeugung, S. 689), hat derselbe nur einmal, im Jahre 1829, vier Blumen (wahrscheinlich an derselben Pflanze) von Dianthus Armeria mit Dianthus deltoides bestäubt, und von diesen zwei Früchte geerntet.

¹) "Toutes les variétés d'une même espèce sont lécondes entre elles d'une fécondité continue; les espèces d'un même genre n'ont entre elles qu'une fécondité bornée" Frourens, Examen du livre de M. DARWIN, pag. 404.

Beiträge zur Kenntniss der Termiten.

Von

Fritz Müller.

 III. Die »Nymphen mit kurzen Flügelscheiden« (Hagen), »nymphes de la deuxième forme« (Lespès). Ein Sultan in seinem Harem.

Von der überraschenden Menge verschiedener Zustände, die im Termitenstaate angetroffen werden, bilden — nach der Meinung ihres gründlichsten Kenners¹) — »eigentlich nur die Nymphen mit kurzen Flügelscheiden ein bis jetzt unlösliches Räthsel«. Dem Versuche, dieses Räthsel seiner Lösung näher zu führen, muss ich als Einleitung einige Worte über das geschlechtliche Leben der Termiten vorausschicken.

Zu einer bestimmten (für verschiedene Arten verschiedenen) Jahreszeit verlassen die geflügelten Männchen und Weibchen das Nest, in welchem sie mehrere Wochen zuvor ihre letzte Häutung bestanden haben, und erhehen sich in dichtem Schwarme in die Luft. Nach kurzem Fluge senken sie sich wieder zu Boden und entledigen sich ihrer Flügel. Zum Theil erst jetzt, zum Theil schon während des Fluges beginnt die Jagd der Männchen nach einer Genossin. Die Paare, die sich gefunden, suchen dann ein Nest ihrer Art wieder zu gewinnen. Ehe sie dieses Ziel wieder erreichen, erliegt die übergrosse Mehrzahl der wehrlosen Thiere den Nachstellungen der Ameisen, der Vögel und anderer Feinde. Die Begattung findet weder in der Luft, noch überhaupt ausserhalb des Nestes Erst nachdem ein Paar als König und Königin in einem Neste statt. Aufnahme gefunden hat, folgt der ausserhalb des Nestes gefeierten Verlobung die Vermählung und eine Jahre lange treue Ehe.

.1

¹⁾ Hagen in Linnaea enthomologiae XIV. S. 126.

Ziemlich abweichend von dieser Darstellung, welche sich in allen wesentlichen Puncten derjenigen anschliesst, die schon vor fast hundert Jahren (1781) SMEATHMAN gegeben hat, pflegen die Angaben neuerer zoologischer Lehrbücher zu lauten. Man lässt die Termiten sich in der Luft oder doch ausserhalb des Nestes begatten, die Männchen nach der Begattung zu Grunde gehen und die befruchteten Weibchen in das Nest zurückgebracht werden.

Dass das Männchen mit seinem Weibchen in das Nest zurückkehrt und in seiner Gesellschaft als »König« weiter lebt, bedarf keiner weiteren Beweise, nachdem ausser SMEATRMAN auch LAVAGE, LESPES, BATES u. A. solche Könige bei verschiedenen Arten gefunden, und nachdem auch HAGEN erklärt, dass ihm »durch vielfache Angaben glaubwürdiger Forscher und durch vielfache Sendungen solcher Nestbewohner die Existenz eines derartigen Königs zweifellos erscheinta¹). Doch mag immerhin erwähnt sein, dass auch ich den König bei acht oder neun Arten der Gattungen Calotermes (rugosus, nodulosus, Hagenii), Termes (Lespesii), Eutermes 'inquilinus u. a.) und Anoplotermes (pacificus) gefunden habe. - Da die zur Zeit des Schwärmens äusserst winzigen Hoden nach der Rückkehr in ein Nest so bedeutend wachsen, dass sie den grösseren Theil des bisweilen beträchtlich anschwellenden Hinterleibes füllen, so steht die, wahrscheinlich oft wiederholte Begattung im Innern des Nestes ausser Frage. Damit ist allerdings eine frühere Begattung ausserhalb des Nestes nicht ausgeschlossen. Doch ist dieselbe sehr unwahrscheinlich, eben weil zur Zeit des Schwärmens Hoden und Eierstöcke noch sehr wenig entwickelt sind. Selbst bei einer der grössten Arten (Termes dirus) konnte Burneisten die inneren Geschlechtstheile des geflügelten Männchens nicht nachweisen. Auch HAGEN untersuchte viele (Alcohol-) Stücke geflügelter Termiten ohne Genitalien zu treffen²). Hat man doch sogar die grosse Masse eines Termitenschwarmes als »sterile Individuen« ansehen wollen. 'Danach lässt sich bemessen, wie klein noch im Verhältniss zu ihrem späteren gewaltigen Umfange die Geschlechtstheile der geflügelten Thiere sind; als Beispiel will ich anführen, dass bei den geflügelten Männchen unserer grössten Eutermes-Art die Hoden kaum 0,3 Mm. Durchmesser haben.

Besässen die Termiten die langen, so leicht ins Auge fallenden und kaum zu verwechselnden Samenfäden der übrigen Insecten, so wäre die Frage, ob die geflügelten Männchen schon zeugungsfähig seien und

-

¹) Hagen a. a. O. XII. S. 16.

²⁷ Briefliche Mittheilung vom 25. Novbr. 1871.

ob die Weibchen schon ausserhalb des Nestes sich begatten, leicht genug zu entscheiden. Allein in den Hoden geschlechtsreifer Männchen (Könige) verschiedener Arten fand ich nur theils grössere, sehr blasse rundliche Körperchen (von etwa 0,008 Mm. Durchm. bei Entermes vernalis m.), die Kern- und hüllenlos zu sein scheinen und bei Wasserzusatz zu mehr als doppelt so grossem Durchmesser aufquellen, theils kleinere ziemlich stark lichtbrechende Kügelchen von kaum 0,002 Mm. Durchm. - Erstere sind wahrscheinlich die befruchtenden Bestandtheile Sie sind so blass und ihre Gestalt ist so wenig ausgedes Samens. zeichnet, dass ich noch nicht mit Bestimmtheit sagen kann, ob sie schon bei den geflügelten Männchen sich finden und dass ich sie bis jetzt ebenso vergeblich in der Samentasche von Königinnen, wie in der der geflugelten Weibchen gesucht habe. Habe ich recht gesehen, so sind dieselben bei den geflügelten Männchen (des grossen, Kugelnester bauenden Eutermes) allerdings schon vorhanden, aber noch in Zellen eingeschlossen.

Bis jetzt ist noch kein in der Begattung begriffenes Termiten-Pärchen gefangen worden. Was man wohl als Begattung angesehen hat, sind jene mehrfach beobachteten gemeinsamen Spaziergänge der Paare, bei welchen das Weibchen voranläuft, das Männchen dicht dahinter, oft mit seinen Kinnbacken den Hinterleib des Weibchens erfassend. Diesen eigenthümlichen Spaziergängen habe ich bei Termes Lespesii wiederholt zugeschen. Brachte ich ausgefärbte Thiere dieser Art aus dem Neste in ein Glas, so pflegten sie nach kurzer Unruhe dicht übereinander geschichtet, wie sie es in den Kammern des Nestes gewesen, still am Boden zu sitzen. Schüttete ich sie dann auf einen Bogen Papier, so schob sich allmälig ein Pärchen nach dem anderen aus dem wimmelnden Haufen hervor, um sich langsam von demselben zu entfernen. Einige Paare trennten sich bald wieder; diese erwiesen sich soweit sie untersucht wurden, als zwei Männchen. Die anderen, die bei einander ausharrten, bestanden immer aus einem vorangehenden Weibchen und einem nachfolgenden Männchen. Letzteres war bis auf die hintere Hälfte der Flügel, oder, falls es diese schon abgeworfen hatte, vollständig unter den Flügeln des Weibchens verborgen. Blieb es einmal einige Schritte zurück, so schien das Weibchen auf dasselbe zu warten. Nicht selten hatte das Männchen wirklich (wie Rosen-SCHÖLD angiebt), und nicht blos scheinbar (wie es LESPES bei Termes lucifugus sah) die Spitze des Hinterleibes seiner Genossin eine Zeit lang mit den Kinnbacken (Mandibeln) gefasst. Es schien das eine Art bräutlicher Liebkosung zu sein. Von einer Begattung habe ich dabei so wenig etwas gesehen, als SMEATHMAN, ROSENSCHÖLD, LESPES,

Fritz Müller,

TOLLIN u. A. ¹). Das Ziel dieser Spaziergänge ist wahrscheinlich ein Nest ihrer Art als neue Heimat.

Die angebliche Begattung in der Luft würde ich mit Stillschweigen übergehen, wenn nicht AZABA und RENGGER, welche dieselbe in Paraguay gesehen haben wollen, mit Recht den Ruf guter und zuverlässiger Beobachter genössen. Für die Termiten haben sie freilich diesen Ruf nicht gerechtfertigt; AZARA schreibt den Termiten sechs Flügel zu, --- RENGGER will den Boden Viertelstunden weit von männlichen Termiten oder wenigstens von deren Flügeln bedeckt geschen haben. Leider sagt er ebenso wenig, woran er die Flügel als männliche erkannte, als in welcher Weise die Begattung in der Luft vor sich ging. Vermuthlich haben Beide nichts weiter gesehen, als was auch der dritte Beobachter der Termiten Paraguays, ROSENSCHÜLD, berichtet, dass nämlich aus den dichten Schwärmen einer dortigen Art die Thiere paarweise niederfallen, um dann die eben erwähnten Spaziergänge zu beginnen. Bei dem dürftigen Flugvermögen der Termiten und bei dem Mangel von Begattungswerkzeugen halte ich die Begattung in der Luft für geradezu unmöglich.

So viel zur Rechtfertigung SMEATHMAN's gegenüber den Bedenken und der abweichenden Auffassung der »wissenschaftlichen Zoologie«. Seine Darstellung des geschlechtlichen Lebens der Termiten scheint mir, soweit ich nach den in HAGEN's Monographie gesammelten Thatsachen und nach eigenen Erfahrungen urtheilen kann, durchaus richtig zu sein; allein sie ist, wenn auch nicht für den von SMEATHMAN beobachteten Termes bellicosus, so doch für manche andere Arten unvollständig. Es finden darin die »Nymphen mit kurzen Flügelscheiden« (oder besser Flügelansätzen²) keine Berücksichtigung.

2) Der Name Flügelscheiden passt eigentlich überhaupt nur für die ältesten Nymphen, aus deren flügelansätzen bei der nächsten Häutung wirkliche Flügel

¹) Nur Mènètaiès erzählt in einem wunderlich aus Wahrem und Falschem gemischten Berichte (Linn. entomol. S. 446), dass diese Spaziergänge mit der Begattung enden. Ich glaube diese Angabe ebenso bezweifeln zu dürfen, wie dass die Termiten der Serra da Mantiqueira Bäume entlauben, um die Blätter in ihr Nest zu tragen (wahrscheinlich Verwechslung mit Ameisen der Gattung Occodoma), dass die Männchen dieser Termiten kräftigere Mandibeln haben als die Weibchen, dass die Weibchen gleich in den ersten zwei bis drei Tagen nach der Heimkehr ihre (bei anderen Arten um diese Zeit ganz unreifen) Eier ablegen und dann aus dem Neste geworfen werden, dass irgendwo in Brasilien gebratene Mandioewurzel die Hauptnahrung der Bewohner bildet, u. s. w. — Mènètaiès fand während eines fünfjährigen Aufenthaltes in verschiedenen Provinzen Brasiliens, die wahrscheinjich sämmtlich termitenreicher sind, als unsere Santa Catharina, »nie Termiten in wirklichen Urwäldern«. In meinem eigenon Urwalde leben über ein Dutzend Arten.

Schon früher mehrfach beobachtet, sind diese Thiere zuerst von LESPES ausführlicher hesprochen worden. Derselbe unterschied unter den Nymphen des Termes lucifugus, den er bei Bordeaux beobachtete, zwei verschiedene Formen. Die »Nymphen der ersten Form« sind lebhafter, schlanker und haben lange, breite, den vorderen Theil des Hinterleibes ganz bedeckende Flügelansätze, sie beginnen Anfangs Mai sich zu färben und verwandeln sich zwischen 15. und 20. Mai in geflügelte Thiere. Die »Nymphen der zweiten Form« sind weit seltener: sie sind dicker, schwerfälliger und haben kurze, schmale, seitlich gelegene Flügelansätze. Im Februar, als Lespts sie zuerst fand, hatten diese Nymphen dieselbe Grösse, wie die übrigen (6-7 Mm.); später wurden sie grösser (8-10 Mm.); aber der Hinterleib allein wuchs, besonders beträchtlich bei den Weibchen. Dann bedecken die Rückenschilder nicht mehr die Seiten und werden selbst oben durch weiche Haut getrennt. Dieser Anschwellung des Hinterleihes entspricht eine stärkere Entwicklung der Geschlechtstheile. Bei den weiblichen Nymphen der ersten Form hatte kurz vor der letzten Häutung jeder E'erstock etwa 12 Röhren, von denen aber nur zwei oder drei unreife Eier enthielten; dagegen fanden sich bei der zweiten Form bis 56 Röhren, in denen bei älteren Nymphen die Eier sichtbar wurden. Auch die Hoden waren bei der zweiten Form viel mehr entwickelt. -- Die Nymphen der zweiten Form überleben die Verwandlung und das Schwärmen der übrigen und wachsen als Nymphen fort. Erst im Juli beginnen sie sich etwas zu bräunen; sie wurden um diese Zeit immer seltener. -

Leider reichen die Beobachtungen von LESPES nur bis zu dieser Jahreszeit. Er vermuthet, dass die Nymphen der zweiten Form sich im August in geflügelte Männchen und Weibchen verwandeln und schwärmen, und dass aus ihnen König und Königin hervorgehen, während er kleinere Pärchen flügelloser Männchen und Weibchen, die er einigemal in den Nestern von Termes lucifugus fand und als »petit rois und »petit reines bezeichnet, von den Nymphen der ersten Form ableitete. Diese Annahme stützt sich einzig darauf, dass die Entwicklung der inneren Geschlechtstheile bei König und Königin sich zu der

BJ. VII. 4.

hersusgezogen werden; er ist ganz unpassend in Fällen, wo es gar nicht zur Bildung von Flügeln kommt. So darf man allerdings mit HAGEN (Linn. ent. XIV. S. 426) »die Soldatennymphen mit kurzen Flügelscheiden als sehr unverbürgt» aus der Formenreihe der Termiten streichen; wohl aber giebt es Soldaten nit Flügelansätzen, aus denen sich »Flügel entwickeln müssten, wenn nicht überhaupt die Soldaten flügellos blieben« (HAGEN, a. a. O. S. 402). So die von HAGEN beschriebenen Soldaten des Termes :Termopsis?) occidentis Walker und die des Calotermes Smeathmani, m.

bei den Nymphen der zweiten Form etwa ebenso verhielt, wie die bei »petit roi« und »petit reine« zu der bei den Nymphen der ersten Form. Diese verschiedene Grösse und diese verschiedene Entwicklung der Geschlechtstheile bei den von LESPES gefangenen Königen und Königinnen dürfte jedoch einfach daraus zu erklären sein, dass dieselben verschiedenen Jahrgüngen angehörten. —

Schon HAGEN hat gegen die Annahme von LESPES geltend gemacht, »dass alle bis jetzt untersuchten Könige und Königinnen die Flügelschuppe genau von der Form und Grösse der Imago zeigen, eine Entwicklung, welche mit den kleinen rudimentären Flügelscheiden jener Nymphen durchaus nicht in Einklang zu bringen ist. Auch der etwaige Gedanke, dass jene Nymphen bei ihrer letzten Häutung aus den rudimentären Scheiden nur Flügelschuppen herauszögen, scheint unpassend, und um so mehr, als die Schuppen eines Königspaares stets deutlich die Abbruchsstelle des Flügels zeigen. Uebrigens ist der Prothorax der Königin niemals von dem der Imago in der Form verschieden«1), während die Nymphen der zweiten Form sich durch breiteren Prothorax auszeichneten.

Als im Juli die Nymphen der zweiten Form sich zu bräunen begannen, als somit ihre letzte Häutung, falls sie eine solche überhaupt noch zu bestehen hatten, nahe bevorstand, waren ihre Flügelansätze noch so winzig, dass sich in ihnen unmöglich Flügel ausbilden konnten. wie sie die im Mai schwärmenden Thiere besitzen. Und selbst, wenn sie solche Flügel bekämen, würden sie mit ihrem dicken Hinterleihe nicht fliegen können, wie wohl Jeder, der lebende Termiten gesehen, zugestehen wird. Es mag hierbei darauf hingewiesen werden, dass BOBE-MOREAU, der lange Jahre hindurch den Termiten in und um Rochefort seine Aufmerksamkeit schenkte (seine Beobachtungen begannen 1797, sein »Mémoire sur les Termites observés à Rochefort etc.« erschien 1843), ebenfalls nach der Schwärmzeit noch »verspätete Nymphen« antraf, von denen er vermuthet, dass sie ohne weitere Verwandlung untergehen, da in Rochefort nie ein zweiter Ausflug beobachtet wurde. HAGEN hält es für sicher, dass BOBE - MOREAU und LESPES dieselbe Art untersucht haben, während LESPEs glaubt, dass der Termes lucifugus von Bordeaux von der Rochefort-Termite verschieden sei. Wie dem auch sei, es scheint mir kaum einem Zweifel zu unterliegen, dass auch in Bordeaux ein zweiter Ausflug aus den Nymphen der zweiten Form hervorgegangener Männchen und Weibchen nicht stattfinde, dass vielmehr diese Nymphen flügellos bleiben und nie ihr.

^{1/} HAGEN, 8. 8. O. XII. S. 49.

Nest verlassen, in welchem sie unter Umständen zu zeugungsfähigen Männchen und eierlegenden Weibchen sich entwickeln.

Derlei nymphenähnliche geschlechtsreife Thiere sind bereits bei mehreren Arten beobachtet und gewöhnlich als Königinnen beschrieben worden. So bildete Jour eine Königin von Termes lucifugus ohne Flügelschuppen ab und LESPES berichtet, dass JoLy ihm nochmals versichert, dieselbe sei ohne Spur von Flügelschuppen gewesen. Auch das von BURMEISTER als Königin beschriebene Weibchen von Termes flavipes war flügellos und HAGEN, der dasselbe Thier untersuchte, fand darin »ein dem Habitus nach einer Königin sehr ähnliches Thier mit den kurzen Flügelscheiden einer Nymphe«. Ebenso ist Barns' Königin von Termes arenarius nach HAGEN »eine Nymphe mit unentwickelten Flügelscheiden«¹). Ferner ziehe ich hierher ein im British Museum befindliches (von WALKER unter Termes lucifugus beschriebenes) Stuck von Calotermes flavicollis, »eine Nymphe mit kurzen Flugelscheiden, einer Imago, welche die Flügel verloren hat, täuschend ähnlich. Die völlig schwarze Färbung, der blank polirte Kopf, Thorax und Leib schliessen die Idee einer nochmaligen Häutung aus«²).

Es treten also bei gewissen Termiten-Arten die Männchen und Weibchen unter zwei verschiedenen Formen auf. Die einen aus den »Nymphen der ersten Form« hervorgehend, erhalten Flügel und verlassen in Schwärmen ihren Geburtsort. Nur sehr wenigen Glücklichen unter ihnen gelingt es, später als König und Königin einen erledigten Thron zu besteigen. Die anderen, die geschlechtsreif gewordenen »Nymphen der zweiten Form« sehen nie das Licht des Tages; sie bleiben flügellos und verlassen nie das Nest, in dem sie aufgewachsen sind³).

Welche Bedeutung hat nun für die Erhaltung und das Gedeihen der Art jede dieser beiden Formen? — Ein grösserer Termitenstaat entsendet jährlich Hunderttausende geflügelter Männchen und Weibchen, um alle zwei, drei oder vier Jahre ein einziges Königspaar zurücker-

¹) Briefliche Mittheilung vom 2. Januar 4873.

²⁾ HAGEN, a. a. O. XII. S. 20 und S. 59.

³) HAGEN schreibt mir, dass alle Königinnen (von Termes bellicosus, dives, obesus, gilvus), die er bis jetzt aus Asien und Africa sah, wirkliche Imagos sind mit dem Flügelstummel, von dem der Flügel abgebrochen — dagegen alle Königinnen, die er aus Brasilien und überhaupt aus America gesehen (von Termes flavipes, morio (?), similis (?), arenarius), offenbar Nymphen waren. So auffallend diese Thatsache scheinen mag, wäre es voreilig, daraus schon jetzt schliessen zu wollen, dass im Vorkommen der beiderlei Formen ein Unterschied zwischen der alten und der neuen Welt bestehe. Ich habe hier wohl über hundert wirkliche Koniginnen gesehen, — mehr als HAGEN aus Asien und Africa, ehe ich zum ersten Male nymphenähnliche Weitbehen traf.

Fritz Müller,

halten zu können; so bedeutend sind die Verheerungen, die alle möglichen Insectenfresser, vom Menschen bis zur Ameise, unter diesen gau wehrlosen Thieren anrichten, so bedeutend die Schwierigkeiten, nachdem Braut und Bräutigam sich gefunden, ein Nest zu erreichen, in welchem ein Königspaar verlangt wird. Wäre es nicht einfacher und sicherer, alle Männchen und Weibchen wohlbehütet daheim zu behalten? Welche Arbeit würden die Termiten sparen, wenn sie nicht Jahr für Jahr jene wolkenartigen Schwärme geflügelter Thiere aufzuziehen hätten, wie sie den grossen Hügelnestern entsteigen !)! Ist es nicht auffallend, dass bei allen Arten, wo dieselbe überhaupt besteht, jene so viel einfachere und sichrere, so viel Arbeit ersparende Weise der Fortpflanzung durch nymphenähnliche Männchen und Weibchen nicht längst auf dem Wege der natürlichen Auslese die andere von so viel Gefahren bedrohte durch ausfliegende Schwärme völlig verdrängt hat, nicht längst zur einzigen geworden ist? Und doch scheinen die daheim bleibenden Münnchen und Weibchen nur als seltener Nothbehelf zu dienen für den Fall, dass einmal andere nicht zu erlangen sind.

Wo immer man auf derartige Fragen stösst, darf man sich getrost an DARWIN wenden und bei ihm den Schlüssel zu deren Lösung zu finden hoffen. Wer nach eigener Beschäftigung mit dem Gegenstande die volle Tragweite der im 17. Capitel seines Werkes : »The Variation of animals and plants under domestication« zusammengestellten Thatsachen zu würdigen weiss, wird kaum Bedenken tragen, zuzugestehen, dass durch dieselben das Gesetz wenn nicht bewiesen, so doch im höchsten Grade wahrscheinlich gemacht wird, mit welchem DARWIN dieses Capitel schliesst : »that the crossing of animals and plants which are not closely related to each other is highly beneficial or even necessary, and that interbreeding prolonged during many generations is highly injurious«.

Nun besitzt bei der Mehrzahl der Termiten-Arten, deren gesellschaftliche Verhältnisse man kennt, jedes Volk (mit seltenen Ausnahmen) ein einziges Königspaar oder auch wohl bisweilen einen einzigen König mit zwei Gemahlinnen. Somit sind sämmtliche in dem Stocke auf-

¹) Man hat von der Anlage neuer Staaten durch die ausschwärmenden Männchen und Weibchen gesprochen (RENGGER, TOLLIN, u. A.) und könnte meinen, dass deshalb das Schwärmen unentbehrlich sei. Den Männchen und Weibchen von Calotermes will ich die Fähigkelt nicht geradezu absprechen, auf eigne Hand weiter zu leben und eine neue Ansiedlung zu beginnen. Bei allen Arten von Termes, Eutermes, Anoplotermes, deren Lebensweise ich einigermassen kenne, würde ein geflügeltes Pärchen die Begründung eines neuen Staates mit genau demselben Erfolge unternehmen, wie ein Paar neugeborener Kinder, die man auf einer wüsten Insel ausgesetzt hätte.

wachsende Männchen und Weibchen Geschwister. Die ausschliessliche Fortpflanzung durch eingeborene Männchen und Weibchen würde zur engsten Inzucht führen. Bei dem Schwärmen können sich Männchen und Weibchen aus verschiedenen Stöcken zusammonfinden, deren Verbindung hier wie sonst eine kräftigere Nachkommenschaft liefern wird. Bei der massenhaften Vertilgung durch zahlreiche Feinde, welcher die schwärmenden Termiten ausgesetzt sind, wird es trotz ihrer Unzahl geschehen können, dass ein Volk seinen Thron nicht rechtzeitig mit einem neuen Königspaare zu besetzen vermag. In diesem Nothfalle treten dann als Ersatz die daheim in sicherer Hut gehaltenen nymphenähnlichen Männchen und Weibchen ein und retten das Volk vor dem Aussterben. —

Mit dem Umstande, dass erst dann diese Ersatzmännchen oder Weibehen nothig werden, wenn nach Ablauf der Schwärmzeit kein wirkliches Königspaar sich gefunden hat, mag die verspätete Entwicklung der »Nymphen der zweiten Form« im Zusammenhang stehen. — Dass, wie LESPES berichtet, diese Nymphen der zweiten Form »immer seltener werden, je mehr die Zeit ihrer (nur vermutheten, nicht beobachteten!, Verwandlung herannahta¹), wäre gewiss höchst befremdlich, wenn dieselben sich wirklich in geflügelte Thiere für einen zweiten Ausflug verwandelten; dagegen erscheint es begreiflich, dass man sie allmälig aussterben (verhungern?) lässt, wenn man sie nicht mehr braucht, oder dass man nur so viele am Leben erhält, als man eben braucht.

In überraschender Weise ähnlich sind diese bei den Termiten bestehenden Verhältnisse dem bei Pflanzen der verschiedensten Familien beobachteten Vorkommen geschlossener (»cleistogamer« KUEN) Blüthen²). Wie sich an gewissen Pflanzenstöcken ausser offenen, die Kreuzung verschiedener Stöcke vermittelnden Blüthen andere nie sich öffnende (cleistogame) Blüthen entwickeln, deren Staubgefässe und Stempel stets eingeschlossen bleiben und durch welche die Erhaltung der Art gesichert wird, falls die von der Gunst äusserer Umstände abhängige Fortpflanzung durch offene Blüthen unterbleibt, so entwickeln sich in gewissen Tormitenstöcken ausser den ausschwärmenden, die Kreuzung verschiedener Stöcke vermittelnden Männchen und Weibchen andere, nie ausschwärmende (cleistogame) Männchen und Weibchen, die stets im Stocke eingeschlossen bleiben und durch welche die Erhaltung der Art

¹⁾ HAGEN'S Bericht über die Arbeit von Lespès, a. a. O. XII, S. 817.

²) Vergl. HILDEBRAND, die Geschlechtervertheilung bei den Pflanzen. 1867. S. 78. SEVERIN AXELL, Om anordningarna for de fanerogama växternas befruktning. 1869. S. 10 u. S. 76.

Fritz Müller,

gesichert wird, falls die von der Gunst äusserer Umstände abhängige Fortpflanzung durch ausschwärmende Männchen und Weibchen unterbleibt. Wie die cleistogamen Blüthen mancher Pflanzen jüngeren Knopen der offenen Blüthen, so sind die cleistogamen Männchen und Weibchen der Termiten Jugendzuständen der ausschwärmenden äbnlich; dort bleiben die Blumenblätter, hier die Flügel auf einer niederen Entwicklungsstufe stehen. Der verschwenderischen Erzeugung von Bitthenstaub in offenen Blüthen entspricht die verschwenderische Erzeugung geflügelter Mönnchen und Weibchen, wie die geringe Zahl der Nymphen mit kurzen Flügelansätzen dem spärlicheren Blüthenstaube cleistogamer Blüthen. Wie beim Veilchen die cleistogamen Blüthen später als die offenen, so entwickeln sich bei Termes lucifugus die Nymphen der zweiten Form später als die der ersten. Wie man in Frankreich an der ausländischen Leersia orizoides bis jetzt nur Fortpflanzung durch cleistogame Blüthen beobachtete, so hat man im Garten zu Schönbrunnen bis jetzt nur ein cleistogames Weibchen des ausländischen Termes flavipes gefunden, - wahrscheinlich weil in beiden Fällen im fremden Lande die äusseren Umstände der gewöhnlichen Fortpflanzungsweise nicht günstig sind.

Die im Vorstehenden entwickelte Ansicht über die »Nymphen mit kurzen Flügelscheiden« hatte ich mir nach den in HAGEN's Monographie niedergelegten Thatsachen gebildet und in Briefen ausgesprochen, lange hevor ich selbst Gelegenheit hatte, solche Thiere zu sehen. Leider entbehrte gerade der eigentliche Kern dieser Ansicht der thatsächlichen Begründung; es mangelte der Nachweis, dass wirklich die cleistogamen Ersatzmännchen und Weibchen die Fortpflanzung der Art übernehmen in Fallen, wo König oder Königin im Stocke fehlen. Man wird begreifen, mit welch freudiger Ueberraschung ich einen Fund begrüsste, der mir jetzt diesen Nachweis zu liefern gestattet.

Ich hatte (am 11. Nov.) aus einem morschen Gissara-Stuken den festen Kern eines Eutermes-Nestes mit heimgebracht, der ungefähr Grüsse und Gestalt eines Hühnereies hatte. Um den Kern waren ansehnliche Eiermassen angehäuft und so erwartete ich darin wie gewöhnlich ein Königspaar anzutreffen. Allein statt in seiner Mitte ein grösseres königliches Zimmer zu umschliessen, war der ganze Kern wie ein Schwamm von unregelmässigen Gängen durchzogen und in diesen Gängen sassen, hier und da zu fünf bis sechs dicht susammengedrängt, nicht weniger als einunddreissig (31) Ersatzweibchen mit kurzen Flügelansätzen (Fig. 4), 6 bis 8 Mm. lang, und zwischen ihnen spazierte ein einziger König von ungefähr gleicher Grösse herum, und zwar ein wirklicher König mit grossen schwarzen Augen und Flügelschuppen, von denen

ł

die Flügel abgebrochen waren. Eine Königin fehlte. Statt eines Königspalastes, in welchem ein König mit seiner ebenbürtigen Gemahlin in keuscher Ebe lebte, hatte ich also ein llarem vor mir, in dem ein Sultan mit zahlreichen Buhlen sich vorgnügte ¹).

Im Laufe eines Tages legten diese Ersatzweibchen eine ziemliche Anzahl von Eiern, die von den Arbeitern in kleine Häufchen zusammengetragen wurden. Man sah?an ihrem Hinterleibe dieselben wellenförmigen Zusammenziehungen wie bei Königinnen und bei mehreren war ich Zeuge von dem Austritt eines Eies.

Die Farbe dieser Weibchen mit kurzen Flügelansätzen ist ein lichtes Braun, wodurch sie ebenso von den blassen, fast farblosen Arbeitern, wie von dem weit dunkleren König abstechen. Im Ganzen schen sie den Arbeitern ziemlich ähnlich, ähnlicher als einer der anderen Formen ihrer Art; nur sind sie doppelt so gross. Die Flügelansätze sind bei den meisten zu klein, um bei oberflächlicher Betrachtung in die Augen zu fallen. Der Hinterleib, nur mässig angeschwollen, hat etwa dieselbe eiförmige Gestalt und steht etwa in demselben Verhältniss zur Gesammtlänge wie der des Arbeiters. Namentlich aber ist die Aehnlichkeit des Kopfes (Fig. 2) auffallend; die »hellen, sich kreuzenden Linien«, die den Kopf der Eutermes-Arbeiter auszuzeichnen pflegen²), sind bei den meisten kaum minder deutlich, als bei den Arbeitern. Die Fühler haben, wie die der Arbeiter, 14 Glieder, während die Soldaten 13, die geflugelten Thiere 15 Fühlerglieder besitzen. Man könnte den Kopf für den eines Arbeiters halten, fänden sich nicht kleine runde Netzaugen, die sich indessen kaum über ihre Umgebung erheben und kaum etwas dunkler als diese gefärht sind. Nebenaugen habe ich nicht bemerkt.

²) HAGER, a. a. O. XII, S. 187.

.

¹⁾ Vermuthlich hat schon Borings eine ähnliche Gesellschaft von Ersatzweibchen von Termes lucifugus gesehen; es waren ihrer sieben, mitten in einem Balken. Sie waren 8 bis 10 Mm. lang, beinabe weiss oder sehr hellroth. In ihrer Nähe fanden sich mehrere Eierhaufen und sehr zahlreiche Larven, »genug, um damit ein Liter zu füllen«. (Vergl. Haczn's Bericht, a. a. O. X, S. 130.) Termes lucifugus hat sonst, nach LEssets, nur ein einziges Königspasr. Auch die helle Farbe der von Boriner gefundenen Weibchen passt nicht zu wirklichen Königinnen. -Wenn HAGEN vermuthet (a. a. O. XII, S. 177), dass LESPES möglicherweise gar keine Königinnen, sondern nur grosse Nymphen der zweiten Form gesehen habe, so widerspricht dem die ausdrückliche und JoLy gegenüber besonders betonte Versicherung von LESPES (a. a. O. XII, S. 832), dass bei seinen Königinnen stets die Flügelschuppen vorhanden waren. In den verschiedenen Grössenangaben bei Bo-FIRET, JOLT und LESPÈS kann ich keine Schwierigkeit erblicken, da ja die Weibchen nur ganz allmälig von der Grösse der Imago zu jenem fabelhaften Umfange heranwachsen, der die Königinnen der Termiten so berühmt gemacht hat, und also in allen dazwischen liegenden Grössen gefunden werden können.

Fritz Müller,

Der Prothorax erinnert dadurch an den der Arbeiter, dass er eina queren sattelförnigen Eindruck hat, welcher einen vorderen Lappa absondert; doch ist bei den Arbeitern dieser vordere Lappen sehr gros, steil aufgerichtet und in der Mitte seines Vorderrandes seicht eingekerht, bei den Ersatzweihchen ist er nur klein, sanft aufsteigend und einfach Die Grösse des vorderen Lappens wechselt übrigens; bi abgerundet. einigen wenigen Stücken war er durch einen schmalen Saum erseta, und dann ähnelte der Prothorax dem des Königs. Die Flügelansätte nehmen die ganzen seitlichen Ränder des Meso- und Metathorax ein; meist (Fig. 1 A) sind sie kaum halb so lang, als diese Leibesringe breit und bilden dann dreieckige wagerecht nach aussen gerichtete Vorsprünge, deren Hinterrand ziemlich gerade nach aussen, deren Vorderrand schief nach hinten läuft. Bei sehr wenigen Stücken (Fig. 1 B) sind die Flügelansätze bedeutend grösser; auch Meso- und Metathorax sind in diesem Falle stärker entwickelt; die schief nach hinten gerichteten Flügelansätze reichen etwa bis zur Mitte des zweiten Rückenschildes des Hinterleibes; die vorderen Flügelansätze bedecken den Vorderrand der hinteren. - Die Bauchschilder sind wie bei den geflügelten Weibchen gebildet.

Die inneren Geschlechtstheile (Fig. 3) sind von denen der geflugelten Weibehen fast nur dadurch verschieden, dass sie reife Eier enthalten. Jeder Eierstock pflegt deren etwa ein halbes Dutzend zu haben. Die Eiröhren, etwa ein Dutzend für jeden Eierstock (die Zahl scheint ziemlich unbeständig zu sein), sitzen wie bei den geflügelten Weibehen büschelförmig am Ende der kurzen Eileiter, während bei der ausgewachsenen Königin jeder Eierstock ein langes Rohr bildet, das in ganzer Länger ingsum dicht mit überaus zahlreichen Eiröhren besetzt ist. Samentasche und Kittdrüse haben die gewöhnliche Form.

Eine 19 Mm. lange Königin, die mir eben zur Hand ist, wiegt etwa 0,2 Gramm; ebensoviel wiegen 15 der Ersatzweibehen. Die Eierstöcke der sammtlichen 31 Ersatzweibehen dürften zusammen kaum so viel wiegen und kaum so viel Eier liefern, als die einer einzigen älteren Königin.

Da LESPES und HAGEN auch männliche Nymphen mit kurzen Flügelansatzen trafen, so wird wahrscheinlich der König ebenso durch Ersatzmännchen vertreten werden können, wie die Königin durch Ersatzweibchen. Ob in einem Neste gleichzeitig für beide Geschlechter eine solche Vertretung stattfinden könne, — ob aus den von Ersatzweibchen gelegten oder durch Ersatzmännchen befruchteten Eiern alle Formen hervorgehen, die das Termitenvolk zusammensetzen, oder etwa nur Arbeiter und Soldaten, ob von allen Arten und in allen Stöcken regelmässig jedes Jahr Nymphen mit kurzen Flügelansätzen erzeugt werden,

462

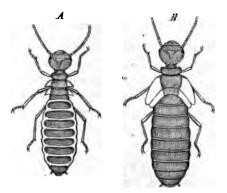


Fig. 4.

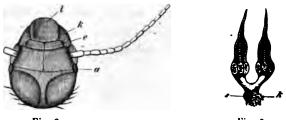


Fig. 2.

Fig. 3.

- Fig. 4. Zwei Ersatzweibchen von Termes lucifugus. A Die gewöhnliche Form mit kurzen Flügelansätzen. B Die sellenere Form mit längeren Flügelansätzen.
- Fig. 2. Kopf eines Ersatzweibchens. *a* Die beiden kleinen Netzaugen. *l* Die Oberlippe. *k* Die Oberkjefer.
- Fig. 3. Geschlechtstheile eines Ersatzweibchens. s Samentasche. k Kittdrüse.

Jen. Zeilschr., IV. Bd., zu S. 462 u. 463.

Vorläufige Mittheilungen über Cölenteraten.

Von

G. von Koch.

Hiersu Tafel XXIII.

Diese Mittheilungen sind Bruchstücke einer grösseren Arbeit über Gölenteraten und bestehen aus zwei Theilen. Der erste handelt von dem Verhältniss der Medusen zu den Hydroiden, der andre ist eine Notis über die Entstehung der Eier bei einigen Gölenteraten.

1. Ueber das Verhältniss der Nedusen zu den Hydroiden.

Das Verhältniss der Medusen zu den Hydroiden hat seit der Entdeckung, dass viele Hydroiden durch Knospung Medusen erzeugen, viele Naturforscher beschäftigt, ohne bis jetzt vollkommen klar geworden zu sein. Ich will daher versuchen, dasselbe im Lichte der Descendenztheorie zu betrachten und soweit mir möglich zu erklären. —

Fs sind in dieser Frage vorerst zwei mögliche Fälle zu unterscheiden: 1. die Medusen sind das Ursprüngliche und die Hydroiden sind deshalb nur als Jugendformen, die sich durch selbständige Anpassung verschieden differenzirt haben, aufzufassen, 2. die Hydroidpolypen sind das Ursprüngliche und die Medusen sind von ihnen abzuleiten. —

Der erste Fall, welcher sich auch folgendermassen aussprechen lässt: die Hydrasmedusen stammen von einer medusenähnlichen Grundform ab, bietet verschiedene Schwierigkeiten. Zu diesen gehört vor allen die Thatsache, dass die Medusen sich schwer mit anderen Thierclassen direct verknüpfen lassen, während die einfacheren Hydroiden sehr nabe Beziehungen zu den Schwämmen und Korallen zeigen und man, besonders seit der genaueren Untersuchung der Kalkschwämme kaum mehr an deren naber Verwandtschaft zweifeln kann. — Daraus folgt die grössere Wahrscheinlichkeit des zweiten Satzes, dass die Medusen von den Hydroiden abzuleiten seien.

Diese Ableitung kann aber auf zwei verschiedenen Wegen geschehen, man kann annehmen: a. die Medusen sind dadurch entstanden, dass die Geschlechtsorgane der Hydroiden sich differenzirten und zu selbständigen Geschlechtsorganen wurden, b. die Medusen haben sich durch Anpassung an die schwimmende Lebensweise aus Hydroidpersonen entwickelt und die Fortpflanzung (durch Eier) später allein übernommen.

Von diesen beiden Annahmen scheint die erste vielleicht als diejenige, welche die Thatsachen am einfachsten erklärt. Man hat eine Reihe von Hydroiden, von diesen entwickeln einige sich ablösende und dann frei schwimmende Medusen, die anderen nur mehr oder weniger medusenähnliche Knospen, welche die Geschlechtsorgane enthalten. Was liegt da näher als die Erklärung : diese Knospensind die Geschlechtsorgane und die Medusen sind nichts als weitere Differenzirungen derselben, die sich schliesslich zu selbständigen Personen aufgeschwungen haben? - Aber bei näherer Betrachtung bietet auch diese Theorie doch einige Schwierigkeiten. So lässt sie z. B. die Homologie zwischen Medusen und Hydroidpersonen ganz unerklärt, dann lässt sie sich sehr schwer mit der Thatsache vereinigen, dass die Medusen der verschiedenen Hydroidenfamilien im Allgemeinen ganz gleich gebaut sind, während doch eben in diesen Familien die verschiedensten (und zum Theil sehr einfache) Geschlechtsknospen von den einzelnen Arten erzeugt werden (1). - Der Annahme b. hingegen lassen sich die eben angeführten Einwürfe nicht machen und muss man sie deshalb, wenn sie auch anfangs weniger einfach erscheinen mag, als die wahrscheinlichste ansehen. Ausserdem aber will ich sie noch zu stützen suchen indem ich in Folgendem eine Phylogenie der Hydrasmedusen in ihren Hauptformen construire und nachweise, dass die Entstehung der Medusen aus Hydroidpersonen die bekannten Thatsachen am ungezwungensten erklärt. ---

Phylogenie der Hydroiden.

Als Grundform aller Hydroiden haben wir uns eine schlauchförmige Person zu denken, deren Wand aus Ectoderm, Mesoderm und Entoderm zusammengesetzt ist und welche solide Tentakel (2) auf der ganzenäusseren Körperfläche besitzt (3). Diese Grundform, welche sich geschlechtlich durch Eier, die aus Entodermzellen entstehen, fortpflanzt, vormehrt sich ausserdem durch Knospung. Die entstandenen Knospen bleiben entweder mit dem Mutterthier verbunden und bilden dann mit diesom

G. von Koch,

Stöcke, oder sie lösen sich ab (4). Von den abgelösten Personen hefte sich einige mit ihrem aboralen Ende an irgend einer Unterlage fest ud machen so den Anfang zu einem neuen Stock, andre bleiben im Wasse flottirend (5). Diese letzteren nun passen sich an die schwimmende Lebensweise an und geben so den Ausgangspunct für die Medusen 6. Durch diese Differenzirung erhalten wir in einer Species zwei verschiedene Formen, eine schwimmende und eine festsitzende. Die letzten vermehrt sich hauptsächlich durch Knospung und verliert nach und nach das Vermögen sich geschlechtlich fortzupflanzen, da dafür de schwimmende, bei der eine Inzucht viel schwerer möglich ist, sich viel günstiger zeigt. —

Von diesen Hydroiden mit Medusengeneration, welche wir eben sich entwickeln sehen, kommen nun einige in andere Verhältnisse (7), welch zur Folge haben, dass die, sich zufällig gerade nicht ablösenden Meduse am besten ihre Geschlechtsfunctionen verrichten können. Diese Eigenschaft vererbt sich und wir erhalten so aus den Medusen nach den Princip der natürlichen Zuchtwahl die medusoiden Geschlechtsgemmen, welche bei einzelnen Arten sich zu scheinbaren Geschlechtsorganen rückgebildet haben.

II. Ueber die Entstehung der Eler hei den Cölenteraten.

Die Frage, welchem der, bei allen höher entwickelten Thieren vorhandenen, zwei ursprünglichen Keimblätter (Entoderm und Ectoderm) die Geschlechtsproducto entstammen, ist, trotz vielfacher Discutirung, noch eine offene. Man kann für jede der beiden Ansichten und ausserdem noch für eine dritte, welche das Me so der m (dessen Horleitung aus einem der beiden vorigen, oder aus beiden zugleich auch noch ungewiss ist) für den Ursprungsort der Eier hält, eine gleich grosse Anzahl von Autoritäten anführen. Deshalb sei es mir gestattet einige Beobachtungen über die Entstehung der Eier einiger Gölenteraten, einer Thiergruppe, welche gerade in dieser Hinsicht in letzter Zeit vielfach untersucht worden ist⁴), mitzutheilen.

Saccanthus (purpureus) Haime.

Bei Saccanthus finden sich (wie auch IIAIME bei dem nahe verwandten Cereanthus membranaceus²) gesehen und abgebildet hat) die

466

¹ Man vergleiche besonders: Häckel, Monographie der Kalkschwämme, I. Band. Biologie, 1872.

²⁾ JULES HAIME, Mémoire sur le Cerianthe, in den Annales des Sciences naturelles. IV. Serie, Zoologie, Tome I. Paris 1854.

Eier zerstreut im Entoderm der Septa und zwar in den verschiedensten Stufen der Reife. — Untersucht man ein Septum auf dem Querschnitt, so findet man, dass dasselbe nur aus zwei Schichten besteht, einer byalinen Lamelle und einer diese überkleidenden Zelllage, dem Entoderm. Die Lamelle ist eine Fortsetzung der hyalinen, structurlosen Schicht, welche im ganzen Körper nach aussen auf das Entoderm folgt und dieses von der Muskelschicht trennt. Das Entoderm besteht aus locker verbundenen, leicht von ihrer Unterlage zu trennenden Zellen zwischen denen grosse, eigenthtmilich gestaltete Nesselkapseln und wie oben beinerkt die Eier liegen.

Fragt man sich nun, ob bei Saccanthus die Eier aus dem Entoderm oder Ectoderm entstehen, so kann man sich nur für das erstere entscheiden, denn es sprechen dafür 4. die ganz jungen Zustände der Eier, welche mit grösster Wahrscheinlichkeit auf Entodermzellen zurückzuführen sind, 2. die Unmöglichkeit einer Einwanderung derselben aus dem Ectoderm, da dieses durch die hyaline Schicht ganz vom Entoderm abgeschlossen ist und in jener Eier, welche auf der Durchwanderung begriffen sein könnten, nicht vorkommen. Diese Durchwanderung wird auch bei der grossen Festigkeit der hyalinen Schicht sehr unwahrscheinlich und muss man daher hier die Entstehung der Eier aus dem Entoderm als sicher festgestellt annehmen.

Veretillum (cynomorium) Cuv.

Hier ist das Verhältniss ein ganz ähnliches wie bei Saccanthus. Die Eier entstehen wie dort im Entoderm der Septa, aber nicht an den Seitenflächen, sondern am freien Rand derselben. Dadurch wird die Beobachtung der Entwicklung um vieles erleichtert und gelang es mir alle Uebergänge von der einfachen Entodermzelle bis zum, die Grösse eines Stecknadelkopfes erreichenden, Ei aufzufinden, so dass in diesem Falle die Entstehung der Eier aus den Entodermzellen direct bewiesen ist. Ausserdem gelten aber auch hier die oben unter 2 angeführten Gründe.

Coryne (fruticosa et pusilla) Gärtn.

Bei diesen beiden von mir untersuchten Arten von Coryne finden sich die Eier in Geschlechtsknospen. Diese sind von kuglig bis eiförmiger Gestalt, erreichen einen Durchmesser von 0,5 mm. und bestehen aus einer äusseren Hülle und einer inneren strahlig zerfallenen Masse, welche eine, mit der Magenhöhle communicirende Höhlung umschliesst; die äussere Hülle ist eine directe Fortsetzung der Ectodermschicht nebst der Stützmembran, wie durch Querschnitte klar wird, an G. von Koch,

denen man den directen Uebergang deutlich wahrnehmen kann. strahlige, eine centrale Höhlung umgebende Masse wird von den gebildet, welche durch gegenseitigen Druck die Form abgestu Pyramiden angenommen haben und sehr deutlich Nucleus, Nuc und Nucleolinus, oft auch in letzterem noch ein Pünctchen, erk lassen. — Die jungen Gemmen sehen den eben beschriebenen i ganz ähnlich, nur sind sie viel kleiner und die Eiermasse wird eine einfache Zellschicht ersetzt, die sich direct vom Entoden Magenhöhle ableiten lässt. —

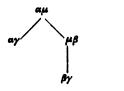
Daraus geht hervor, dass auch bei Coryne die Eier aus dem derm entstehen, denn es beweisen dies 4. die directe Beobachtun Uebergang des Magenepithels in die spätere Eiermasse, 2. die (ä wie vorhin zu beweisende) Unmöglichkeit, dass die Eier aus dem derm nach Innen gekommen sein könnten.

468

Irläuterungen.

t. Die grosse Aehnlichkeit der Medusen nach ihrem ganzen Bau, gegenüber der
 Verschiedenheit der Gemmen, scheint mir einer der Haupteinwürfe gegen die An-.
 nahme a zu sein, wie ich durch folgendes Beispiel zu beweisen suchen will : Man habe (und es giebt deren ja viele) zwei ganz verschiedene Hydroidengattungen α und β, beide besitzen sowohl Arten, die ganz unvollkommene Gemmen, als auch solche, die
 freie Medusen erzeugen. Nennen wir die ersteren γ, die letzteren μ, so bekommen

wir vier Hauptformen ay, aµ, by, bµ.


-

> Sucht man nun dieselben von der Art av abzuleiten, so erhält man folgende Stammbäume

Beide sind sehr unwahrscheinlich, denn wollte man den ersten als richtigen annehmen, so müssten sich aus zwei, nicht einmal gleichen und auf verschiedenen Hydroiden gewachsenen Gemmen in ihrem ganzen Baugübereinstimmende Medusen entwickelt haben. Wollte man den 2. für den wahren halten, so würde man auf ähnliche Schwierigkeiten stossen, indem dann die Gattungsmerkmale von β zwei Mal ganz gleich entstanden sein müssten.

Nehmen wir aber aµ für die Stammart, so erhalten wir den Stammbaum

welcher ganz natürlich erscheint, da die unter einander so verschiedenen Gemmen recht gut aus 2 verschiedenen Medusenarten durch Rückbildung entstanden sein können.

3. Die Tentskel sind jedenfalls zuerst als einfache Erhebungen des Ektoderms entstanden um äussere Einflüsse leichter wahrnehmbar zu machen. An diesen Erhebungen betheiligte sich bei ihrer stärkeren Streckung später auch das Entoderm und Mesoderm und so entstand die Tentakelform, wie wir sie bei den meisten heutigen Hydroiden sehen Erst bei den grösseren Formen bildete sich eine Höhlung aus, da ohne dieselbe die Ernährungsverhältnisse der Enden sehr langer Tentakel zu ungünstig wurden.

3. Für das über die ganze Oberflüche zerstreute Auftreten der Tentakel bei der Urform der Hydroiden spricht erstens der Umstand, dass diese Stellung die indifferenteste ist, von der man alle übrigen ableiten kann, zweitens die Häufigkeit dieser Stellung bei weniger differenzirten Species.

4. Dieses kann man z. B. bei Hydra noch jetzt sehr gut beobachten, bei den meisten übrigen Hydroiden ist es wegen des Chitinskelettes unmöglich geworden.

5. Das Flottiren im Wasser wird bei den im Meere wohnenden Formen seir leicht vorkommen können.

6. Der Sprung zwischen einem Hydroiden und einer Meduse ist durchaus nicht so gross, als man vielleicht beim ersten Anblick denkt. Man mache nur z. B durch eine Tubularia einen Längsschnitt und vergleiche ihn mit einem Radialschnitt durch eine Meduse, so wird man schen, wie leicht sich beide Formen auf einander zurückführen lassen.

7. Diese können leicht eintreten, wenn die in der Rede stehende Hydroidenform an eine Stelle des Strandes kommt, wo durch Strömungen die sich ablösenden Medusen alle nach dem offenen Maer getrieben werden, ehe sie noch ihre Geschlechtsverrichtungen vollenden können.

Erklärung zu Tafel XXIII.

Fig. 4-3. Veretillum cynomorium. Entwicklung der Eier.

Fig. 4—5. Saccanthus purpureus. 4. Querschnift eines Septum, 5. Seitenmsicht eines solchen. — Von den Buchstaben bedeutet *m* Muskelschicht, A bydise Schicht, *e* Entoderm, *o* Ei, *n* Nesselzellen.

Fig. 6—7. Coryne fruticosa. 6 Schnitt durch eine junge und durch eine reife Knospe, etwas schematisch. 7. Ein Stückchen der Körperwand stärker vergrösseri.

Fig. 8-80. Schematische Umrisse, welche die Entwicklung der Hauptformen der Hydroiden darstellen sollen.

Die erste Entwickelung des Geryonideneies.

Von

Hermann Fol, Dr. med.

aus Genf.

Hierzu Tafel XXIV, XXV.

Schon seit längerer Zeit lenkte ich meine Aufmerksamkeit auf die Entwickelung der Coelenteraten, namentlich auf die Entstehungsweise des coelenterischen Apparates. Zwar deuten die meisten früheren Beobachtungen auf eine endogene Bildung der verdauenden Höhle hin; eine Einstülpung an der primitiven Anlage wurde nur ausnahmsweise beobachtet.

Allein es liegen keine genauen, an einem günstigen Objecte gemachten Untersuchungen vor ¹).

Um so willkommener war es mir, als sich im Frühjahr 1871 eine solche Gelegenheit bot. Im Monat Mai erschienen im Hafen von Messina grosse Schwärme der schönen Geryonia fungiformis (Fig. 1 S. 472). Während drei Wochen fanden sie sich an gewissen Tagen ausserordentlich häufig, so dass ich die Entwickelung zu wiederholten Malen verfolgen konnte.

Eine Beschreibung dieser Species brauche ich um so weniger zu machen, als sie im HARCKEL'schen Systeme ganz deutlich beschrieben ist²). Ueber die Gestalt der reifen Geschlechtsorgane wird die Fig. 1, Seite 472, Aufschluss geben. Ein Zungenkegel fehlt vollkommen.

In den Schwärmen waren Exemplare von allen Grössen durcheinander gemischt, von den jüngsten an, die noch ihre primitiven Tentakeln besassen, bis zu den Erwachsenen, mit 3 bis $3\frac{1}{2}$ Zoll Schirmdurchmesser. Die meisten Exemplare, deren Schirm mehr als $1\frac{1}{2}$ Zoll

METCHNIKOFF hat zwar im Jahre 1870 eine kurze Notiz von der Entwickelung der Carmarina veröffentlicht (Bullet. Acad. St. Pétersbourg); allein es geben diese Beobachtungen keinen bestimmten Aufschluss über die interessante Frage von der Bildungsweise und den Schicksalen des Ento- und Ectoderms.

²⁾ Beiträge zur Naturgesch. der Hydromedusen. 1865 p. 81. Bd. VII. 4.

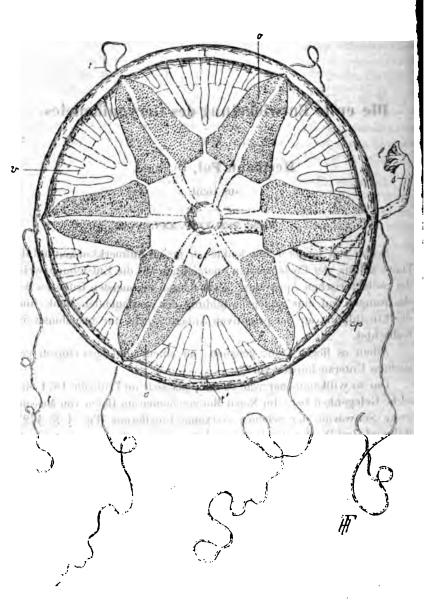


Fig.1.

Geryonia fungiformia — Erwachsenes weibliches Exemplar in natürlicher Grösse, von oben gesehen — o Ovarien — t die definitiven Fangarme — t' die primitiven Fangarme — cf Centrifugal-Kanäle — cp Centripetal-Kanäle — v Segel s Magen — t Mundlippen.

archmesser hatte, schienen geschlechtsreif zu sein. Mehr als eine the hindurch hielt ich beständig fünfzig solcher anscheinend reifer widuen in meinen Aquarien, ohne auch nur ein Ei erhalten zu kön-Eines Morgens gegen 9 Uhr fing ein Männchen an, unter meinen a seinen Samen zu entleeren, und warf ihn auf einmal aus, so dass unatt-weissen undurchsichtigen Hoden, binnen ein paar Minuten, I leer und durchsichtig wurden. Es genügte der Samen dieses einm Individuums um das Wasser des 20 Liter haltenden Aquariums **sändig milchig trübe zu machen, so dass eine, ein Zoll von der** wandung schwebende Meduse, kaum mehr sichtbar war. Hierauf n die Weibchen an ihre Eier zu werfen, die anderen Männchen entten auch ihren Samen, so dass von den 20 im Glase schwimmenden mplaren, nur zwei ganz junge ihre Geschlechtsproducte behielten. rgoss nun etwas von diesem trüben Wasser in ein anderes Aquarium, **cine Menge** Geryonien herumschwammen, und sofort fand auch st eine allgemeine Entleerung der Geschlechtsdrüsen statt. Später be ich dies Experiment öfters wiederholt. In reinem Seewasser kann ein Thier oft mehrere Tage hindurch mit ganz reifen und lockeren **schlechtsproducten** behalten, ohne dass es dieselben auch nur theilfee ausstösst, setzt man aber etwas Wasser hinzu, welches schon le Geschlechtsstoffe enthält, so entleert das Thier sofort den ganzen mit seiner Drüsen.

Die Bildung und Entwickelung des Eies wollen wir, der Klarheit gen, in mehrere Perioden und Stadien eintheilen.

I. Periode.

Das unbefruchtete Ei und die Befruchtung.

Die jungen in den Ovarien befindlichen Eier hat schon HARCKEL, ler nur nach conservirten Objecten, kurz beschrieben ¹}. Die jüngsten r bestehen aus einem äusserst feinkörnigen Protoplasma mit einem bältnissmässig sehr grossen Keimbläschen. Das Keimbläschen entt einen Keimfleck, welcher wiederum ein Bläschen darstellt. Die inde dieses inneren Bläschens bestehen aus stark leichtbrechendem koplasma. Das innere ist von einer grossen Vacuole eingenommen. ten sicht man, statt einer grossen Vacuole, deren mehrere von kleine-Dimensionen. Das Keimbläschen und die Vacuolen des Keimfleckes halten einen wenig lichtbrechenden Stoff. Die reiferen Eier zeigen ein, Verhältniss zum Keimbläschen viel grösseres Protoplasma, dessen in-

⁴⁾ HAECKEL I. C. p. 41 Fig. 86.

nerste Theile sich bei vollständiger Reife in lauter Vacuolen u oder vielmehr aufblähen; etwa wie eine Seifenlösung, in w mit einem Rohre bläst. Durch den Zusatz von Ragentien trül Inhalt dieser Blasen nicht, die Blasenwandungen dagegen ersc ein Netz von demselben körnigen Protoplasma, welches früher Ei zusammengesetzt hatte. Ganz ähnliche Verhältnisse habe bei Röhrenquallen beobachtet.

Die Spermatozoen zeigen die gewöhnliche Gestalt und be einem 5^{μ} langen und $3,3^{\mu}$ breiten Kopf und einem se Schwanze.

Die Befruchtung selbst zu beobachten gelang mir nicht, « legten Eier schon befruchtet waren und künstliche Befrucht zum Ziele führte.

Das frisch gelegte, befruchtete Ei (Taf. XXIV Fig. 4) b ovale Gestalt und als Durchmesser etwa 0,33 Mm./0,23 bald meh Es besteht aus Kern oder Keimbläsche bald mehr rundlich. plasma, Eihaut und Schleimhülle (f). Der Kern (n) ist regelmät und liegt nahe am spitzen Ende des Eies. Er sieht wie ein aus, indem seine Substanz weniger lichtbrechend ist als das u Protoplasma und flüssig zu sein scheint. Eigene Wandung Vacuole lassen sich am frischen Ei nicht unterscheiden; es solche bei Essigsäurezusatz, obwohl wenig deutlich, hervor. D leninhalt bleibt dabei ungetrübt und farblos. Der Durchme ses Keimbläschens beträgt 0,02 Mm./0,027, so dass man it nicht mit dem Keimbläschen des unbefruchteten Eies identifici Es ware interessant zu wissen, ob der Kern des befruchteten Kerne oder vom Kernkörperchen des unbefruchteten abstammt diese Gebilde bei der Befruchtung verschwinden, um einer Ne Platz zu machen.

Das Protoplasma, das wir auch Bildungsdotter nennen kör steht aus zweien schon am lebendigen Ei unterscheidbaren, c schen Schichten. Die äussere oder Rindenschicht (b) ist gr und dichter als die hellere innere Substanz (a). Da diese 1 Goelenteraten allgemein verbreitet zu sein scheint, so wollen v Namen einführen. Die Rindensubstanz nennen wir Ectoplasm nere Endoplasma. Das Ectoplasma besteht, wie gesagt aus eine Masse, welche bei Essigsäurezusatz braun und trübe wird. D plasma dagegen ist eine helle aus lauter Bläschen zusamme Masse; die Essigsäure bringt mehr die Bläschenwandungen c schensubstanzen zwischen den Vacuolen zur Ansicht, welch bläuliches, feinkörniges Protoplasmanetz erscheinen. An der 1 t die Bläschen klein, das Protoplasmanetz dagegen dichter mit dickeBalken. In der Mitte sind die Bläschen sehr gross und das Protoma äusserst spärlich. Je näher der Rinde also, desto dichter das
bplasma. Beide Substanzen sind somit nicht ganz scharf abgesetzt:
sohärfer erscheint diese Grenze bei Rippenquallen. Das Keimbläs(n) liegt an der Grenze beider Substanzen, in einen sternförmigen
impen dichten Protoplasmas eingebettet.

Die Eihaut (Taf. XXIV Fig. 1 c) ist äusserst dünn, etwa $1,4^{\mu}$ dick. **sturios und durchsichtig.** Dem Keimbläschen gegenüber bildet diese **ibran einen Faltenstern** (f). Gegen die Peripherie des Sternes werden **Falten immer niedriger und glätten sich bald aus.** Eine Oetfnung ist **befruchteten** Ei hier nicht zu entdecken.

Die Schleimhülle (Taf. XXIV Fig. 4 d) ist unregelmässig, durch **ittlich etwa 0,03 Mm.** dick. In ihrstecken (beim gelegten Ei) eine An- **Spermatozoen**, welche bald sterben und sich nach und nach zersetzen. **dicksten ist die Hülle in der Nähe des Keimbläschens, und an dieser le trifft man auch die meisten Spermatozoen (Taf. XXIV Fig. 1 sp). Ver-Mich entspricht der Faltenstern der Stelle wo die Befruchtung stattfand. ; befindet sich noch in der Hülle fast constant ein Korn oder Richpkörperchen von 0,045 Mm./0,02 Grösse. Ein ähnliches Körperchen, hes mit dem Befruchtungsacte in näherer Beziehung zu stehen fat, habe ich auch bei anderen Coelenteraten beobachtet.**

II. Periode.

Die Furchung bis zur Maulbeerform.

Des Hauptinteresse dieses Zeitabschnittes liegt in den Molecularbeingen, durch welche die Furchungen zu Stande kommen. Hierbei i man die bereits geschilderte Zusammensetzung des ungefurchten itets im Auge behalten.

I. Furchung oder die Zweitheilung.

Etwa eine Stunde näch seiner Ausstossung, treten die ersten Veringen im Ei auf. Zunächst wird der Eikern oder das Keimbläsheller, verschwommener; seine Gestalt wird unregelmässig und is sich vielfach. Nach einigen Secunden verschwindet dieses Gegänzlich vor dem bewaffneten Auge. Setzen wir aber gerade in m Augenblicke etwas Essigsäure hinzu, so kommt der Rest, gleichnur eine Andeutung des früheren Kernes wieder zum Vorschein XXIV Fig. 2 n). Auf beiden Seiten dieser Kernüberbleibsel zeigen sich

ł

zwei Protoplasmaanhäufungen, deren dicht angesammelten zwei regelmässige sternförmige Figuren darstellen (Taf. X 2h). Die Strahlen dieser Sterne werden durch die in geraden L einander gereihten Körnchen gebildet. Mehrere solche Linie von einem Stern- oder Anziehungscentrum in einem Bogen zu indem sie die Reste des Keimbläschens umfassen. Das gans äusserst klar und deutlich und erinnert lebhaft an die Art u wie ausgestreuter Eisenstaub sich um die beiden Pole eines anordnet. An den Rändern gehen die Strahlen allmälig einerse dünnere Protoplasmanetz des Endoplasmas, andererseits in d Ectoplasma über.

Hätten wir mit dem Zusatz des Reagens noch einige Secu wartot, so hätten wir vom Keimbläschen keine Spur mehr at (wie auf der Taf. XXIV Fig. 44, hh). Die Sterne sind dann sch auseinander gerückt, zeigen aber immer noch die gleiche Besch Sie sind auch ohne Essigaäurezusatz, jedoch sehr undeutlich, Jetzt fängt die erste Furchung oder Zellentheilung an.

Wie schon bemerkt, liegt das Keimbläsoben an der Perip Eies auf der Grenze zwischen Rinden- und Mark-Substanz. sich nun an der Oberfläche eine Rinne, genau oberhalb der S der Kern lag und senkrecht auf eine Linie, die wir uns du Sterne geführt denken können. Indem sich die Linie vertieft, i die beiden Sterne von einander. Zugleich buchtet sich die zar ein und kleidet die Rinne aus; an den Rändern der Rinne ab dieselbe eine Anzahl Falten (vergl. Taf. XXIV Fig. 3 und 4 f.), wel recht von der Rinne entspringen, und sich unweit von derselb allmälig ausgleichen. Indem sich die Rinne vertieft, verlänge auch immer mehr, und umkreist schliesslich das Ei. Dabei pr die Falten der Eihaut immer mehr aus; bald aber hört die I an der Abschnürung Theil zu nehmen, und indem sich die erste vollendet, kehrt die Eihaut wieder zu ihrem früheren Zustand und spannt sich ununterbrochen von einer Furchungskugel zu die Furche überbrückend.

Durch die Abschnurung sind die Anziehungscentren im von einander entfernt worden, und jetzt erscheinen in densel dann zwei, dann drei bis acht und zehn kleine Vacuolen. Die len wachsen mit der Zeit, treten zu mehreren zusammen und w zen zu einer grossen Vacuole, welche sich abrundet, und hie dasselbe Bild darbietet, wie das ungetheilte Keimbläschen. dieser neuen Kerne ist dieselbe, wie die des ersteren, also an d zwischen Endo- und Ectoplasma. Sie liegen nicht in der g hichen Entfernung von einander, sondern auf einer Seite der Anlage, so dass bei einer Ansicht von oben (Taf. XXIV Fig. 3 n n) man leicht verleitet werden könnte zu glauben, dass sie in der Mitte jeder Furchungskugel liegen. Eine Profilansicht dagegen belehrt uns bald eines Besseren.

Die Furchungskugeln treten hierauf wieder näher aneinander und flachen sich gegenseitig ab, so dass das ganze Ei fast wieder die frühere ovale Gestalt annimmt (Taf. XXIV Fig. 3). Die Trennungsfläche nach der Abflachung ist am frischen Ei durch eine Menge stark umgekehrt lichtbrechender, linsenförmiger Vacuolen bezeichnet, die alle in einer Ebene liegen (Taf. XXIV Fig. 3 gg). Diese Vorgänge folgen so schnell aufeinander, dass das Ei in amoeborder Bewegung begriffen zu sein scheint, und es unmöglich ist, mittelst der Camera seine Umrisse zu entwerfen.

Wichtig ist es zu bemerken, dass während der Furchung die Rindensubstanz im Boden der Furchungsrinne immer dünner geworden ist, bis sie schliesslich an dieser Stelle ganz verschwindet und die beiden Furchungskugeln nur noch durch innere Substanz zusammenhängen. Ist die Furchung einmal vollendet, so können wir durch Essigsäure uns leicht davon überzeugen, dass die Rindenschicht an der Berührungsfläche beider Kugeln vollständig fehlt (Taf. XXIV Fig. 2), dass also die Marksubstanz beider Kugeln sich unmittelbar berühren. In der Nähe jener Berührungsfläche wird das Ectoplasma immer dünner. Die Rindenschicht nimmt somit die ganze Oberfläche des Eies ein, aber nur $\frac{5}{16}$ der Oberfläche jeder Furchungskugel.

II., III., IV. und V. Furchung oder die Theilung in 4, 8, 46, 32 Zellen.

Nach einer Zeit der Ruhe fängt die Theilung von Neuem an. Es zerfällt die Anlage zuerst in 4 Furchungskugeln (2. Furchung), welche alle in einer Ebene liegen (Taf. XXIV Fig. 3). Aus diesen entstehen durch eine aequatoriale Theilung 8 Kugeln (3. Furchung), welche so angeordnet sind, dass von allen Seiten betrachtet, die Kugeln ein Viereck zu bilden scheinen.

Die nächste Theilung erfolgt nach zwei Ebenen, die einen Winkel von 15° mit der Aequatorialebene bilden ; es ist die 4. Furchung (Taf. XXIV Fig. 4) nach welcher die Anlage aus 16 Zellen besteht (Taf. XXIV Fig. 5). Diese zerfallen endlich in 32 (Taf. XXIV Fig. 6) und so ist das Ende der 2. Periode erreicht. Bei jeder Furchung sind stets die Theilungsproducte untereinander ganz gleich, d. h. sie sind das Spiegelbild von einander, so dass in allen Stadien das Ei aus gleich grossen Kugeln zusammengesetzt erscheint. Bei jeder Theilung wiederholen sich ganz dieselben Vorgänge, die wir bei der ersten geschildert haben, und die wir folgendermassen zusammenfassen können. 1. Verschwinden des Keimbläschens und Erscheinung zweier Anziehungs-Mittelpuncte.

2. Entstehung der Furchungsrinne mit Faltenbildung der Eibaut (Tafel XXIV Fig. 3 und 4 f).

3. Die Abschnürung vollendet sich, die Eihaut kehrt zur früheren Lage zurück, die Anziehungs-Mittelpuncte rücken immer weiter auseinander.

4. Erscheinung der neuen Kerne, gegenseitige Abflachung der Theilungsproducte.

5. Endlich die Theilungsproducte, d. h. die neuentstandenen Zellen, treten in immer nähere Berührung miteinander und die immer grössere Trennungsfläche wird durch linsenförmige Vacuolen bezeichnet (Taf. XXIV Fig. 4, 5 und 6 qq).

Die Gestaltsveränderungen der Kugeln während der Theilung folgen noch immer rasch aufeinander; nach jeder Theilung aber bleibt das Ei etwa 45 Minuten in vollkommener Ruhe stehen. Die 5. Furchung tritt 6 bis 7 Stunden nach der Eierlegung ein.

Bei jeder Theilung verhält sich die Rindensubstanz ganz wie bei der ersten, so dass sie nur denjenigen Theil jeder Furchungskugel einnimmt, welcher nach Aussen sieht (Taf. XXIV Fig. 2 und 4 bb). Nach der 4. und 5. Furchung sieht man eine geräumige Baersche, oder Furchungshöhle (Taf. XXIV Fig. 5 und 6 cs). Aus dem schon Gesagten geh klar hervor, dass die gegen diese llöhle gewandten Theile der Furchungskugeln nur aus Endoplasma bestehen.

478

III. Periode.

Die primitive Anlage zerfällt in Ento- und Ectoderm.

VI. Furchung oder die Theilung in 64 Zellen.

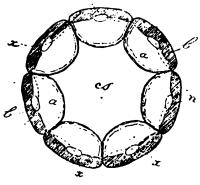


Fig. 2.

Schems der 6. Furchung - Das aus 32 Kugeln zusammengesetzte Ei, 450mal vergrössert. - a Endoplasma - b Ectoplasma — n die Kerne — cs die Furchungshöhle — xx punctirte Linien, während der 6. Furchung andeuten.

Wiederum bereitet sich das Ei zu einer neuen Theilung; die Kerne verschwinden, die Anziehungs-Mittelpuncte rücken auseinander und jede Zelle spaltet sich. Allein diesmal sind die Theilungsproducte nicht mehr untereinander gleich. Es zerfällt jede Zelle durch schiefe Theilung in eine grosse und eine kleine linsenförmige Zelle (Fig. 2 und Taf. XXIV Fig. 9 bis 12, g und r). Jede der beiden nimmt ander Peripherie des Eies den gleichen Flächenraum ein.

Die grossen Zellen aber erstrecken sich tief in die Baersche llöhle hinein (Taf. XXIV Fig. 8 r), während die kleineren linsenförmigen nur an der welche die Richtung der Theilungsflächen Oberfläche bleiben (Taf. XXIV Fig. 8, 9). Letztere sind blos von dem Ecto-

plasma gebildet, während erstere aus einem inneren endoplasmatischen Theile und einer Aussenschicht von Rindensubstanz bestehen (Taf. XXIV Fig. 8 r, a und b). Es ist aber fortan die Eianlage aus 64 Zellen zusammengesetzt, deren 32 grosse (Taf. XXIV Fig. 9 r r) und 32 kleinere, weniger tiefe (Taf. XXIV Fig. 9 qq). Die grossen Zellen sind denen nach der 5. Furchung sehr ähnlich, nur erscheinen sie cylindrisch mit schmaler Basis (Taf. XXIV Fig. 10), statt conisch mit breiter, nach aussen gekehrter Basis (Taf. XXIV Fig. 14). Wie bei jenen liegt der Kern zwischen Endo- und Ectoplasma (Taf. XXIV Fig. 10 n).

Die kleinen Zellen dagegen sind, wie bereits gesagt, linsenförmig flach, und ihr Kern ist mitten in die, sie zusammensetzende Rindensübstanz eingebettet (Taf. XXIV Fig. 8, 9). Selten zeigt sich an dem innersten Theile einer solchen Zelle etwas Endoplasma. Die Anordnung beider Arten von Zellen ist keine sehr regelmässige, und es war mir nicht möglich, darin eine Gesetzmässigkeit zu entdecken. Oft liegen 2, 3 kleine Zellen beisammen, von grösseren Zellen umgeben, oder es sind die grossen Zellen

Hermann Fol,

gruppenweise zusammengestellt und von kleineren Zellen umlagert. Es folgt hieraus, dass man bei optischen Querschnitten fast niemals die gleiche Anzahl von beiderlei Gebilden zur Ansicht bekommt, und es ist eine sorgfältige Nachzählung aller Zellen, welche die Anlage zusammensetzen, nothwendig, um zur Gewissheit zu gelangen, dass wirklich 3? jeder Art vorhanden sind. (Vergl. Taf. XXIV Fig. 8 und 9 rr und qq.

VII. Furchung oder die Theilung in 96 Zellen.

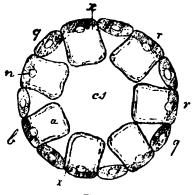


Fig. 8.

Schematische Darstellung der 7. Furchung; die Anlage mit 64 Zellen, 450mal vergrössert. a Endoplasma - b Ectoplasma — n die Kerne — gg kleine Zellen - rr grosse, aus beiden Substanzen bestebendo Zellen — 22 lungsflächen der 7. Furchung andeuten.

Diese Furchung betrifft nur die 32 grösseren Zellen. Durch die bekannten Vorgänge zerfällt jede in 2 ungleichartige Producte. Die Anziehungscentren rücken nämlich nicht mehr in tangentialer, sondern is radialer Richtung auseinander, die Theilung erfolgt der Quere nach (Fig. 3). Es entstehen hierdurch 32 linsenformige, aus Rindensubstanz bestehende, Oberflächenzellen, welche den früher abgesetzten vollkommen gleichen, und 32 innere, grössere, runde, aus Endoplasma zusammen-Die ganze Anlage stellt gesetzte. also zwei ineinander, geschachtelte Kugeln dar; die äussere Hohlkugel punctirte besteht aus 64 linsenförmigen Zellen. Linien, welche die Richtung der Thei- und enthält blos Ectoplasma und des ganze frühere Ectoplasma. Die in-

nere Hohlkugel zählt 32 kugelige Elemente, die sich gegenseitig etwas abplatten und das ganze Endoplasma aufgenommen haben. Die äussere Kugel stellt das Ectoderm dar, die innere Kugel ist die Anlage des Entoderms.

Dieses etwas verwickelte Verbältniss habe ich durch die beiden schematischen Figuren 2 und 3 zu veranschaulichen gesucht.

Auf Taf. XXIV Fig. 8 berührten sich nicht alle grösseron Zellen an ihrem innersten Theile. Man könnte also glauben, dass nach der Theilung die inneren Zellen durch eine Wanderung sich zu einer Hohlkugel zusammenfügen. Dem ist aber nicht so.

Beobachten wir genau die Vorgänge der Theilung, so finden wir, dass sich während der Theilung jede grosse Zelle bedeutend verlängert, so dass die inneren Zellen bereits zusammengefügt und gegenseitig abgeplattet erscheinen, ehe sie noch von der äusseren Zellenschicht ganz losgetrennt sind. Habe ich an sich so unbedeutende Vorgänge so bis in's geringste Detail geschildert, so geschah es nur deshalb, weil viel von Zellenwanderungen in der Entwickelungsgeschichte noch heutigen Tages geredet wird. Solche Wanderungen finden meiner Erfahrung nach niemals statt. Es wäre auch rein unbegreiflich, dass feste, bleibende, gesetzmässig gebaute Organe aus Zellen entstünden, die sich nach einer freien Wanderung beliebig zusammengestellt hätten¹).

Wenn in der zweiten Periode die Theilungsvorgänge rasch aufeinanderfolgende Gestaltsveränderungen des Eies bedingten, so ist das in der dritten Periode noch weit mehr der Fall. Das Bild verwickelt sich ausserdem noch dadurch, dass sich die Zellen nicht alle zu gleicher Zeit theilen. Es buchtet sich oft die Eioberfläche an dieser oder jener Stelle cin, so dass man oft glauben möchte, man hätte es mit einer anfangenden Einstülpung zu thun (Taf. XXIV Fig. 7). Ein Tropfen Essigsäure aber hilft einem schr leicht aus allen diesen Schwierigkeiten heraus²).

Namentlich nach der letztbesprochenen Theilung verändert sich die Gestalt mannigfach. Es bleiben noch längere Zeit einzelne Zellen des Entoderms mit den entsprechenden Zellen des Ectoderms in Verbindung, und einzelne Objecte könnten einen leicht veranlassen, hier die Spuren einer stattgehabten Einstülpung anzunehmen. Ich war selbst nach einer ersten oberflächlichen Beobachtung zu dieser irrigen Ansicht gekommen.

Während dieser letzten Vorgänge ist die Dotterbaut verschwunden und keine Spur mehr davon zu entdecken, wenn nicht etwa die Körnchen, die das Ei umgeben, durch einen Zerfall dieser Haut entstanden sind.

⁴⁾ Bei Rippenquallen z. B. wandern die Ectodermzellen, welche zur Biklung von Bindegewebe und Muskeln bestimmt sind, nicht. Sie werden regelmässig von der Ectodermschicht durch ihr eigenes, gesetzmässig abgegebenes, Secret losgetrennt. So kommt es, dass sich die Muskelfasern so regelmässig und symmetrisch entwickeln, dass sich noch an einem jungen, aber ausgebildeten Exemplare, keine Muskelfaser findet, die nicht an den drei übrigen Quadranten ein ganz genaues Abbild hätte.

²⁾ Man thut am besten, die in dieser Periode befindlichen Eier in hohlgeschliffene Objectgläser mit etwas Seewasser und Essigsäure aufzuhewahren, wobei das Deckgläschen mit Oel umrandet wird. Da alle Eier desselben Wurfes sich ganz genau gleichzeitig entwickeln, so braucht man nur eine Stunde lang alle 3 bis 5 Minuten ein solches Präparat zu machen, um eine übersichtliche und vollständige Reibe der hier besprochenen Vorgänge zu erhalten. Solche Präparate halten sich ganz gut 3 bis 3 Tage und werden nach einigen Stunden sogar noch heller und deutlicher als beim Einlegen.

IV. Periode.

Die flimmernde Larve.

I. Stadium.

Entstehung der Schirmgallerte. 2. Tag.

Durch neue und wiederholte Halbierungen ihrer Zellen, vergrössert sich die Ectodermkugel ziemlich rasch, während die innere Kugel oder Entoderm im Wachsthum etwas zurückbleibt, und sich zugleich linsenförmig abflacht (Taf. XXIV Fig. 45, Taf. XXV Fig. 46 und 47). Es bleibt diese Linse durch die eine flache Seite in naher Berührung mit einer Stelle des Ectoderms (Taf. XXV Fig. 17k). Hierdurch und durch die schnellere Vergrösserung des Ectoderms entsteht zwischen beiden Kugeln ein bedeutender Zwischenraum. Dieser ist mit einer vollkommen klaren durchsichtigen Gallerte erfüllt, welche ein System äusserst feiner zarter Fasern oder Schlieren enthält (Taf. XXV Fig. 46 und 47 y). Diese Fasern erstrecken sich geradlinig von den Zellen des Entoderms zu den entsprechenden Zellen des Ectoderms in fächerförmiger Anordnung. Sonst zeigt sich die Gallerte vollkommen structurlos und enthält keine Zellenelemente, weder jetzt noch später. Schwer wäre es, zu bestimmen, ob die Absonderung dieser Gallerte von Seiten der einen oder der anderen Zellenkugel oder durch beide zugleich stattfindet. Wahrscheinlich hilft diese Gallerte mit, durch ihre Absonderung auf der einen Seite der inneren Kugel, dieser Kugel ihre einseitige Lage und linsenförmige Gestalt zu geben. Selbstverständlich ist die Gallerte spärlich oder gar nicht an der Stelle vorhanden, wo beide Kugeln einander anliegen.

Hier sehen wir also bestimmte Zellentheilungen und Absonderungen als Gestaltungsmomente der Embryonalanlage auftreten. Von einer activen Wanderung kann sicher nicht die Rede sein.

Wie gesagt, berühren sich Ento- und Ectoderm an einer Stelle beinahe, indem sich die Mitte der einen convexen Fläche der inneren Zellenlinse der weit weniger gekrümmten äusseren Zellenkugel immer mehr nähert, bis im Mittelpuncte eine Berührung und Verwachsung stattfindet. Diese Stelle nennen wir fortan den untern oder oralen Pol, und es ist hierdurch schon eine vollständige Orientirung gegeben. Endlich sieht man auf den Ectoderm nach und nach einige Wimpern hervorsprossen.

II. Stadium.

Die orale Ectodermscheibe. Bildung des Mundes.

3. bis 5. Tag.

Die Eier, welche zum Boden des Gefässes gefallen sind, erheben sich langsam und schweben ohne bedeutendere Veränderung ihrer Lage im Wasser. Der Grund hiervon liegt in der Ausbildung dünner, langer und sehr spärlicher Wimpern, welche durch ein langsames Schlagen die Larve schwebend, aber nicht in schwimmender Bewegung zu erhalten vermögen.

Die Zellenvermehrung an der inneren oder aboralen Wand des linsenförmigen Entoderms geht schneller vor sich, als an der oralen oder äusseren Wand. Durch diesen Umstand, und durch den Druck den die wachsende Gallerte ausübt, wird die aborale Wand zunächst abgeflacht und dann in die orale Hälfte der Linse hinein gestülpt, so dass das ganze Organ Uhrglasform annimmt und der frühere Hohlraum des Entoderms auf ein Minimum reducirt wird (Taf. XXV Fig. 47 und 18 En).

Gleichzeitig mit diesen Veränderungen findet eine andere am oralen Pole statt. Es vermehren sich dort die Zellen des Ectoderms sehr rasch und zerfallen in eine Schicht kleiner Zellen von 0,04 Mm. Durchmesser während die übrigen Ectodermzellen einen Durchmesser von 0,4 Mm. besitzen. Es bildet somit dieser Abschnitt eine Art Scheibe von 0,3 Mm. Durchmesser, welche am Rande in das Ectoderm übergeht (Taf. XXV Fig. 18 kk). Am zahlreichsten und kleinsten sind die Zellen im Mittelpuncte der Scheibe, wo diese mit der Mitte der oralen Wand des Entoderms verwächst. Später erhebt sich dieser Mittelpunct nabelförmig und die Verwachsungsstelle bricht durch. Die hierdurch entstandene Oeffnung ist der Mund, und der Binnenraum des Entoderms oder Baersche Höhle, ist zur Magenhöhle geworden.¹)

Gleichzeitig hat sich der Rand der oralen Scheibe immer deutlicher vom übrigen Ectoderm abgehoben und wächst zu einem förmlichen Ringswulste an. Wie wir später sehen werden ist dieser Wulst die Anlage des Schirmrandes nebst Segel und Fangarmen. Die Ectodermscheibe liefert das spätere Epithelium für die Glockenhöhle und die Aussenwand des Magens.

⁴⁾ Die Annahme HARCKEL'S (l. c. p. 68, 107) dass diese Höhle zur Schirmhöhle sich umwaudele, ist somit vollkommen irrthümlich.

III. Stadium.

Entstehung der Fangarme, des Segels und der Schirmhöhle, vom 6. Tage an.

Seit der Eröffnung des Mundes (Taf. XXV Fig. 19 l) hat die Magenhöhle bedeutend an llöhe zugenommen, und zeigt eine auf dem Querschnitt mehr quadratische Gestalt (Taf. XXV Fig. 21 s).

Der untere äussere Rand der Magenwand reicht bis unmittelbar an den Randwulst. Uebrigens sind diese Theile schon ziemlich beweglich geworden, sie können sich bedeutend ausdehnen oder zusammenziehen und zeigen dann verschiedene Anordnungen und Gestalten. Gewöhnlich erscheint der Magen von oben gesehen deutlich sechseckig.

An der Aussenseite des Randwulstes zeigten sich einstweilen 6 kleine Zellenanbäufungen. Diese Haufen wachsen mehr und mehr in die Länge (Taf. XXV Fig. 191), während ihre Achse von einem Zellenstrang eingenommen wird (Taf. XXV Fig. 49 z), welcher aus jeder der 6 besprochenen Magenecken hervorgeht. Selbstverständlich sind diese Tentakelrudimente symmetrisch angeordnet, und befinden sich jedes unterhalb einer Ecke des sechsseitigen Magens. Diese primitiven Fangfäden verlängern sich nun, und zu gleicher Zeit entfernt sich die Basis eines jeden in radialer Richtung nach aussen von seiner Ursprungsstelle am Randwulste. Zwischen der Basis des Fangarmes und dem Randwulste, bleibt ein verdickter Zellenstrang des Ectoderms bestehen, und mehr in der Tiefe, ein Strang von Entodermzellen, welche die Verbindungzwischen der Tentakelachse und dem Magengewebe aufrecht erhalten (Taf. XXV Fig. 49). Später verschwindet diese Verbindung wenigstens scheinbar.

Ueberhaupt ist jener Ursprung des Achsenstranges der Fangarme aus dem primitiven Entoderm bei Geryonia weder leicht, noch gleich bei erster Besichtigung nachzuweisen. Um so deutlicher ist aber dieser Zusammenhang in der, den Geryoniden verwandten Familie der Aeginiden. Ich führe als Beispiel Aeginopsis bitentaculata an, deren Entwickelung ohne Mühe zu jeder Zeit verfolgt werden kann. Dass das Entoderm der hohlen oder der soliden Fangarme der Coelenteraten vom Magengewebe abstamme, ist, soviel ich weiss, von Niemandem in Zweifel gezogen worden, obwohl in dieser Beziehung positive Beobachtungen nur spärlich vorliegen. Fast gleich nach der Entstehung der Tentakel-Rudimente zeigen die Zellen an ihrer Spitze die Anlage zu Nesselorganen, welche sich bald zu wirklichen Nesselzellen gestalten (Taf. XXV Fig. 19 u). Die Spitze der Fangarme ist von einem Knopf von Nesselzellen gebildet. Ueber diesen hinaus ragt noch eine kleine dünne Spitze, oder Geissel, welche aus den beiden Zellenschichten des Fangarmes besteht (Taf. XXV Fig. 19, 23 j).

Zugleich mit der Ausbildung der Fangarme, gebt die Entwickelung des Segels vor sich. Als ein dünner Ringwulst erscheint dasselbe auf der Höhe und etwas nach der Innenseite des grossen Randwulstes, und breitet sich dann allmälig zu der bekannten Gestalt einer kreisförmigen Membran aus (Taf. XXV Fig. 20, 24 vv). Diese Duplicatur des Ectoderms enthält, von Anfang an, die bekannten ringförmigen Muskelfasern. Die radialen Muskeln sind erst etwas später sichtbar.

Zwischen den Fangfäden auf der Aussenseite des Randwulstes erscheinen dann 6 kleine Zellenhäufchen, die Anlage zu den spätern Fangarmen (Taf. XXV Fig. 25 t').

Es bleibt mir jetzt noch übrig, die Bildung der Schirmhöble zu verfolgen. Der Anfangs fast kugelige Schirm breitet sich mehr nach unten und aussen aus, und nimmt bald eine wirklich schirmförmige Gestalt an. Den Rand des Schirmes nimmt der Randwulst ein, welcher sich schnell ausdehnt und zugleich relativ verdünnt (Taf. XXV Fig. 21, 23 und 25 m). Der Magen tritt dabei verhältnissmässig immer mehr in die Höhe, so dass er in den Grund einer, anfangs seichten, trichterförmigen (Taf. XXV Fig. 22 c u), später tiefen, glockenförmigen (Taf. XXV Fig. 25 c u) Höhle zu liegen kommt. Letztere ist die wachsende Schirmhöhle. Ein Epithel kleidet ihre Wände aus, welches direct von der oralen Ectodermscheibe abstammit. Am Mundrande sieht man immer noch die Grenze zwischen Ento- und Ectoderm, welche ihrer verschiedenen Beschaffenheit wegen noch unterscheidbar sind. Später verschwindet dieser Unterschied; so dass die genau beobachtete Entwickelung allein den Beweis liefert, dass Ento- und Ectoderm wirklich am Mundrande selbst zusammenhängen. und dass die beiden embryonalen Kugeln wirklich die Bedeutung haben, die ich ihnen zuschrieb. Wie gesagt dehnt sich die orale Ectodermscheibe mit der Bildung der Schirmhöhle sehr rasch aus; es verliert dieser Epidermisabschnitt seine dichte Beschaffenheit und bekommt dasselbe Aussehen, wie das Ectoderm an der Aussenseite des Schirmes.

Jetzt sieht man zuweilen bei gewissen Bewegungen der Larve 6 hohle Kanäle, welche vom äusseren Rande des Magens gegen den Schirmrand hinziehen. Auch Muskelfasern lassen sich in der Wand der Schirmhöhle unterscheiden. Es sind diese Theile in ihrem jetzigen, fast ausgebildeten Zustande, nicht schwer zu erkennen, allein es wollte mir durchaus nicht gelingen, die Rudimente derselben in früheren Stadien zu unterscheiden.

Das Entoderm des Magens bedeckt sich mit Wimpern, welche den Mageninhalt in rotirende Bewegung setzen, und in den Zellen werden

Hermann Fol,

fettglänzende Kügelchen ausgeschieden, welche sich bei der Verdauum mit den eingenommenen Stoffen vermischen ¹).

Die junge Meduse schwimmt nun mit kräftigen Schirm- und Segecontractionen umher und vermag mit völlig ausgebildeten Fangfäde leicht ihre Beute zu erfassen und im ausgebildeten Magen zu verdauen. So sind wir demnach in der 5. und letzten Periode der Entwickelung angelangt, der Ausbildung der jungen zur fertigen, erwachsenen Meduse. Es ist aber dieser Abschnitt von HABCKEL in seiner ausgezeichneten Monographie der Geryoniden so genau geschildert und durch trefliche Bilder erläutert worden, dass ich auf diesen Gegenstand nicht zurückzukommen brauche.

Besultate und allgemeine Betrachtungen.

Es lassen sich nun die Resultate dieser Arbeit in Folgendem kurz zusammenfassen :

1) Das ungefurchte Ei besteht aus zwei Schichten: einem dichteren Ectoplasma und einem mehr wasserreichen Endoplasma.

2) Bei der Furchung verschwindet jedesmal das Keimbläschen und es erscheinen an seiner Stelle zwei Anziehungscentren im Protoplasma, in welchen später die neuen Kerne auftreten.

3) Nachdem die Anlage die Himbeergestalt angenommen hat, zerfällt dieselbe durch eine eigenthümliche Furchung in zwei ineinander geschachtelte Zellenkugeln, dem Ectoderm und Entoderm. Ersteres hesteht aus Ectoplasma, letzteres aus Endoplasma.

4) Die Schirmgallerte wird zwischen beiden Geweben abgesondert.

5) Das Ectoderm bedeckt sich für eine Zeit lang mit Wimpern; verdickt sich am oralen Pole, und aus dieser Verdickung geht das Ectoderm der Schirmhöhle, Schirmrand, Fangarme, Sinnesorgane und Segel hervor.

6) Das Entoderm liefert ausser dem eigentlichen Magen noch den gesammten coelenterischen Apparat und das Achsengewebe der soliden Fangarme.

7) Der Mund bricht an der Verwachsungsstelle beider Gewebe durch. Eine Bildung des Verdauungs-Apparates durch Einstülpung findet ganz bestimmt nicht statt.

486

Solche Körperchen in den Zellen der Magenwandung sind schon vielfach bei Coelentersten beobachtet worden. S. Gegenbaur, System der Medusen Z. f. w. Z. 1857 und H. Fol, Ein Beitrag zur Anatomie und Entw. der Rippenquallen, p. 5.

Hieran lassen sich folgende Betrachtungen knüpfen:

1) Eine ähnliche aber noch schärfere Zusammensetzung des ungefurchteten Eies wird auch bei Rippenquallen beobachtet ¹). Bei genauer Betrachtung ist auch hier ein Keimbläschen zwischen Ecto- und Endoplasma zu sehen. Ferner ist auch bei Oceania, Thaumantias, Lucernaria, etc. eine ähnliche, aber weniger ausgeprägte Structur zu beobachten.

2) Die Furchung mit jedesmaligem Verschwinden der Kerne, sowie die sternförmigen Figuren im Protoplasma, sind eine sehr verbreitete Erscheinung. Ich habe diese Theilungsvorgänge auch bei Rippenquallen beobachtet; ferner bei Doliolum unter den Chordaten, bei Cavolinia unter den Mollusken und bei Alciope unter den Würmern, und ich habe diese eben so genau und gewissenhaft verfolgt und sind diese Bilder so schön und deutlich, namentlich bei Geryonia und Cavolinia, dass diese Beobachtungen absolut keinen Zweifel zulassen. Ich will mich nicht in den Wortstreit einlassen ob solche Beobachtungen positiv oder negativ zu nennen seien; sie sind eben vollständig und erschöpfend.

Ich schliesse mich in Folge dessen ganz und gar der SACHS'schen Theorie der Furchung durch Anziehungs-Mittelpuncte an, nicht etwa aus theoretischen Gründen, sondern weil ich diese Attractionscentren gesehen habe.

3) Die Vorgänge der Furchung hatte ich schon mehrmals bei verschiedenen Goelenteraten verfolgt mit besonderer Berticksichtigung der Entstehung von Ento- und Ectoderm, allein es war mir bis jetzt niemals gelungen den Vorgang der Theilung selbst zu beobachten. Nachdem nämlich das Ei in eine Hohlkugel verwandelt worden war, wurde das Bild während dieser wichtigsten Theilung so verworren, dass es unmöglich war, zu bestimmen, ob eine Theilung, oder Wanderung, oder beide zugleich stattgefunden hätten. Nach und nach stellte sich wieder Ruhe ein, und die Anlage bestand nun aus zwei ineinander geschlossenen Zellenkugeln. Die Larve bedeckte sich mit Wimpern, nahm eine ovale Gestalt an, und schwamm lebhaft umher. Dieses habe ich bei Lucernaria²) und bei Oceania coronata (ALLMAN)³) auf Helgoland, bei

ba. VII. 4.

⁴⁾ Kowal. Entw. der Rippeng. --- H. Fol. 1. c. p. 4.

²⁾ Die Larven schwammen ein paar Tage umher und setzten sich dann an den Gräsern fest. Weiter habe ich sie nicht verfolgt.

⁸⁾ Die Abbildung die ALLMAN (a monograph of the gymnoblastic hydroyds, p. 28) von dieser Art giebt ist ganz kenntlich. Dieser Forscher hat aber die 4 Ausbuchtungen, welche die Schirmhöhle zwischen den Radiärcanälen nach oben bildet, für Höcker gehalten, welche dem Schirme äusserlich, an der Basis des conischen Fortsatzes aufsitzen sollten, und als solche abgebildet. Der conische Fortsatz ist auch bei frischen, wohlerhaltenen Individuen mehr entwickelt als auf der besprochenen Figur. Hält man einige dieser Thiere in einem Glase eine Zeit lang, so fressen

Thaumantias Mediterranea¹) (Formes) und bei Nausithoe albida²) in Messina constatirt.

Fast übereinstimmend sind noch ALLMAN'S³) Beobachtungen über Laomedea flexuosa und andere Gymnoblasten Hydroiden, und Kowa-LEWSKN'S⁴) Angaben über die Entwickelung der Campanularia aus Eucope. METSCHNIKOFF⁵) scheint auch diese Entstehungsweise der beiden Gewebe bei Cunina und Aeginopsis mediterranea beobachtet zu haben, seine Beschreibung ist aber, gerade über diesen Punct, nicht ausdrücklich.

F. E. SCHULZE⁶) lässt auch bei der Cordylophora lacustris die Kugeln des gefurchten Eies sich in zwei concentrischen Schichten anordnen.

KLEINENBERG⁷) endlich spricht bei Hydra von einer Differenzirung der Keimanlage in zwei Zellenschichten und hat ebensowenig wie Metschnikoff eine Entstehung dieser Blätter durch Einstülpung gesehen.

Ganz entgegengesetzt lauten dagegen KowALESWKY'S Beobachtungen über Pelagia und Actinia. Bei beiden soll das Entoderm durch Einstülpung entstehen. Die Entwickelung der Pelagia habe ich einmal, obwohl sehr lückenhaft, beobachtet. Ich kann nur so viel sagen, dass jene grossen Einstülpungen, welche die Anlage noch vor ihrem Austritt aus den Eihüllen zeigt, ganz unregelmässige und inconstante Faltungen sind, welche aus dem beträchtlichen Missverhältniss zwischen Larve und Eihüllen entstehen. Sie verschwinden auch vollständig, sobald die Larve aus ihrer Hülle getreten ist. Später habe ich eine kleine innere Blase beobachtet, welche mit dem Ectoderm an einem Pole zusammenhing. Dort war auch bereits die Mundöffnung durchgebrochen. Wie entsteht nun diese innere Blase? Die Frage verdient jedenfalls eine erneuerte Prüfung. Die Entwickelung der Actinien ist mir ganz unbekannt und die

sie sich jenen Fortsatz gegenseitig ab, und bleiben bei dieser Procedur natürlich verstümmelt. Ein solches verstümmeltes Exemplar scheint Allman abgebildet zu haben.

4) Die Larven setzten sich allmälig am Boden des Glases fest. Das Glas wurde nun bedeckt und als ich drei Wochen später nachsah fand sich überall eine Menge kleiner Hydroidpolypen mit glasiger Röhre an ihrer Basis.

2) Die Larven der Nausithoe schwimmen wochenlang umher ohne andere Veränderungen zu erleiden als die Bildungen von Nesselzellen in ihrem Ectoderm. Hierauf gingen mir stets alle zu Grunde.

8) I.c. p. 85.

4) Untersuchungen über die Entwickelung der Coelenteraten. Vorl. Mittheilg. in Göttinger Nachrichten.

5) In Bulletins Acad. St. Pétersbourg 4870. p. 98.

6) Ueber den Bau und die Entwickelung von Cordylophora lacustris. Leipzig 1871.

7) Hydra, eine anat. entwick. Untersuchung. Leipzig 1879.

Frage von der Entstehung der beiden Keimblätter ist leider von LACAZE DUTHIERS nicht einmal berührt worden.

Was nun die anderen Coelenteratengruppen betrifft, so sind hier positive Angaben noch spärlicher. Ueber Röhrenquallen besitzen wir nur die kurze aphoristische Notiz Kowalewsky's über die Entwickelung von Agalma rubrum, welche auf eine Spaltung der primitiven Zellenkugel in Ento- und Ectoderm hindeutet. Ferner HAECKEL's Beobachtungen, welcher zwei Formen der Entwickelung bei den Siphonophoren annimmt. Bei der einen Form (Physophora) zerfällt das ganze Ei in drei Zellschichten, einem Ectoderm, einem wirklichen äusseren Entoderm und einem inneren Entoderm der als Nahrungsdotter fungiren soll. Bei der zweiten Form (Crystallodes, Athorybia) findet diese Trennung erst viel später statt. Bei beiden Formen geht dieser Spaltung eine locale Spaltung am aboralen Pole voran und aus dem so gebildeten localen Ecto- und Entoderm gehen alle Haupttheile des späteren Thieres hervor; während die Hauptmasse des Eies in der Regel (1. Form) oder nur unter bestimmten Umständen (2. Form) zu einem Ernährungsthiere wird; wobei die 1. Schicht zum Ectoderm, die 2. zum Entoderm, die innerste zum Nahrungsdotter der Larve wird. Letztere zieht sich im obersten Theile der verdauenden Höhle zurück. Ueber die Art und Weise, wie diese Spaltungen zu Stande kommen, giebt HAECKEL keine Auskunft. Vergleicht man aber seine Schilderung von den »amoebenartigen Bewegungen« der Furchungskugeln am 1. und 2. Tage, mit den Furchungserscheinungen bei Gervonia, so wird es einem höchst wahrscheinlich vorkommen, dass HABCEREL statt amoebenartiger Bewegungen . weiter nichts vor sich hatte, als einen Furchungsprocess, den die richtige Anwendung von Reagentien ihm sofort klar gemacht hätte.

METSCHNIKOFF giebt an, das frische Ei der Siphonophoren sei zweischichtig, und unterscheidet wie HABCKEL 2 Typen, je nachdem die Spaltung zuerst nur an einer bestimmten Stelle oder auf der ganzen Oberfläche zugleich stattfindet. Ueber die Art und Weise dieser Spaltung, sowie über die späteren Schicksale der hierdurch entstandenen Blätter geht METSCHNIKOFF stillschweigend hinweg.

Die Rippenquallen endlich zeigen ebenfalls eine Bildung von zwei Keimblättern, deren Aeusseres die Epidermis und das Magengewebe abgiebt, während das innere die Wandungen des Trichters und der Canäle zu bilden scheint. Kowalewsky's Annahme, dass das äussere Blatt den Trichter und die Canäle bekleide, muss ich auf Grund neuerer Untersuchungen in Zweifel stellen.

Die Mehrzahl also der Beobachter lässt bei Coelenteraten die beiden Keimblätter durch Speltung statt einer Einstülpung hervorgehen. Der

Hermann Fol,

Gegenstand ist jedenfalls wichtig genug, um neuere Untersuchungen av verdienen, welche auch auf die Spongien ausgedehnt werden sollten.

Ich will mich aber nicht in allgemeine Betrachtungen über die Homologien in der Entwickelung der Coelenteraten und der höheren Thiere einlassen, zumal die thatsächliche Grundlage zu solchen Deductionen noch fehlt, und da wir ausserdem keinen allgemeinen Gesichtspunct gewonnen haben, von wo aus wir die Entwickelung von Eiern mit totaler und mit partieller Furchung untereinanber vergleichen könnten.

Erklärung der Tafeln.

Tafel XXIV.

- Fig. 1. Das reife und befruchtete Ei der Geryonia fungiformis mit Spermalozoen, welche in der Schleimbülle stecken. Lebendig abgebildet. Vergrösserung 450.
- Fig. 2. Die Anlage nach der ersten Furchung, mit Essigsäure im Augenblicke getödtet, wo die zweite Furchung beginnt und die früheren Keimblüschen ohne Reagentien schon nicht mehr sichtbar sind. Vergr. 450.
- Fig. 3. Dieselbe nach der zweiten Furchung, die Falten der Eihaut (f) und die linsenförmigen Vacuolen (g) zeigend. Lebendig abgebildet. Vergr. 450.
- Fig. 4. Dieselbe während des Vorganges der vierten Furchung, lebendig abgebildet $-\alpha$, β , γ und δ sind die vier Zellen, welche aus einer Zelle des Stadium Fig. 3, und zwar aus der oberen rechten Zelle jener Figur hervorgegangen sind. Vergr. 450.
- Fig. 5. Dieselbe Anlage nach der vierten Furchung, also aus 46 Zellen bestehend, die BAER'sche Höhle (cs) zeigend, lebendig abgebildet. Vergr. 150.
- Fig. 6. Dieselbe nach der fünften Furchung, also aus 32 Zellen zusammengesetzt. Vergr. 450.
- Fig. 7. Die Anlage nach der sechsten Furchung mit Essigsäure behandelt; im optischen Querschnitt gezeichnet. Es besteht dieselbe aus 32 grossen (r), und 32 kleinen Zellen (q), zusammen 64 Zellen. Vergr. 450.
- Fig. 8. Die Anlage nach der sechsten Furchung von der Oberfläche gesehen, lebendig gezeichnet. Vergr. 450.
- Fig. 9. Die Anlage in der siebenten Furchung begriffen, wobei sich die beiden Zellenschichten gänzlich von einander abtrennen. Vergr. 75.
- Fig. 40. Eine Zelle aus dem Stadium Fig. 6 mit Essigsäure behandelt. Im optischen Querschnitt dargestellt. Vergr. 200.
- Fig. 44. Eine Zelle am Anfange der sechsten Furchung mit Essigsäure getödtet. Im optischen Querschnitt gesehen. Vergr. 200.
- Fig. 12. Die Anlage am Anfange der siebenten Furchung von der Oberfläche gesehen. Man bemerkt aussor den Oberflächenzellen, die durch die vorige Furchung entstanden sind (q), noch andere Oberflächen-Zellen, die im Entstehen begriffen sind (q') und grosse Zellen, welche noch nicht angefangen haben sich zu spalten. Lebendig abgebildet. Vergr. 90.

490

- Fig. 48. Die Anlage gegen das Ende der siebenten Furchung, wobei noch einige Brücken (i) zwischen den Ectoderm- und Entodermzellen bestehen; lebendig im optischen Querschnitt dargestellt. Vergr. 75.
- Fig. 44. Die Anlage nach Vollendung der siebenten Furchung, lebendig, im optischen Querschnitt gezeichnet. Vergr. 90.
- Fig. 15. Die Anlage 24 Stunden nach der Befruchtung. Die Ecto- und Entodermzellen sind vermehrt; zwischen beiden befindet sich die Gallerte (y). Mit Essigsäure behandelt. Vergr. 450.

Tafel XXV.

- Fig. 16. Die Anlage 80 Stunden nach der Befruchtung. Lebendig dargestellt. Vergr. 50.
- Fig. 47. Die Anlage etwa 40 Stunden nach der Befruchtung. Spärliche, feine, lange Wimpern sind schon sichtbar, welche die Larve langsam fortbewegen. Diese Wimpern sind auf der Tafel weggelassen, da es nicht möglich war dieselben auf so geringer Scala richtig darzustellen. Nach dem Leben gezeichnet. Vergr. 50.
- Fig. 48. Der orale Pol der Larve, 8 Tage und 10 Stunden nach der Befruchtung des Eies. In der Profilansicht, mit dem pflasterepithelartigen Ectoderm (*Ec*), dem eingestülpten Entoderm (*En*), und der oralen Ectodermscheibe (*k*), nach Essigsäurebehandlung dargestellt. Vergr. 450.
- Fig. 49. Der orale Pol einer 6¹/₂ Tage alten Larve (von der Befruchtung an gerechnet). Von unten gesehen, mit dem offenen Munde (*l*), welcher in das cavum der Entodermkugel führt; dem Randwulste (*m*) und den ersten Fangarmen (*t*). Mit Essigsäure behandelt. Vergrösserung 450.
- Fig. 20. Der orale Pol einer etwas weiter ausgebildeten, mit dem Müller/schen Netze im Meere gefangenen Larve, von unten und etwas von der Seite betrachtet. Die Mundlippen (l) stehen weit offen und lassen in den Magen (s) schauen; das Segel (v) steht ebenfalls offen; die Fangarme (t) sind nach innen gebogen. Die Schirmhöhle (cu) ist bereits recht deutlich zu sehen. Vom Leben gezeichnet. Vergrösserung 50.
- Fig. 21. Der orale Pol, im selben Stadium wie Fig. 20; mit Essigsäure behandelt. Von der Seite gesehen und im optischen Querschnitt dargestellt. Die Theile sind ohngefähr in derselben Lage wie auf der vorigen Figur, Vergr. 50.
- Fig. 22. Etwas ältere Larve mit geschlossenen Mundlippen (l), zusammengezogenem Schirmrande (m) und tiefer Schirmhöhle (cu). Von unten und etwas von der Seite am lebendigen Thiere gezeichnet. Vergr. 50.
- Fig. 23. Aeltere Larve von unten gesehen, mit zusammengezogenen Lippen und Schirmrand, und weit ausgestreckten Fangarmen, mit welchen die Larve ruckweise das Wasser schlägt. Lebendig. Vergr. 50.
- Fig. 24. Weiteres Stadium. Die Larve von der Seite betrachtet, mit retrabirten Fangarmen. Einige Nesselfäden (u) sind ausgestreckt; der Magen ist leer. Mit Essigsäure behandelt. Vergr. 50.
- Fig. 25. Aelteste Larve, welche ihre Wimpern bereits verloren hat und mit dem Segel schwimmt. Die Schirmhöhle (cu) ist tief und geräumig, die Anlage der Sinnesorgane (t') zeigt sich schon am Schirmrande. Lebendig dargestellt. Vergr. 50.

Die Buchstaben sind dieselben für alle Figuren, nämlich :

- a Endoplasma
- b Ectoplasma
- c Eihaut
- d Eihülle
- f Falten der Eihaut
- n der Kern
- g Vacuolen zwischen den Zellen
- h um die Anziehungsmittelpuncte herum wie Sternstrahlen angeordnete Protoplasmapünctchen
- i die Substanz-Brücken, welche zwischen den Zellen 7. und 8. Generation am
 Ende der 7. Furchung eine Zeit lang bestehen
- cs --- Furchungs- oder BAER'sche Höhle
- Ec Ectoderm

En — Entoderm

- q kleine Zellen 7. Generation nach der 6. Furchung
- r grosse Zellen 7. Generation nach der 6. Furchung
- j geisselförmiger Fortsatz der Fangarme
- k verdickte, orale Ectodermscheibe
- l Mundlippen
- m Schirmrand
- s Magen
- t Fangarme
- u Nesselzellen
- v Segel
- y Schirmgallerte
- z solider zelliger Achsenstrang (sogenannter Knorpel) der Fangarme

cu - Schirmhöhle.

Bemerkung: Sämmtliche Zeichnungen sind sorgfältig mit der Camera entworfen, und die Vergrösserungen sind jedesmal genau controlirt worden, so dass der Leser leicht, mit Hülfe des Zirkels, auf den Figuren die Masse auffinden kann, die ich etwa vergessen hätte im Texte anzugeben.

Bis zur Fig. 19 (inclusive), sind alle Zeichnungen nach Eiern und Larven gemacht, die in meinen Aquarien gelegt wurden, und die ich daselbst gross zog. Fig. 1 bis 6 und Fig. 8 sind nach einem und demselben Eie in unverrückter Stellung entworfen.

Von der Fig. 20 an dienten als Objecte ältere Larven, die ich im Meere mit dem Müllen'schen Netze in ziemlicher Menge fing.

Untersuchung über sauerstoffreiche Kohlenstoffsäuren.

Von

A. Geuther.

Vor nunmehr fünf Jahren wurde die erste Abhandlung über diesen Gegenstand veröffentlicht¹). Es war dies die Abhandlung RIEMANN's über die Einwirkung der conc. Salzsäure auf Weinsäure und Traubensäure in höherer Temperatur. Damals habe ich erwähnt, dass auch Versuche in gleicher Richtung mit der Citronensäure unternommen worden seien, welche zur Kenntniss zweier neuer Säuren von der Zusammensetzung: C¹⁰H¹²O⁹ und C⁹H¹⁰O⁶ geführt hätten. Die nähere Untersuchung dieses Vorgangs durch Herrn Dr. O. HERGT, welche im Folgenden niedergelegt ist, zeigt, dass nur die letztere Säure als Zersetzungsproduct auftritt, die erstere dagegen sich als unreine und modificirte Citronensäure ergeben hat.

II. Abhandlung.

Ueber die Einwirkung von conc. Chlorwasserstoffsäure auf Citronensäure in höheren Temperaturen. Von Dr. Otto Hergt.

Je nach der Temperatur, bei welcher die Einwirkung der Salzsäure auf Citronensäure stattfindet, sind die Producte, welche resultiren, verschieden. Bei einer Temperatur unter 440° löst sich die Citronensäure in der Salzsäure, indem dabei keine, oder nur eine unwesentliche Zersetzung stattfindet. Beim höheren Erhitzen haben wir folgende zwei Phasen der Einwirkung zu unterscheiden:

4) Diese Zeitschrift Bd. IV. p. 288.

1) Die Bildung von Aconitsäure unter Austritt von Wasser bein Erhitzen auf 140° bis 150° C.

2) Die Bildung von Diconsäure, einer neuen Säure von der Zusammensetzung C⁹H¹⁰O⁶, unter gleichzeitiger Entwickelung von Kohlensäure und Kohlenoxyd, beim Erhitzen auf 190° bis 200° C.

Ausführung der Versuche.

Gepulverte Citronensäure wird in Röhren (am besten von schwer schmelzbarem böhmischen Glas) mit etwa dem 3 bis 4fachen Volumen conc. Salzsäure eingeschlossen. Um das Zerspringen der Röhren beim Erhitzen auf höhere Temperaturen zu vermeiden, ist es rathsam, zu einer jedesmaligen Zersetzung nur ungefähr 3 bis 4 gr. Citronensäure anzuwenden, und die Röhren so lang zu machen, dass sie nur zu $\frac{1}{3}$ ihres Inhaltes vom Gemisch erfüllt werden. Ferner muss man das Erhitzen der Röhren etwa alle zwei Stunden unterbrechen, um durch vorsichtiges Oeffnen derselben die gebildeten Gase entfernen zu können.

I. Die Einwirkung beim Erhitzen auf 140° bis 150° C.

Erhitzt man Citronensäure, wie oben angegeben, mit Salzsäure auf 140° C., so scheidet die Anfangs farblose Flüssigkeit schon nach dem ersten Oeffnen beim Erkalten einen festen Körper aus, der seinem Aeusseren nach wenig Aehnlichkeit mit Citronensäure hat. In den Röhren zeigt sich ein schwacher Druck, der von einer bei dieser Temperatur nebensächlichen und weiter unten zu besprechenden Zersetzung, wobei sich Kohlensäure und Kohlenoxyd bildet, herrührt. --- Nach etwa zweimal zweistündigem Erhitzen ist die grösste Hälfte der Citronensäure in die sich ausscheidende Aconitsäure übergeführt, während noch eine dickflüssige syrupförmige Säure in der salzsauren Lösung bleibt. Um nun diese beiden Säuren zu trennen und ihre Existenz analytisch zu beweisen, wird der in ein Schälchen entleerte Röhreninhalt auf dem Wasserbade möglichst eingedampft, und hierauf mit conc. Salzsäure, in welcher nur die syrupförmige Säure löslich ist, behandelt, und durch Asbest filtrirt. Zur weiteren Reinigung wird sowohl mit der zurückbleibenden Aconitsäure als auch mit der durchgelaufenen Lösung dieselbe Operation wiederholt. Bevor die so erhaltene Aconitsäure einer Analyse unterworfen wurde, wurde sie, um sie von noch etwa anhaftender Citronensäure zu trennen, mit einer zur Lösung nicht ganz zureichenden Menge von Aether (worin Citronensäure schwer löslich ist) ausgezogen. Eine Kohlenstoff- und Wasserstoffbestimmung von aus dieser ätherischen Lösung erhaltenen Säure ergab folgende Zahlen:

0,2714 gr. bei 110° getr. Säure lieferten 0,4149 gr. CO² entspre-

chend 0,1132 gr. = 41,7% C und 0,0942 gr. OH² entspr. 0,0105 gr. = 3,8% H.

...

:

	ber.	gef.
C ⁶	41,4	44,7
H6	3,4	3,8
O ⁶	55,2	

Diese gefundenen Zahlen stimmen nicht genau mit den aus der Formel berechneten überein. Die Differenz mag wohl daher kommen, dass entweder die Aconitsäure durch eine kleine Menge eines höheren Zersetzungsproductes verunreinigt, oder dass der zum Ausziehen benutzte Aether etwas alkoholhaltig war und sich in Folge dessen eine geringe Menge Aetheraconitsäure gebildet hatte. Um exactere Resultate zu erzielen, wurde die Säure mit Barytwasser neutralisirt, und das beim Eindampfen sich zuerst ausscheidende Baryumsalz analysirt.

0,2928 gr. lufttrocknes Salz wog nach dem Trocknen über Schwefelsäure 0,2800 gr. und nach dem Trocknen bei 275° 0,2553 gr. Der Gesammtwasserverlust beträgt mithin 0,0375 gr. = 42,8% (3 Mgt. Krystallwasser entspr. 42,5%). Der Wasserverlust der über Schwefelsäure getrockneten Substanz beträgt 0,0247 gr. = 8,8% (2 Mgt. Krystallwasser entspr. 8,7%). Zur Baryumbestimmung wurde das Salz durch Glühen in CO³Ba² übergeführt. Es blieben zurück 0,2004 gr. CO³Ba² entspr. 0,1392 gr. = 54,5% Ba (die Formel C⁶H³Ba³O⁶ verlangt 54,6%).

Schon früher wurden, wie oben mitgetheilt, im biesigen Laboratorium von GRUND Versuche über diesen Gegenstand angestellt. Auch er fand, dass als erstes Product der Einwirkung von Salzsäure auf Citronensäure Aconitsäure auftrete. Er führte dieselbe in das Silbersalz über, dessen Beschreibung zur weiteren Bestätigung meiner Angaben folgen möge.

Neutralisirt man die auf obige Weise erhaltene Aconitsäure genau mit Natrium-Carbonat, und versetzt sie nach dem Austreiben der Kohlensäure in der Kälte mit Argenti-Nitrat, so entsteht ein weisser, käsiger, in Wasser fast unlöslicher Niederschlag, der sich am Lichte färbt, und nach einiger Zeit eine krystallinische Structur annimmt. Beim schnellen Erhitzen zersetzt er sich explosionsartig, unter Entwickelung brauner Dämpfe und Hinterlassung von wurmförmigem Kohlensilber. Er enthält kein Krystallwasser.

1. 0,3289 gr. bei 100° getr. Salz lieferte 0,2867 gr. AgCl² entsprechend 0,2158 gr. = 65,6% Ag.

2. 0,4461 gr. bei 100° getr. Salz gaben 0,3876 gr. AgCl² entspr. 0,2917 gr. = 65,4% Ag.

Die Formel (C6H3O6)²Ag³ verlangt 65,5 % Ag.

Die Thatsache der Aconitsäurebildung lässt sich übrigens recht ga mit den Beobachtungen von DESSAIGNES und M. MERCADANTE vereinigen Jener bemerkte¹), dass beim mehrstündigen Erhitzen von Citronesäure mit Salzsäure die erstere theilweise in Aconitsäure übergeführ wird. Ebenso erhielt M. MERCADANTE²) beim Kochen von Citronensäure mit Bromwasserstoff vom Siedepunct 126°, wenn auch nur geringe Mengen von Aconitsäure. Uebrigens beobachtete DESSAIGNES³) schon beis 100stündigen Kochen einer conc. wässrigen Lösung von Citronensäure die Bildung von etwas Aconitsäure neben einer nicht näher beschribenen flüchtigen Säure.

Neben der Aconitsäure bildet sich, wie oben angegeben, noch eine syrupförmige Säure, welche nach dem Eindampfen der salzsauren Lisung zurückbleibt, und welcher in der ersten Mittheilung⁴), gestützt auf Resultate, welche GRUND erhalten hatte, die Formel C10H12O9 zugeschrieben worden ist. Um diese Säure rein zu gewinnen, wurde die, durch Eindampfen auf dem Wasserbade möglichst von Salzsäure befreite wässrige Lösung derselben mit Natrium-Carbonat neutralisirt und bierauf zunächst mit wenig Barvum-Chlorid versetzt, um so das sich zuerst bildende schwer lösliche aconitsaure Baryum und das durch einen etwaigen Ueberschuss von Natriumcarbonat entstehende Baryumcarboni zu entfernen. Hierauf wurde die vom Niederschlag getrennte Flüssigkeit mit einer zur Bildung des Baryumsalzes sicher zureichenden Menge von Baryum-Chlorid versetzt. Ist die Lösung sehr verdünnt, so scheidet sich das Baryumsalz erst beim Eindampfen in Form einer zarten Erstallhaut ab. 1st die Lösung concentrirter, so entsteht schon in der Källe ein voluminöser Niederschlag, der beim Erhitzen krystallinisch wird. Das ausgeschiedene Baryumsalz wurde auf dem Filter gesammelt und durch sorgfältiges Auswaschen vom anhaftenden Chlornatrium vollständig befreit. Die Analyse der zwei ersten Krystallisationen ergab folgende Zahlen:

4. 0,2003 gr. lufttrocknes Salz wog nach dem Trocknen bei 440° 0,4860 gr. Der Wasserverlust beträgt 0,0443 gr. = 7,4%. Die bleibenden 0,4860 gr. ergaben 0,4584 gr. SO4Ba² entspr. 0,0934 gr. = 50,4% Ba. — Ferner lieferten 0,4866 gr. bei 440° getrocknetes Salz bei der Verbrennung 0,0952 gr. CO² entspr. 0,0260 gr. = 44,0% C und 0,0312 gr. OH² entspr. 0,0034 gr. = 4,8% H. Nun halten die 50,4% Ba, welche beim Verbrennen als CO³Ba² nicht weiter verändert

⁴⁾ Chem. Jahrber. 1856, p. 463.

²⁾ I. p. Chem. N. F. 3, p. 356.

⁸⁾ Chem. Centralblatt 4864, p. 350.

⁴⁾ Diese Zeitschrift IV, p. 289.

werden, zurück 4,4% G. Mithin beträgt die Gesammtmenge des Koh lenstoffs 18,4%.

Zur Controle wurde mit demselben Salze noch eine zweite Elementaranalyse ausgeführt. Die Verbrennung von 0,2125 gr. bei 140° getr. Salz ergab 0,0333 gr. OH², entpsr. 0,0037 gr. = 1,7% H und 0,1087 gr. CO² entspr. 0,0296 gr. = 13,9% C. Dazu kommen die 4,4% C welche an Baryum gebunden zurückbleiben. Der Gesammtkohlenstoff beträgt mithin 18,3%.

ż

2. 0,2150 gr. lufttrocknes Salz wog nach dem Trocknen bei 140° 0,2016 gr. und ergab 0.1722 gr. SO'Ba² entsprechend 0,1012 gr. = 50,2% Ba. Der Wasserverlust beträgt 0,0134 gr. = 6,2%.

Die Mutterlauge von der zweiten Krystallisation wurde mit Salzsäure zur Trockne verdampft und die aus dem Gemisch von BaCl und freier Säure mit Aether ausgezogene Säure mit BaOH neutralisirt und das hierdurch erhaltene Baryumsalz analysirt:

3. 0,1570 gr. lufttrocknes Salz wog nach dem Trocknen bei 140° 0,1465 gr. und ergab 0,1268 gr. SO4Ba², entspr. 0,0744 gr. = 50,7%Ba. Der Wasserverlust beträgt 0,0105 gr. = 6,7%.

Zur Verbrennung wurden angewandt 0,2135 gr. lufttrockne Substanz. Sie verlor beim Trocknen bei 140° 0,0142 gr. = 6,6% Wasser. Die rückständigen 0,1993 gr. lieferten 0,0298 gr OH², entsprechend 0,0033 gr. = 1,7% H und 0,1010 gr. CO² entspr. 0,0275 gr. = 13,8% C. Dazu kommen noch die 4,4% C welche vom Baryum zurückgehalten werden. Der Gesammtkohlenstoff beträgt mithin 81,2%.

Endlich wurde noch die bei einer zweiten Einwirkung von Salzsäure auf Citronensäure erhaltene syrupförmige Säure in das Baryumsalz übergeführt, und das letztere analysirt:

4. 0,2008 gr. lufttrocknes Salz wog nach dem Trocknen bei 140° 0,1859 gr. und gab 0,1610 gr. SO⁴Ba² entspr. 0,0946 gr. = 50,9%Ba. Der Wasserverlust beträgt 0,0149 gr. = 7,4%.

Für alle diese Analysen, die ziemlich untereinander übereinstimmen, lässt sich keine einfache Formel finden. Am nächsten passen die Zahlen, wie es folgende Zusammenstellung zeigt auf die Formel C⁴H⁴Ba²O⁵.

			gef.			
	ber.	1+	10	2.	3.	4.
C4	17,9	18,4	18,3		18.2	
H4	1,5	1,8	1.7	-	4.7	
Ba ² O ⁵	50,9		b,1	50,2	50,7	50,9
O5	29,7		_			

Die Formel C4H4Ba2O⁵ unterscheidet sich nun, wie aus folgender Gleichung hervorgeht, von der Formel des Baryumsalzes der CitronenA. Geuther,

säure (C⁶H⁵Ba³O⁷) nur durch einen geringen Wassergehalt, denn 3 C⁴H⁴Ba²O⁵ = 2 C⁶H⁵Ba³O⁷ + OH².

Es führte dies sowohl, als auch der Umstand, dass citronensaures Baryum sein Krystallwasser erst etwa bei 200° vollständig verliert, zur Vermuthung, dass das analysirte Salz weiter nichts als unreines citronensaures Baryum sei, welches noch eine gewisse Wassermenge enhielt. Um dies nachzuweisen wurde das erhaltene Baryumsalz durch mehrmaliges Umkrystallisiren gereinigt und hierauf analysirt.

0,2734 gr. lufttrocknes Salz wog nach dem Trocknen bei 210° 0,2496 gr. und ergab 0,2206 gr. SO4Ba² entspr. 0,1297 gr. = 52,0% Ba. (Für citronensaures Baryum = G6H3Ba3O7 berechnen sich 52,1% Ba.) Der Wasserverlust beträgt 0,0238 gr. = 8,7%.

Eine zweite Portion des umkrystallisirten Baryumsalzes ergab bei der Analyse folgende Zahlen :

0,5247 gr. lufttrocknes Salz wog nach dem Trocknen über Schwefelsäure 0,5458 gr. und nach dem Trocknen bei 210° 0,4777 gr. Es verlor mithin das lufttrockne Salz 9,0% und das über Schwefelsäure getrocknete 7,6% Wasser. Die Baryumbestimmung ergab 0,4229 gr. SO4Ba², entspr. 0,2487 gr. = 52,1% Ba.

Zur Elementaranalyse wurden verwendet 0,2710 gr. lufttrocknes Salz. Nach dem Trocknen bei 210° blieben 0,2491 gr. (Wasserverlust 8,8%). Diese gaben 0,0342 gr. OH², entspr. 0,0038 gr. = 1,5% H und 0,1227 gr. CO² entspr. 0,0335 gr. = 13,44% C. Dazu kommen 4,56% C welche von den 52,1% Baryum zurückgehalten werden. Es beträgt mithin die Gesammtmenge des Kohlenstoffs 18,0%.

Die gefundenen analytischen Resultate stimmen, wie folgende Zusammenstellung zeigt, ziemlich genau mit den für citronensaures Baryum berechneten Zahlen überein

	ber.	gef.
C ⁶	18,2	18,0
H⁵	1,3	1,5
Ba ³	52,4	52,1
07	28,4	

Was den Krystallwassergehalt des analysirten Baryumsalzes anlangt, so entspricht derselbe einem Gemenge der beiden von H. KANNENN¹) beschriebenen Salze $2C^{0}H^{5}Ba^{3}O^{7} + 5OH^{2}$ (enthält 10,2% Krystallwasser) und $4C^{6}H^{5}Ba^{3}O^{7} + 7OH^{2}$ (enth. 7,4% Krystallwasser).

Um die vollständige Identität dieser syrupförmigen Säure mit der gewöhnlichen Citronensäure nachzuweisen, blieb nur noch übrig m

¹) Ann. Ch. Phm. 148, p. 296.

zeigen, dass dieselbe mit Salzsäure erhitzt ebenfalls in Aconitsäure übergeht. Es wurde daher solche aus dem Baryumsalz durch Salzsäure abgeschiedene, mit Aether ausgezogene, und von letzterem wiederum durch längeres Erhitzen auf dem Wasserbade vollständig befreite Säure in Röhren mit Salzsäure eingeschlossen und auf 140° erhitzt. Schon nach einer etwa 1/2 stündigen Einwirkung musste dieselbe, da die eine Röhre explodirte, unterbrochen werden. Die kaffeebraune Lösung in den noch übrigen Röhren blieb beim Erkalten klar. Wohl aber liess sich auf derselben eine etwa 2^{mm} hohe, leicht bewegliche Flüssigkeitsschicht erkennen. Nach dem Oeffnen, wobei sich nur schwacher Druck zeigte, entwich ein mit grün gesäumter Flamme brennendes Gas. und im selben Masse nahm die leichte Flüssigkeitsschicht ab. Beim Abkühlen der Röhre in kaltem Wasser hörte die Gasentwickelung auf, und es war keine Abnahme der leichten Flüssigkeit mehr zu bemerken. Die Gasentwickelung rührte also von dieser schon bei niederer Temperatur siedenden Flüssigkeit her, die wir ihrem Verhalten nach als Chloräthyl erkennen können. Da nun ein gleiches Auftreten von Chloräthyl beim Erhitzen von solcher syrupförmiger Citronensäure, die nur durch Salzsäure von der gebildeten Aconitsäure getrennt, also nicht mit Aether behandelt war, nicht wahrgenommen werden konnte, so ist anzunehmen, dass in Folge eines geringen Alkoholgehaltes des zum Ausziehen der Säure benutzten Aethers, sich etwas Aethercitronensäure gebildet hat, welche sich beim Erhitzen mit Salzsäure in Citronensäure und Chloräthyl verwandelte. Aus dem Umstande, dass sich unter den angegebenen Bedingungen Aethercitronensäure bilden kann, ist wohl auch zu erklären, dass diese syrupförmige Säure, wie oben angegeben, für eine neue Säure der Zusammensetzung C10H12O7 gehalten wurde, denn in der That war zur Analyse solche aus ätherischer Lösung erhaltene Säure verwendet worden. Der Röhreninkalt wurde nun durch Erhitzen im Wasserbade von dem gebildeten Chloräthyl befreit, und hierauf abermals auf 140° erhitzt. Es bildete sich wieder eine kleine Menge von Chlorathyl; beim Erkalten schied sich aber ein fester Körper aus, der leicht als Aconitsäure erkannt werden konnte.

Wenn auch die angeführten Thatsachen kaum einen Zweifel übrig lassen, dass wir es wirklich mit weiter nichts als mit Citronensäure zu thun haben, so ist doch immer merkwürdig, dass diese syrupförmige Säure nicht krystallinisch erhalten werden konnte. Nur bei der mit Aether behandelten Säure lässt sich dies durch einen geringen Aethercitronensäuregehalt erklären. Aber auch andere, mit Salzsäure erhitzte, aber nicht mit Aether behandelte Citronensäure war, namentlich wenn der Röhreninhalt eine braune Farbe angenommen hatte, nicht zum Krystallisiren zu bringen. In letzterem Falle sind es wahrscheinig geringe Mengen dunkler harzartiger, beim höheren Erhitzen sich reidlicher bildende Zersetzungsproducte, welche die Krystallisation der Citunensäure hindern. Allerdings wäre es auch denkbar, dass kleine Mengen anhaftender Salzsäure in gleicher Weise wirken könnten. Versuche, welche ich in dieser Hinsicht anstellte, indem ich in Salzsäure gelöse Citronensäure auf dem Wasserbade verdampfte, ergaben mir jedoch, dass erstere Säure keinen Einfluss auf die Krystallisationsfähigkeit hat. Die gewöhnlich dicksyrupförmige, farblose, nach dem Eindampfen verbleibende Flüssigkeit krystallisirt nämlich ziemlich schnell, oder doch längstens nach einem 12 stündigen Stehen. Auch solche Citronensäure die mit conc. Salzsäure nicht zu lange Zeit auf 430 bis 140° erhitzt war, schied nach dem Eindampfen wenn auch erst nach längerem Stehen deutliche Krystalle von Citronensäure aus.

II. Die Einwirkung beim Erhitzen auf 190° bis 200° C.

Schon beim Erhitzen der Citronensäure mit Salzsäure auf 170° macht sich, indem zugleich eine stärkere Bräunung des Röhreninhaltes eintritt, in den Röhren ein ziemlich erheblicher Druck bemerklich. Beim Erkalten scheidet sich jetzt nur noch wenig, und wenn lange genug erhitzt war, gar keine Aconitsäure mehr aus. Doch genügt diese Temperatur zur vollständigen Zersetzung nicht. Erhitzt man allmälig stärker bis endlich auf 190° und 200°, so wird der Druck, in Folge der bei der Einwirkung auftretenden Gase, sehr bedeutend, und steigt mit der zunehmenden Temperatur. Erst nach längerem Erhitzen auf 200° wird die Gasentwickelung allmälig schwächer.

Der braune Röhreninhalt enthält neben einer in Alkohol und Aether löslichen kohlig-harzartigen Masse, die als unwesentliches Nebenproduct nicht weiter untersucht wurde, wiederum zwei Säuren, eine nach dem Eindampfen des Röhreninhaltes krystallisirende, die Eingangs erwähnte Diconsäure, und eine syrupförmige, die sich wiederum nur als unreine Citronensäure erwies. Zur Trennung der beiden Säuren wird der Röhreninhalt, nachdem er durch Filtration von der Hauptmenge des kohligen Harzes befreit ist, auf dem Wasserbade zur Trockne verdampft. In dem verbleibenden dicksyrupförmigen Rückstande scheidet sich, jedoch erst nach längerem, etwa eintägigem Stehen, die Diconsäure krystallinisch aus. Um sie zu gewinnen, wird die syrupförmige Säure aus dem Rückstande mit conc. Salzsäure weggelöst, während die in Salzsäure ziemlich schwer löslichen Krystalle auf einem Asbestfilter gesammelt und von der noch anhaftenden braunen Flüssigkeit durch Waschen mit conc. Salzsäure befreit werden. Zur weiteren Reinigung, und namentlich zur Trennung von anbaftender Salzsäure, wird die so erhaltene Diconsäure aus Wasser umkrystallisirt. Die Säure hat, wie Herr Prof. GEUTHER schon früher mittheilte¹), die Zusammensetzung C³H¹⁰O⁶. Diese Angabe stützt sich auf die Analysen von H. RIEMANN welche hier folgen mögen:

4. 0,2339 gr. bei 110° getr. Säure gab 0,4328 gr. CO² entspr. 0,4180 gr. = 50,4% C und 0,1049 gr. OH² entspr. 0,0165 gr. = 4,9% H.

2. 0,1737 gr. bei 110° bis 112° getr. Säure gab 0,3194 gr. CO² entspr. 0,0871 gr. = 50,2% C und 0,0761 gr. OH² entspr 0,0085 gr. = 4,9 % H.

3. 0,2036 gr. trockne Säure gab 0,3772 gr. CO², entspr. 0,1029 gr. == 50,5% C und 0,0911 gr. OH² entspr. 0,0101 gr. = 4,9% H.

		gef.		
	ber.	1.	2.	3.
C 9	50,5	50,4	50,2	50,5
H10	4,7	4,9	4,9	4,9
O6	44,8	·	l —	— — ·

Die Bildungsgleichung dieser neuen Säure aus Citronensäure ist Citre. Dicons.

 $2 C^{6}H^{6}O^{7} = C^{9}H^{10}O^{6} + 2 CO^{2} + CO + 3 OH^{2}$

Da die Diconsäure nicht direct aus Citronensäure entsteht, sondern diese erst durch Wasserverlust in Aconitsäure übergeführt wird, aus welcher letzteren dann durch weitere Zersetzung unsere Säure hervorgeht, ist es passender die obige Bildungsgleichung in folgende zwei zu zerlegen:

> $C^{6}H^{6}O^{7} = C^{6}H^{6}O^{6} + OH^{2}$ 2 $C^{6}H^{6}O^{6} = C^{9}H^{10}O^{6} + 2 CO^{2} + CO + OH^{2}.$

Dass die krystallisirte Säure auch direct durch Erhitzen von Aconitsäure mit Salzsäure auf 200° erhalten werden kann, wurde durch besondere Versuche nachgewiesen. Die Thatsache, dass sich unsere krystallisirte Säure aus zwei Mischungsgewichten Aconitsäure bildet, ist die Veranlassung gewesen, sie mit dem Namen Diconsäure zu belegen.

Um die in der salzsauren Lösung befindliche syrupförmige Säure näher zu untersuchen, ist es rathsam, die Lösung wieder auf dem Wasserbade zur Vertreibung der Salzsäure zu verdampfen. Dabei scheiden sich wieder Krystalle der Diconsäure aus. Um nun die Trennung möglichst rasch zu bewerkstelligen, ist es am besten, da das Baryumsalz der Diconsäure leicht, während das der syrupförmigen Säure schwer

⁴⁾ Diese Zeitschrift IV, p. 289.

löslich ist, das Säuregemenge durch Neutralisiren mit Natriumcarbon und hierauf folgendes Versetzen mit Baryumchlorid in die entsprecheden Baryumsalze überzuführen. Ist die Lösung concentrirt genug. » scheidet sich schon beim Zusatz des Chlorbaryum's das schwer lösliche Baryumsalz der syrupförmigen Säure als flockiger Niederschlag aus, dr beim Erwärmen krystallinisch wird, während das sehr leicht lösliche Baryumsalz der Diconsäure in der Mutterlauge bleibt. Diese wird m Wiedergewinnung der Diconsäure mit Salzsäure zersetzt, zur Trocher verdampft und die aus dem mit Hülfe von alkoholfreiem Aether bereitten ätherischen Auszug erhaltene Säure durch Waschen mit con Salzsäure von noch etwa anhaftender syrupförmiger Säure befreit.

Mit dem schwer löslichen Baryumsalz wurden nach mehrmaligen Umkrystallisiren verschiedene Analysen ausgeführt. Alle deuteten darauf hin, dass man es mit einem Gemisch von Baryumsalzen verschiedener Säuren zu thun habe, die sich durch blosses Umkrystallisiren nicht trennen lassen. Es folgt hier, da die gefundenen Resultate so ziemlich untereinander übereinstimmen, nur eine Analyse:

0,2843 gr. über Schwefelsäure getrocknete Substanz wog nach dem Erhitzen auf 250° 0,2620 gr. und gab 0,2288 gr. SO4Ba², entspr. 0,1345 gr. = 51,3% Ba. Der Wasserverlust beträgt 0,0223 gr. = 7,8%.

Ferner gahen 0,2293 gr. bei 250° getrocknete Substanz bei der Verbrennung 0,0261 gr. OH², entspr. 0,0029 gr. = 1,3 % H und 0,1290 gr. CO² entspr. 0,0352 gr. = 15,4 % C. Dazu kommen noch 4,5 % C welche vom Baryum zurückgehalten werden. Die Gesammtmenge des Kohlenstoffs beträgt mithin 19,9 %.

Diese gefundenen Zahlen stimmen weder mit der Formel für citronensaures, noch für aconitsaures, noch für diconsaures Baryum überein, wohl aber lassen sie vermuthen, dass wir es der Hauptsache nach mit citronensaurem Baryum, dem etwas diconsaures beigemengt ist, zu thun haben. Wenigstens lässt sich dadurch der zu geringe Baryum- und der zu hohe Kohlenstoffgehalt erklären. Der Uebersichtlichkeit halber folgt nachstehende Zusammenstellung:

C	itrs.	Aconits.	Dicons.	Syrupf. S
	ber	ber.	ber.	gef.
C ⁶	18,2	C ⁶ 19,1	Cº 30,9	C 19,9
H2	1,3	H ³ 0,8	H* 2,3	н 1,3
Ba ³	52,4	Ba ³ 54,6	Ba ² 39,3	Ba 51,3
07	28,4	O ⁶ 25,5	O ⁶ 27,5	0 —

Die Vermuthung, dass die syrupförmige Säure der Hauptsache nach Citronensäure sei, wurde schliesslich dadurch bestätigt, dass sie aus ihrem Baryumsalz abgeschieden und mit concentrirter Salzsäure von Neuem in Röhren eingeschlossen und auf 440° erhitzt, wieder Aconitsäure gab. Letztere konnte jedoch nur in kleinen Mengen, und nur dann wahrgenommen werden, wenn verhältnissmässig viel Säure angewandt worden war. Wird allmälig höher bis auf 200° erhitzt, so bilden sich unter ziemlich beträchtlicher Gasentwickelung neue Mengen von Diconsäure. Die Zersetzung der Aconitsäure war also beim Erhitzen auf 200° , trotzdem die Gasentwickelung aufhörte, keine vollständige. Es lässt sich dies nur dadurch erklären, dass die bei der Zersetzung auftretenden Wassermengen (und es sind dies, da die käufl. Citronensäure noch 1 Mgt. Krystallwasser enthält, 24, 4% der angewandten Substanz) die Salzsäure verdünnen und dadurch unfähig machen, noch zersetzend einzuwirken. Denn durch fortgesetztes Erhitzen mit neuen Mengen conc. Salzsäure kann alle syrupförmige Säure in Diconsäure übergeführt werden.

Die schwere Krystallisationsfähigkeit dieser syrupförmigen Säure muss ebenso wie früher durch kleine Mengen beigemischter harzartiger Zersetzungsproducte erklärt werden; die letzteren sind es zugleich, welche der Säure ihre braune Farbe ertheilen.

Das Gas, welches bei der Zersetzung auftrat, erwies sich als aus einem Gemisch von Kohlensäure und Kohlenoxyd bestehend. Die erstere wurde leicht daran erkannt, dass sie Kalkwasser trübte. Zur Nachweisung des Kohlenoxyds wurde aus dem über Wasser aufgefangenen Gasgemenge die Kohlensäure durch Schütteln mit Natronlauge weggenommen und das zurückbleibende Gas untersucht. Es brennt mit schwach leuchtender blauer Flamme, und explodirt mit Luft gemengt nicht, oder nur schwach (Unterschied vom Wasserstoff). Ferner gab es, mit Kupferchlorür unter Absorption eine weisse Krystallhaut.

Die ungefähre quantitative Bestimmung des Verhältnisses in welchem Kohlensäure und Kohlenoxyd bei der Zersetzung auftreten, wurde in der Art ausgeführt, dass die fein ausgezogene Spitze der Röhre mittelst eines Kautschukschlauches mit einer Gasleitungsröhre verbunden wurde. Oeffnet man die Röhre durch vorsichtiges Abbrechen der Spitze so kann das Gas in graduirten Cylindern über Wasser gesammelt werden. Man erfährt so zunächst die Menge des Gemisches von Kohlensäure und Kohlenoxyds. Eine 4 gr. käufliche Citronensäure haltende Röhre wurde zu diesem Zwecke stufenweise von 160° bis auf 195° erhitzt, und das Gas in angegebener Weise gesammelt. Es wurden folgende Zahlen erhalten.

33

			Summa :	702ccm	$CO^2 + CO;$	261 ccm CO.
	8.				$CO^2 + CO;$	13cem CO.
	7.	,,	,, 190°	: 102°°°	$CO^2 + CO;$	46 ^{сет} СО.
	6.	,,			$CO^2 + CO;$	48 ^{cem} CO.
	5.	,,	,, 180°	: 184 ^{ccm}	$CO^2 + CO;$	58 ^{ccm} CO.
	4.	,,	,, 175 ⁰	: 50°cem	$CO^2 + CO;$	18 ^{ccm} CO.
	3.	,,	,, 17 0°	: 34 ^{com}	$CO^2 + CO;$	12 ^{ccm} CO.
0.	2.	,,	,, 1650	: 84 ccm	$CO^2 + CO;$	34 ccm CO.
	4.	Erhitzen	auf 160°	: 70 ccm	$CO^2 + CO;$	32ccm CO.
				A. ocuru		

Genther.

Nun enthielt die Röhre noch ungefähr 24^{ccm} atmosphärische Luft, welche beim Kohlenoxyd zurückblieben. Es waren also nach Abrug dieser 24^{ccm} erhalten worden 678^{ccm} Gas, und dieses enthielt

441 ^{ccm} CO ² e	ntspro	echend	0,871 gr	•
237 ccm CO	,,	,,	0,297 gr	•
$678^{\text{ccm}} \text{ CO}^2 + \text{CO}$,,	,,	1.168 gr	•

Die Entstehungsgleichung verlangt, dass sich auf 2 Mgte CO² 1 Mgt CO bildet, beide müssen also im Gewichtsverhältniss 88 : 28 d. i. nahezu = 3:1 stehen und dem entspricht ein Volumverhältniss der CO² zu CO von 2 : 1. Diesen der Formel nach berechneten Zahlen entsprechen die gefundenen Mengen nahezu. Nur die erst erhaltenen Gasmengen scheinen einen zu grossen Kohlenoxydgehalt zu ergeben; dies rührt jedoch daher, dass die beiden ersten Portionen die Hauptmense der im Rohr enthaltenen atmosphärischen Luft, welche nach dem Waschen mit Natronlauge natürlich beim CO zurückbleiben musste, enthielt. Auch nach dem siebenten Mal Erhitzen wurde die Kohlenoxydmenge etwas zu gross gefunden. Hier hatte dies seinen Grund darin, dass das Gasgemenge erst längere Zeit über Wasser gestanden hatte, ehe die Ablesung vorgenommen wurde, und dass in Folge dessen ein Theil der CO² bereits vom Wasser absorbirt worden war. Also auch diese Gasbestimmungen sprechen dafür, dass ausser der Diconsäure keine andere Säure entstanden ist.

III. Die Diconsäure und ihre Salze.

Diconsäure = $C^9H^{10}O^6$ Sie ist in Wasser, Alkohol und Aether leicht löslich und scheidet sich aus diesen Lösungen in farblosen kleinen, ziemlich gut ausgebildeten, wahrscheinlich dem monoklinen System angehörigen Krystallen aus. Sie schmilzt unter schwacher Bräunung bei 199° bis 200°, fängt aber schon früher, etwa bei 190° an ein Sublimat an den kälteren Theilen des zur Schmelzpunctbestimmung angewandten

504

Röhrchens in Form farbloser, langer, säulenförmiger, in Wasser schwer löslicher Krystalle abzusetzen. Die Menge derselben war aber, trotzdem der Versuch mit etwa 0,6 Grm. wiederholt und die Temperatur allmälig bis 260° gesteigert wurde, doch zu gering, um sie näher untersuchen zu können. — Die Diconsäure reagirt stark sauer und treibt die Kohlensäure leicht aus ihren Verbindungen aus.

Salze.

Die freie Säure erzeugt blos mit einer Lösung von Zinnchlorür einen weissen gelatinösen Niederschlag, ihre löslichen Salze werden gefällt durch Eisenchlorid, basisches Bleiacetat und Zinnchlorür.

Diconsaures Kalium = $C^9H^8K^{2}O^6$. Wird erhalten, wenn man neutrales diconsaures Baryum mit der zur vollständigen Umsetzung nöthigen Menge schwefelsaurem Kalium versetzt. Ist in Wasser ein äusserst leicht lösliches, an feuchter Luft zerfliessliches Salz, das nur langsam über Schwefelsäure zur Trockne verdunstet. Beim Erhitzen auf 470° zersetzt es sich, indem es sich aufbläht.

Analyse: 0,4477 gr. über Schwefelsäure getrocknetes Salz wog nach dem Trocknen bei 450° 0,4307 gr. und hinterliess nach dem Glühen im Platintiegel 0,2025 gr. $CO^{3}K^{2}$ entsprechend 0,1380 gr. = 32,3 % K²O. Der Wasserverlust beträgt 0,0170 gr. = 3,8 %. Die Formel verlangt⁻³2,5 % K²O. 1 Mgt. Krystallwasser beträgt 5,8 %.

Diconsaures Ammonium = $C^{9}H^{8}(NH^{4})^{2}O^{6}$. Die Lösung der Säure mit überschüssigem Ammoniak versetzt, scheidet beim Verdunsten über Schwefelsäure eine hornartige, eigenthümlich wachsglänzende, spröde Masse von krystallinischem Gefüge ah, welche sich in Wasser äusserst leicht löst, an feuchter Luft zerfliesst, etwa bei 95° schmilzt, und höher erhitzt Ammoniak abgiebt.

A nalyse: 0,4909 gr. über Schwefelsäure getrocknete Substanz wog, nachdem sie kurze Zeit auf 95° erhitzt war, 0,4645 gr. und gab beim Destilliren mit Natronlauge 0,2020 gr. NH4Cl, entspr. 0,0642 gr. = 13,8% NH3. Der Wasserverlust beträgt 0,0264 gr. = 5,4%. — Die Formel verlangt 13,7% NH⁸. 4 Mgt. Krystallwasser entspricht 6,8%.

Diconsaures Baryum. Das neutrale Salz = $2 \text{ C}^{9\text{H}^{6}\text{Ba}^{2}\text{O}^{6}}$ + 3 OH^{2} wird erhalten durch Lösen von Baryumcarbonat in der freien Säure oder besser durch Neutralisiren der Säure mit Barytwasser. Es ist ein in heissem schwerer als in kaltem Wasser lösliches Salz, das sich in harten Krystallkrusten beim Verdunsten der Lösung über Schwefelsäure an den Wandungen und am Boden des Krystallisationsgefässes absetzt. Die Krystalle verwittern an der Luft nicht, wohl aber verlieren

a

38*

sie einen geringen Theil ihres Krystallwassers beim Trocknen the Schwefelsäure. Vollständig geht das Krystallwasser erst bei 200° weg. Beim Erhitzen auf 240° zersetzt sich das Salz unter Bräunung.

Analyse: 0,6429 gr. luftrocknes Salz wog nach dem Trocknen bei 200° 0,5984 gr. und gab 0,3977 gr. SO4Ba², entspr. 0,2614 gr. = 43,6% Ba²O (auf trocknes Salz ber.). Der Wasserverlust beträgt 0,0445 gr. = 6,9%. — Die Formel verlangt 43,8% Ba²O und 7,2% OH².

Das saure Salz = $C^{9}H^{9}BaO^{6}$ bildet sich, wenn gleiche Mischgewichte neutrales Salz und freie Säure zur Trockne verdunstet werden. Es ist eine amorphe, glasartige, in Wasser äusserst leicht lösliche Masse.

Analyse: 0,6462 gr. bei 100° getr. Salz ergaben 0,2640 gr. SO4Ba², entspr. 0,1734 gr. = 26,8% Ba²O. – Die Formel verlangt 27,2% Ba²O.

Diconsaures Strontium = $C^9H^{s}Sr^{2}O^{6}$ + 50H². Verdunstet man die Lösung von reinem Strontium-Carbonat in der freien Säure über Schwefelsäure, so scheidet sich das Salz als eine kleinkrystallinische an den Wandungen des Krystallisationsgefässes schaumartig emporkriechende, in kaltem Wasser leichter als in heissem lösliche Masse aus.

A n al y se : 0,4068 gr. lufttrocknes Salz hinterliess nach dem Trocknen bei 200° 0,3110 gr. und gab 0,1888 gr. SO⁴Sr² entspr. 0,1065 gr. = 34,2% Sr²O. (C⁹H⁸Sr²O⁶ verlangt 34,6% Sr²O). Der Wasserverlust beträgt 0,0958 gr. = 23,5%. — Die Formel verlangt 23,2%.

Diconsaures Calcium = $C^{9}H^{s}Ca^{2}O^{6}$ + Oll². Auf gleiche Weise zu erhalten wie das vorige Salz. Es ist ebenfalls eine kleinkrystallinische in kaltem Wasser leichter als in heissem lösliche Masse.

Analyse: 0,2360 gr. lufttr. Salz wog nach dem Trocknen bei 170° 0,2214 gr. und ergab 0,0486 gr. = 22,0% Ca²O. Der Wasserverlust beträgt 0,0446 gr. = 6,2%. — Die Formel verlangt 22,2% Ca²O und 6,7% OH².

Diconsaures Magnesium == $C^{9}H^{5}\dot{M}g^{2}O^{6}$ + 60H². In Wasser leicht lösliche, kleinkrystallinische Masse, die auf gleiche Weise wie die vorige Verbindung zu erhalten ist. Setzt sich in harten Krusten am Krystallisationsgefäss an.

Analyse: 0,5357 gr. lufttrocknes Salz wog nach dem Trocknen bei 460° 0,3680 gr. und gab 0,4706 gr. P²O⁷Mg⁴ entspr. 0,0645 gr. = 16,7% Mg²O. (C⁹H⁵Mg²O⁶ verlangt 16,9% Mg²O). Der Wasserverlust beträgt 0,4677 gr. = 34,3%. Die Formel verlangt 34,4%. —

Diconsaures Eisenoxyd. Versetzt man ein lösliches Salz der Diconsäure mit Ferrichlorid, so entsteht ein im Ueberschuss des Fällungsmittels löslicher, orangerother, nach dem Trocknen mehr ockerfarbiger Niederschlag. Es wurde, da die Analyse nicht zu einfachen Resultaten

Untersuchung von sauerstoffreichen Kohleustoffsäuren.

führte, der Niederschlag von zwei verschiedenen Fällungen untersucht, bei deren erster eine Lösung von gewöhnlichem, käuflichen Eisenchlorid im geringen Ueberschuss, und bei deren zweiter eine Lösung von reinem, durch Sublimation von FeCl² im Chlorstrom erhaltenen Eisenchlorid in zur vollständigen Fällung nicht ganz zureichender Menge angewandt wurde.

4. Analyse des auf die erste Weise erhaltenen Niederschlages :

0,3542 gr. über Schwefelsäure getrocknete Substanz verlor nach dem Trocknen bei 450° 0,0342 gr. = 9,7% Wasser, und gab 0,0843 gr. =26,3% Fe²O³ (auf trocknes Salz berechnet).

2. Analyse des auf die zweite Weise erhaltenen Niederschlages :

0,3493 gr. lufttrocknes Salz verlor bei 150° 0,0870 gr. = 25,0% Wasser, und gab 0,0678 gr. = 25,8% Fe²O³ (auf trocknes Salz ber.). Ueber 150° erhitzt zersetzt sich das Salz.

Ware das entstandene Salz den vorigen analog zusammengesetzt, so müsste ihm die Formel $(C^9H^{\circ}O^6)^{3}Fe^2$ zukommen. Diese aber enthält 21,4% Fe²O³. Wir haben hier eine eisenreichere Verbindung wahrscheinlich von der Formel: $C^9H^9 \left[\overset{\text{m}}{\text{Fe}}(\text{OH})^2 \right] O^6$. Diese verlangt 26,4%Fe²O³.

Diconsaures Manganoxydul = $C^{9}H^{8}MnO^{6} + 5OH^{2}$. Wird in ziemlich gut ausgebildeten, farblosen, luftbeständigen, tafelförmigen, wahrscheinlich dem monoklinen System angehörigen Krystallen erhalten, wenn man die Lösung von reinem Mangano-Carbonat in der freien Säure über Schwefelsäure verdunstet.

A n al yse: 0,4305 gr. lufttrocknes Salz verlor beim Erhitzen auf 160° 0,1070 gr. = 24,9% Wasser (die Formel verlangt 25,2%), und ergab 0,0904 gr. Mn³O⁴ entspr. 0,0844 gr. = 26,3% MnO. (Die Formel C⁹H^{*}MnO⁶ verlangt 26,6%.)

Diconsaures Cobaltoxydul = $C^{9}H^{8}CoO^{6} + 6OH^{2}$. Cobalto-Carbonat löst sich in der Diconsäure mit schön rother Farbe auf. Beim Verdunsten der Lösung scheiden sich kleine tafelförmige, monokline Krystalle aus. Die krystallwasserhaltigen sind rosenroth, die wasserfreien blau.

A nałyse: 0,4407 gr. lufttrocknes Salz wog nach dem Trocknen bei 200° 0,2924 gr. und gab 0,0869 gr. Co³O⁴, entspr. 0,0814 gr. = 27,8% CoO. (Die Formel C⁹H⁸CoO⁶ verlangt 27,7% CoO.) Das geglühte Co³O⁴ wurde zur Controle noch in SO⁴Co übergeführt. Die Analyse gab dasselbe Resultat. — Der Wasserverlust beträgt 0,4483 gr. = 28,8%. — Die Formel verlangt 28,5%.

Diconsaures Nickeloxydul = $C^{9}H^{6}NiO^{6} + 6OH^{2}$. Ist auf gleiche Weise wie das vorige Salz zu erhalten. Es scheidet sich beim

507

Verdunsten der Lösung in kleinkrystallinischen, schwach meergrünen Krusten ab.

An alyse: 0,3376 gr. lufttrocknes Salz wog nach dem Trocknes bei 200° 0,2416 gr. und ergab 0,0661 gr. = 27,4% NiO. (Die Formel G⁹H⁸NiO⁶ verlangt 27,7% NiO.) Der Wasserverlust beträgt 0,0960 gr. = 28,4%. – (Die Formel verlangt 28,5%.)

Diconsaures Zink. Das neutrale Salz = $C^9H^6ZnO^6 + 60H^2$ scheidet sich beim langsamen Verdunsten einer Lösung von Zinkcarbonat in Diconsäure in monoklinen Tafeln aus.

A n al y se: 0,5144 gr. an der Luft auf Fliesspapier getrocknetes Salz wog nach dem Trocknen bei 150° 0,3714 gr. und ergab 0,1081 gr. = 29,4% ZnO. (Die Formel C⁰H⁵ZnO⁶ verlangt 29,3% ZnO.) Der Wasserverlust beträgt 0,1427 gr. = 27,6%. (Die Formel verlangt 28,0% Oll².)

Das saure Salz = $(C^{9}H^{9}O^{6})^{2}Zn + 7OH^{2}$ wird auf gleiche Weise wie das saure Baryumsalz erhalten. Es ist krystallinisch, und zwar zeigen die Krystalle deutlicher den Typus des monoklinen Systems.

A n a l y s e : 0,2373 gr. lufttrocknes Salz verloren bei 450° 0,0480 gr. = 20,2% Wasser, und ergaben 0,0315 gr. = 16,6% ZnO. — Die Formel verlangt 20,4% Oll² und 16,5% ZnO.

Diconsaures Blei. Neutrales Baryumsalz mit essigsaurem Blei vermischt, setzt an den Wandungen kleine, wahrscheinlich dem tetragonalen System angehörige Krystalle ab. Es ist dies wahrscheinlich das neutrale Salz der zweibasischen Säure. Mit basisch essigsaurem Blei giebt diconsaures Baryum einen flockigen Niederschlag; wahrscheinlich ein basisches Salz der Diconsäure. Zur Analyse beider Salze stand nicht genug Substanz zu Gebote.

Diconsaures Kupfer = $C^9 II^s CuO^6 + 3OII^2$. Durch langsames Verdunsten eines Gemisches der nicht zu verdünnten Lösungen von diconsaurem Baryum und essigsaurem Kupfer scheiden sich harte, in Wasser unlösliche blaugrüne Krystalle, wahrscheinlich monokline Säulen, aus.

A nalyse: 0,1434 gr. lufttrockenes Salz wog nach dem Trocknen bei 160° 0,1196 gr. und ergab 0,0335 gr = 28,9% CuO. (Für trocknes Salz berechnet sich 28,8% CuO.) Der Wasserverlust beträgt 0,0238 gr = 16,6%. (Die Formel verlangt 16,4%.)

Basisch diconsaures Zinnoxydul == $C^{9}II^{7}$ (SnOII) SnO⁶ + 4 Oll². Bildet sich als ein voluminöser Niederschlag beim Fällen von diconsaurem Barynm mit möglichst säurefreiem Zinnchlorür. Der Niederschlag ist sowohl in Säuren als auch im Ueberschuss des Fällungsmittels löslich. Die Analyse wurde in der Art bewerkstelligt, dass das getrocknete Salz in Salzsäure gelöst, und das Zinn mittelst SH² ausgeschieden wurde. Das erhaltene SnS wurde gesammelt, getrocknet, und nach dem Rösten im Porzellantiegel als SnO² gewogen. Es wurden zur Analyse angewandt 0,2823 gr. des über Schwefelsäure getrockneten Niederschlages. Nach dem Trocknen bei 200° wog derselbe 0,2438 gr. Der Wasserverlust beträgt mithin 0,0385 gr. = 43,6%. (Die Formel verlangt 13,4% OH².) Durch Rösten des Schwefelwasserstoffniederschlages wurden erhalten 0,4586 gr. SnO², entsprechend 0,4413 gr. = 58,0% SnO. (Die Formel C²H⁵Sn²O⁷ verlangt 57,8% SnO.)

Diconsäure-Acthyläther = $C^{9}H^{8}(C^{2}H^{5})^{2}O^{6}$. Wird erhalten, wenn man die Säurekrystalle mit absolutem Alkohol, der mit Salzsäure gesättigt ist, übergiesst, und mehrere Tage in gelinder Wärme digerirt. Nach mehrmaligem Schütteln löst sich die Säure. Aus der nunmehr homogenen Flüssigkeit wird der Aether mittelst Wasser als ein schweres zu Boden sinkendes Oel abgeschieden. Durch öfteres Waschen mit $CO^{3}Na^{2}$ und Wasser wird derselbe von noch anhaftender Salzsäure und Alkohol gereinigt. Zur weiteren Darstellung empfiehlt es sich, namentlich wenn man nur über geringe Mengen zu verfügen hat. den Diconsäure-Aether, nachdem er durch Abheben möglichst von den fremden Flüssigkeiten getrennt ist, mittelst Aether auszuziehen, diese Lösung mit Chlorcalcium zu entwässern, und hierauf über Schwefelsäure den überschüssigen Aether wieder zu verdunsten. Der Diconsäure-Aether lässt sich weder für sich, noch mit Wasserdämpfen destilliren. Im letzteren Falle scheint er wieder in freie Säure und Alkohol zu zerfallen.

A nalyse: 0,2140 gr. über Schwefelsäure getrocknete Substanz gab beim Verbrennen 0,4553 gr. CO² entspr. 0,1242 gr. = 58,0% C und 0,1338 gr. OH² entspr. 0,0149 gr. = 6,9% H.

-	ber.	gef.
C13	57,8	58,0
H18	6,7	6,9
06	35,5	

Constitution der Diconsäure.

Die Diconsäure ist, wie aus den Analysen ihrer Salze hervorgeht, für gewöhnlich zweibasisch, d. h. wir müssen in ihr zwei Carboxylgruppen (CO.OH) annehmen. Im Zinnoxydulsalz ist jedoch auch ein drittes Atom II durch eine Metallgruppe ersetzt, wir haben also eine dreiatomig-zweibasische Säure von der Zusammensetzung:

 $C^{9}H^{10}O^{6} = C^{7}H^{7}O.(OH).(CO.OH)^{2}.$

A. Geuther,

Um nun auf die innere Structur der Gruppe C⁷H⁷O schliessen u können, müssen wir auf die Entstehung der Diconsäure zurückgeben. Sie bildet sich aus zwei Mischungsgewichten Aconitsäure, wir haben sie also von einer Di-Aconitsäure abzuleiten, der wir, wenn der Aconisäure die Formel

$$C^{\epsilon} H^{\epsilon} O^{\epsilon} = CO OH$$

zukommt, nach Analogie der Di-Essigsäure, folgende Formel geben können:

$$2 C^{6}H^{6}O^{6} = C_{O}^{C_{CH}}O^{C_{CH}}O^{C_{CH}}O^{C_{CH}}O^{C_{H}}$$

Daraus kann man sich zunächst durch Weggang von 2 CO² eine Di-Säure entstanden denken, welche den aus der Aconitsäure durch trockne Destillation entstehenden drei Säuren, Ita-, Citra-, und Mesaconsäure, polymer ist. Es kann also als momentanes Zwischenproduct der Zersetzung eine Verbindung von der Constitution

$$2 C^{5}H^{6}O^{4} = CO OH OH CO^{0}OH CO^{0}OH$$

auftreten. Aus dieser Säure geht nun, indem sich noch ein Mgt. CO und OH² trennt, unsere neue Säure hervor, der wir die Structurformel

$$C^{9}H^{10}O^{6} = C_{O}^{C_{H}^{+} - C_{O}^{+}C_{H,(CO,OH)}^{+}}O^{C_$$

beilegen können.

Es ist übrigens das Auftreten von Itaconsäure oder einer der ihr metameren Säuren als momentanes Zwischenproduct bei der Zersetzung gar nicht so unwahrscheinlich. Wenigstens sprechen dafür die Versuche von MARKOWNIKOFF und PURGOLD¹), welche Chemiker beim Erhitzen von Citronensäure mit Wasser, oder besser mit verdünnter Schwefelsäure auf 160° unter starker Kohlensäureentwicklung Krystalle von Itaconsäure

4) Zeitschrift für Chem. 1867, p. 364.

510

hielten. Es lässt sich diese Frage am leichtesten dadurch entscheiden, iss man diese Säuren auf gleiche Weise wie Citronensäure mit Salziure erhitzt. Ich stellte in dieser Hinsicht nur einige Vorversuche mit itraconanhydrid an, welche jedoch nicht zum gewünschten Resultat zu hren schienen. Derselbe geht beim Erhitzen auf 420° bis 430° wie hon bekannt in Mesaconsäure über, und diese zersetzt sich beim Ertzen auf 450° weiter, indem sich zugleich ziemlich beträchtliche Gasitwickelung bemerkbar macht. Das Gas besteht jedoch nicht blos aus O, wie es sein müsste, wenn die Reaction in gedachter Weise verliefe.

Auch zur Aconsäure steht die Diconsäure in einer einfachen Bezieing, welche folgende Formelgleichung ausdrückt:

> Dicons. Acons. $C^{9}H^{10}O^{6} = 2 C^{5}H^{4}O^{4} - CO^{2} + 2 H.$

Die in vorstehender Abhandlung beschriebenen Versuche wurden 1 hiesigen chemischen Universitätslaboratorium unter Leitung des Herrn rof. GRUTHER ausgeführt. Ich fühle mich dem Letzteren für die freund-2 hen Rathschläge, welche er mir bei Ausführung der Versuche zu Theil erden liess, zum wärmsten Dank verpflichtet.

Jena den 4. März 1873.

Vorläufige Mittheilungen über Cölenteraten.

Vou

G. v. Koch.

Hierzu Taf. XXVI.

Fortsetzung.

III. Zur Anatomie und Entwicklung von Tubularia.

Die Anatomie und Entwicklungsgeschichte von Tabularia laryn, welche ich, anknüplend an das darüber schon Bekannte, in folgenden Zeilen gebe, beschränkt sich auf diejenigen allgemeinen Verhältnisse des Baues, die mir für die Vergleichung der Tubularien mit anderen Hydroiden wichtig erschienen. Eine eingehendere Arbeit, besonders über Muskeln und Ectoderm, über die physiologische Bedeutung des Entoderms in verschiedenen Körperabtheilungen etc., haben wir in nächster Zeit von Dr. KLEINENBERG in Neapel zu erwarten, weshalb ich hinsichilich der specielleren Verhältnisse auf diesen verweise. —

Die Tubularien unterscheiden sich in ihrem Bau hauptsächlich dadurch von ihren Verwandten, dass die Wand der aboralen Körperhälfte bedeutend verdickt erscheint. Diese Verdickung wird gebildet durch einen, weit in die Magenhöhle vorragenden ringförmigen Wulst von grossen, hellen Zellen mit deutlichen, meist wandständigem Kern. Der Ringwulst ist nach aussen von der Muskel- und Ectodermschicht, nach innen von dem Entoderm bedeckt und von beiden durch eine dünne, in Karmin sich sehr stark färbende Schicht von Zwischensubstanz geschieden. — Eine weitere Auszeichnung der Tubularien, die sie aber mit einigen anderen Gattungen (z. B. Coryne) theilen, bilden die, verschieden weit nach innen vorspringenden, oft mit ihrem unteren Ende frei in die Magenhöhle hineinragenden Längswülste, welche sich in der schlankeren Mundhälfte des Körpers finden. Dieselben bestehen aus ganz ähnlichen grossen, hellen Zellen, wie der eben beschriebene Ringwulst und sind nach innen von einer Schicht von Entodermzellen bedeckt. Nach aussen sind sie durch eine Schicht von Zwischensubstanz begrenzt, welche auf sich in ihrem unteren Theil Muskeln und Ectoderm, oben aber die Basen der Mundtentakeln trägt. — Beide Arten von Wulstbildungen sind, wie die Entwicklungsgeschichte zeigt, von dem Entoderm abzuleiten. —

Die, in zwei Kreisen stehenden Tentakel sind wie bei den meisten anderen Hydroiden gebaut. Sie bestehen aus einem Strang von hellen, sehr dünnwandigen und ziemlich grossen Zellen, welcher von Längsmuskeln und einer Ectodermschicht überlagert ist. Bei den um den Mund stehenden Tentakeln des ersten Kreises ist die Basis in der Richtung der Hauptachse des Körpers verlängert und liegt auf der Grenzmembran der oben geschilderten Längswülste. Die des zweiten Kreises, die Randtentakel sind directe Fortsetzungen des Ringwulstes. —

Die Geschlechtsorgane sind an den einzelnen Individuen in verschiedener Zahl vorhandene Trauben, von ellipsoiden Gemmen zusammengesetzt, welche letztere aus einem cylindrischen Stiele hervorsprossen. Dieser wächst in der mittleren Zone des Körpers, innerhalb des zweiten Tentakelkreises aus der Leibeswand hervor, wo diese nur aus Ectoderm und Entoderm mit trennender Zwischenmembran besteht. Seine Wand ist eine directe Fortsetzung der Leibeswand, wie sich an Schnitten sowohl für Entoderm, als auch für Ectoderm und Zwischenmembran nachweisen lässt.

Die Gemmen entwickeln sich aus kolbigen Ausstülpungen des eben geschilderten Stieles und bestehen daher im Anfang blos aus zwei einfachen Zellschichten, dem Entoderm und Ectoderm. Das letztere bleibt während des weiteren Wachsthums ziemlich unverändert, nur werden die Zellen immer flacher, da ihre Vervielfältigung mit der Vergrösserung der zu bedeckenden Fläche nicht gleichen Schritt hält. Das erstere dagegen verdickt sich durch Vermehrung seiner Zellen und zwar zuerst am freien Ende der Ausstülpung, dann während der Vergrösserung dieser, nimmt jene Wucherung des Entoderms immer mehr zu, und in einem bestimmten Alter der Knospe erscheint dieselbe als ein, genz aus Entodermzellen gebildetes Ellipsoid, das aussen von dem sehr verdünnten Ectoderm überzogen und innen von der cylindrischen, in der Längsachse gelegenen Ernährungshöhlung durchsetzt wird. - Später differenzirt sich die aus dem ursprünglichen Entoderm hervorgegangene Zellmasse und man kann dann an ihr eine äussere, dem Ectoderm anliegende und eine innere, die Ernährungshöhle auskleidende Schicht unterscheiden. Die zwischen beiden übrig bleibenden indifferenten Zeit werden später bei den weiblichen Individuen zu den Eiern, bei männlichen aber entstehen aus ihnen durch Theilung die Samenmutazellen.

Bis hierher ist die Entwicklung der Gemmen bei beiden Geschlettern ganz ähnlich und bei den männlichen gehen auch keine bedeutsderen Veränderungen mehr vor sich. Bei den weiblichen aber entstehe noch 4, als erste Andeutung schon früh bemerkbare, tentakelarig Fortsätze am freien Ende. Diese sind ähnlich wie bei dem Polype Fortsätze des Ectoderms, welche mit Zellen, die von der, aus dem Entederm hervorgehenden äusseren Zellschicht abgeleitet werden können, ausgefüllt sind. —

Aus den, mit grossem deutlichen Nucleus und hellerem Nucleolus vasehenen Eiern entwickeln sich Planulae von der Gestalt eines Drehungsellipsoides, dessen Hauptachse die kürzere ist. Diese Planulae, dene der Flimmerbesatz zu fehlen scheint, bestehen wie gewöhnlich aus zwei einfachen Zellschichten, welche einen kleinen Binnenraum einschliessen. lhre erste Veränderung geschieht durch die Anlage von anfangs i, dam 8 Tentakeln in Gestalt warzenförmiger Erhebungen. Letztere bestehen aus einer Ausbuchtung des Ectoderms, welche mit Entoderm ausgefülk ist und liegen im grössten Kreis des Sphaeroids. Dadurch erscheint in diesem Stadium die Planula sternförmig. Ihre Weiterentwicklung zeigt sich hauptsächlich in einer Aenderung der Gestalt, welche nach und nach birnförmig wird und in der Verlängerung der zuerst angelegten Randtentakel. Diese letzteren, welche jetzt, schon wie im fertigen Zustand, aus einem vom Entoderm herstammenden Zellstrang bestehen, der vom Ectoderm überkleidet wird, zeigen einige Eigenthümlichkeiten. Als erste führe ich an die Krümmung derselben nach dem aboralen Pole zu, als zweite die geringe Dicke des Ectoderms und seinen Mangel an Nesselzellen an der dem Munde zugewendeten Seite.

Haben die eben beschriebenen Embryonen ungefähr die Länge von 0,5 mm erreicht, wobei die Randtentakeln schon ziemlich vollständig entwickelt und die Mundtentakeln in einzelnen Fällen schon angelegt sind, so verlassen sie die Gemme und schwimmen einige Zeit im Wasser umher. Finden sie dabei einen passenden Gegenstand, so setzen sie sich an denselben mit ihrem aboralem Ende fest, dieses streckt sich bedeutend und die Randtentakel biegen sich nach dem Mund zu. Bald nach dem Festsetzen entwickeln sich auch die Mundtentakel, welche aber, wie vorhin bemerkt, auch schon eher auftreten können.

Vorläufige Mittheilungen über Cölenteraten.

An der, in ihrer Entwicklung bis hierher verfolgten ¹), Tubularia rfolgt nun, ausser einer schärferen Differenzirung des Entoderms zu en ausführlich beschriebenen Wulstbildungen keine bedeutende Vernderung mehr und kann somit die Entwicklungsgeschichte derselben orläufig abgeschlossen werden.

Erklärung der Tafel XXVI2).

Fig. 4. Längsschnitt durch Tubularia larynx. a. Ringwulst, b. Längswülste, Randtentakel, d. Mundtentakel.

Fig. 2. Querschnitt nach der Linie y-z. b. Längswülste, d. Tentakel.

Fig. 3. Entoderm von der Stelle v stärker vergrössert.

Fig. 4 u. 5. Ectodermzellen eines Tentakel stärker vergrössert im Längschnitt.

Fig. 6. Durchschnitt durch die Basis des Stiels von einer Geschlechtstraube.

Fig. 7. Erste Anlage einer Geschlechtstraube.

Fig. 8. Erste Anlage einer Geschlechtsgemme.

Fig. 9 - 18. Verschiedene Entwicklungsstadien einer Genime.

Fig. 44. Ei.

Fig. 15. Planula im Durchschnitt.

Fig. 46. Embryo mit angelegten Tentakeln.

Fig. 47. Etwas älterer Embryo.

Fig. 18. Ein Stück Tentakel desselben.

Fig. 19. Seit kurzer Zeit festsitzender Embryo.

4) Die Entwicklung der Muskulatur etc. habe ich nicht untersucht und verweise h deshalb, wie schon oben gesagt, auf die Arbeit Dr. KLEINENBERG's.

2) Die Figuren sind alle möglichst schematisch gehalten. Es bedeutet überall Retoderm n Entoderm.

Zur Morphologie der Infusorien.

Von

Ernst Haeckel.

Hiersu Tafel XXVII und XXVIII.

Keine Classe des Thierreichs hat bis in die neueste Zeit so widersprechende Ansichten bezüglich ihrer wahren Organisation und der dadurch bedingten Stellung im System hervorgerufen, wie diejenige der Infusorien. Noch heute herrschen darüber unter den genauesten Kennen dieser Thierclasse die lebhaftesten Controversen. Nicht weniger als drei von den sie ben grossen Hauptabtheilungen des Thierreichs, den »Typen« oder Phylen, streiten sich um den Besitz der Infusionsthiere. Mit derselben Bestimmtheit, mit der die eine Gruppe von Zoologen die Infusorien für Würmer erklärt, stellt sie eine zweite Gruppe zu den Zoophyten oder Cölenteraten, und eine dritte Gruppe zu den Urthieren oder Protozoen. Noch heute ist nicht einmal die erste Vorfrage erledigt, welche hierbei massgebend sein und jede nähere morphologische Erörterung bestimmen sollte: ob nämlich der Infusorien-Körper den Formwerth einer einfachen Zelle besitzt oder nicht Diese Thatsache allein beweist, wie weit wir noch von einer befriedigenden Erkenntniss der Infusorienclasse entfernt sind. Sie muss aber doppelt befremdend erscheinen, wenn man den verhältnissmässig colossalen Umfang betrachtet, welchen die Literatur über diese Thierclasse in den letzten Decennien erlangt hat.

Ausführliche Untersuchungen, welche ich in den letzten fünf Jahren über die Thierclasse der Spongien angestellt habe und welche in der vor einem Jahr erschienenen Monographie der Kalkschwämme¹) ihren vor-

⁴⁾ ERNST HAECKEL, Die Kalkschwämme (Calcispongien oder Grantien). Eine Monographie. I. Band : Biologie. II. Band : System. III. Band : Atlas mit 60 Tafein Abbildungen. Berlin, G. REIMER. 1872.

läufigen Abschluss gefunden haben, mussten mich veranlassen, vielfach auch die Organisation der Infusorien in Betracht zu ziehen und zu vergleichen. Denn in zahlreichen zoologischen Werken werden die beiden Classen der Spongien und Infusorien als nächste Verwandte betrachtet und unmittelbar nehen einander in der Abtheilung der Protozoen untergebracht. Das Ergebniss meiner Untersuchungen hat diese weitverbreitete Ansicht nicht nur nicht bestätigt, sondern wie ich glaube definitiv widerlegt. Während ich für die Spongien die nächste Verwandtschaft mit den Hydroid-Polypen und ihre Zugehörigkeit zum Stamme der Zooph yten (oder Cölenteraten) nachweisen konnte, bin ich bezüglich der Infusorien zu ganz anderen Resultaten gelangt. Da ich diese in der Monographie der Kalkschwämme nur flüchtig berührt habe, will ich sie hier ausführlicher mittheilen, und sehe mich dazu besonders veranlasst durch die lebhaften Streitigkeiten, welche erst in den letzten Monaten wieder über die Deutung der Infusorien-Organisation aufgetaucht sind.

Alle die verschiedenartigen und widersprechenden Ansichten über die Organisation und den Fornwerth der Infusorien lassen sich füglich in drei grosse Gruppen bringen : nach der einen Ansicht sind die Infusorien hochorganisirte Thiere, welche sich zunächst an die Räderthiere, mithin an die Würmer anschliessen (EHERNDERG); nach einer zweiten Auffassung sind dieselben Gölenteraten, welche in den Hydroiden ihre nächsten Verwandten finden (CLAPAREDE); nach einer dritten Beurtheilung besitzen sie nur den Formwerth einer einfachen Zelle, und sind demnach Protozoen (SIEBOLD). Zwischen diesen drei grundverschiedenen Auffassungen bewegen sich noch mehr oder minder vermittelnde Ansichten verschiedener Beobachter.

EBRENBERG hat bekanntlich in seinem grossen Infusorien-Werke¹), welches die erste genauere Beschreibung und Classification der Infusorien gab, diese Organismen »nach dem ihm eigenen Princip überall gleich vollendeter Entwicklung«²) beurtheilt und ihnen demgemässeine im Wesentlichen eben so vollkommene Zusammensetzung wie den höheren Thieren und wie dem Menschen zugeschrieben.

⁴⁾ EHRENDERG, die Infusionsthierchen als vollkommene Organismen. Leipzig, 1888.

³⁾ EHRENDERG hat sein »Princip überall gleich vollendeter Entwicklung« zuerst 1885 in der Abhandlung ȟber die Acalephen des rothen Meeres und den Organismus der Medusen der Ostsee« mitgetheilt (Abhandl. der Berliner Akademie, 1885, p. 184). Nach diesem Principe, welches EHRENBERG bis auf den heutigen Tag beibehalten hat, besitzen alle Thiere, bis zur Monade herab, einen und denselben gleichen Bildungs-Typus. In keiner Classe ist die Organisation einfacher als in der anderen. »Ein Thier ist jeder dem Menschen in den Hauptsystemen des Organismus gleicher lebenden Körper ohne Gleichmass dieser

Verhängnissvoll für den fundamentalen Irrthum, von welchem Enzi-BERG bei dieser consequent ausgebildeten Auffassung ausging, war in Umstand, dass er die ganze Abtheilung seiner »Infusionsthierchen in zwei verschiedene Classen brachte : Magenthiere (Polygastrick und Räderthiere (Rotatoria); und dass er die Organisation in ersteren durch diejenige der letzteren zu erklären versuchte. Ueben bildet die (von ihm sehr unrichtig gedeutete) Organisation der Räder thiere die Basis, auf welche auch diejenige der Magenthiere zurückgführt werden soll. »Die Magenthiere sind rückenmarkslose und pulske Thiere mit in zahlreiche blasenartige Magen zertheiltem Speisecankmit (wegen Knospenbildung oder Selbsttheilung) unabgeschlossen Körperform, mit doppeltem vereinten Geschlecht, bewegt durch (mit wirbelnde) Scheinfüsse und ohne wahre Gelenkfüsse«.

Gegenüber dieser Anschauung EHRENBERG's, welche unter zahlreiche Zoologen mehr oder minder vollständige Zustimmung fand, trat 184 CARL THEODOR VON SIEBOLD 1) mit der Ansicht auf, dass die Infusorien viel einfacher organisirt seien, und dass ihr ganzer Körper nur den Fornwerth einer einfachen Zelle besitze. Er wies nach, dass die »Rotatoria« cine ganzlich verschiedene und viel höhere Organisation besitzen als die »Polygastrica«, und dass EHRENBERG in dieser letzteren Gruppe eine bunte Gesellschaft von höchst verschiedenartigen niederen Orgnismen, theils Thieren, theils Pflanzen zusammengeworfen, sowie dere Körpertheile ganz willkürlich und unrichtig gedeutet habe. Mit einleuchtender Klarheit führte SikBOLD ferner den Nachweis, dass die echten Infusorien, welche er auf die beiden Ordnungen der Astoma (= Flagellata) und Stomatoda (= Ciliata) beschränkte, pr solche Organismen enthalten deren Formwerth denjenigen einer Zelk nicht überschreite. Der »Nucleus« entspricht einem gewöhnlichen Zellenkern, die »gallertige contractile Körpersubstanz« dem »Zelleninhalte oder der Zellsubstanz, und die äussere flimmernde Hülle der »Membrane einer gewöhnlichen Flimmerzelle. Mit dieser Deutung machte SIEBOLD nicht allein den ersten Versuch, den Infusorien-Körper der 6 Jahre zuvor von SCHLEIDEN und SCHWANN aufgestellten Zellentheorie zu unterwerfen : sondern er begründete auch diesen ersten Versuch in der 1845 erschienenen ersten Lieferung seines Lehrbuchs der vergleichenden Anatomie in so

Systeme oder jeder (und mit Sicherheit nur ein solcher) Organismus, welcher ein Ernährungssystem, ein Bewegungssystem, eis Blutsystem, ein Empfindungssystem und ein Sexualsystem besitzt«.

⁴⁾ C. Th. v. SIEBOLD, Lehrbuch der vergleichenden Anatomie. 1. Lief. 1845.

 vorztiglicher Weise, dass er als der bedeutendste Fortschritt in der tieferen Erkenntniss der Infusorien überhaupt bezeichnet werden kann.
 Für das System des Thierreichs that Sikbold zugleich dadurch einen höchst bedeutsamen Schritt, dass er (schon 1845) die beiden Classen der Infusorien und Rhizopoden in einer »Hauptgruppe« des Thierreichs vereinigte, welche er »Protozoen« oder Urthiere nannte, und mit folgenden Worten characterisirte : »Thiere, in welchen die verschiedenen Systeme der Organe nicht scharf ausgeschieden sind, und deren unregelmässige Form und einfache Organisation sich auf eine Zelle reduciren lassen« (l. c. p. 3).

Diese epochemachende Theorie Steboln's von der »Einzelligkeit der Infusorien« fand 4 Jahre später ihre entschiedenste Vertretung und weitere Ausbildung durch Kölliker. Nachdem derselbe 4848 in seinen »Beiträgen zur Kenntniss niederer Thiere« die Einzelligkeit der Gregarinen nachgewiesen, und (1849) in seinem Aufsatze über »das Sonnenthierehen« (Actinophrys sol)¹/ ausdrücklich für alle Infusorien den Formwerth einer einzigen Zelle in Anspruch genommen hatte, ist er später bemüht gewesen, die Theorie von der Einzelligkeit der Infusorien in seinen Icones histiologicae (1864) ausführlicher zu begründen und mit den neueren Fortschritten der Infusorien-Kunde in Einklang zu bringen. Unter den folgenden Beobachtern der Infusorien hat diese Theorie einerseits ebenso entschiedene Theilnahme, als andererseits lebhaften Widerspruch erfahren. Die gewichtigste Vertretung hat sie neuerdings durch STEIN gefunden, wenn auch nur in bedingtem Sinne. Stein bekämpft nämlich zwar auf Grund seiner vieljährigen gründlichen Infusorien-Beobachtungen die »Vielzelligkeit« des Infusorien-Körpers auf das Entschiedenste, fügt dann jedoch hinzu: »die Infusorien sind in Bezug auf ihren Ursprung entschieden einzellige Thiere. Die ausgebildeten Infusionsthiere aber wird man immer Anstand nehmen müssen, als einzellige Organismen zu bezeichnen; denn sie sind nicht blos fort-

⁴⁾ Zeitschrift für wissenschaftliche Zoologie, Bd. I. 4849, p. 4; p. 240. In der Beschreibung der Actinophrys sol sagt Kölliken: «Ich gehe davon aus, dass die Infusorien alle ohne Ausnahme aus einer einzigen Zelle bestehen. Ich glaube nämlich, dass, was ich für die Gregarinen nachgewiesen habe, für alle eigentlichen Infusorien gilt, wie es auch schon von Sikbold in seiner vergleichenden Anatomie aufs Schönste nachgewiesen worden ist. Für mich sind alle Infusorien gleich einer Zelle, die bei den einen ganz geschlossen ist, bei den anderen einen Mund oder selbst zwei Oeffnungen hot. Dass dem so ist, kann für den, der eine Opalina, Bursaria, Nassula etc. nur etwas genauer untersucht, auch nicht dem geringsten Zweifel unterliegen; er wird meist eine contractile und mit Wimpern besetzte structurlose Zellmembran, einen oft theilweise contractilen Zelleninhalt mit Körnern und Vacuolen und fast immer einen homogenen oft sonderbar gestalteten Kern finden«.

Bd, VII. 4.

gewachsene Zellen, sondern der ursprüngliche Zellenbau hat eine wesentlich anderen Organisation Platz gemacht, die der Zelle als sokhe durchaus fremd ist«¹). In neuester Zeit haben sich EHLERS und Ernan in einer »vorläufigen Mittheilung« mit Bestimmtheit zu Gunsten der Einzelligkeit ausgesprochen²).

Die entschiedenste Bekämpfung fand natürlich die Theorie von de Einzelligkeit durch EHRENBERG selbst, welcher in Folge seiner volistiedigen Unkenntniss der Entwicklungsgeschichte der Thiere noch bet an »dem ihm eigenen Princip gleich vollendeter Entwicklunge aller The festhält, und auch die allgemein verlassene »polygastrische Theore noch heute vertheidigt. Ausserdem aber wurde die »Einzelligkei bald auf das Lebhafteste angegriffen von CLAPAREDE und LACHNARE. welche in ihren ȃtudes« (1858), abweichend von allen früheren Autora die Infusorien zu den Cölenteraten versetzen, und behaupten, dass de verdauende Leibeshöhle dieser letzteren oder der characteristische »Gastrovascular-Raum« ganz ebenso auch bei den Infusoria wiederkehre. In der That ist aber diese »coelenterische Theories ebens wenig mit der Anatomie und Ontogenie der Infusorien vereinbar, # die »polygastrische Theorie« EHRENBERG's, und ehen so wenig, als de Infusorien nach dieser letzteren zu den Würmern gestellt werden könne. eben so wenig ist die von der ersteren geforderte Verwandtschaft mit den Gölenteraten nachweisbar. In neuester Zeit ist RICHARD GREW wiederum ganz auf CLAPAREDE und LACHWANN zurückgegangen, und be gerade denjenigen Theil ihrer Darstellung, welcher für ihre Auffassur

¹⁾ STEIN, der Organismus der Infusionsthiere. II. Abtheilung. Leipzig 1867, p. 2

²⁾ ERLERS und EVKRTS, Untersuchungen an Vorticella nebulifera; Sitzungberichte der phys. med. Soc. zu Erlangen, vom 26. Mai 1873.

³⁾ CLAPAREDE et LACHMANN, Études sur les Infusoires et les Rhizopodes. Genève 4858, 4864. 2 Voll. Vol. I., p. 44. «On serait tenté de croire, que la théorie de l'unicellularité des infusoires n'a plus aujourd'hui qu'un intérêt historique, comme celle de la polygastricité. Cependant elle compte encore un champion bien décide un de ses anciens défeuseurs, M. KÖLLIKER, qui a releve courageusement, dans su Memoire récent, le drapeau chancelant de son école, comme M. EBRENBERG viet d'arborer de nouveau celui de la sienne. Chacun d'eux, le dernier des Mobicans de ses propres idées. La theorie de l'unicellularite des infusoires n'a pas bésoin d'être combattue ici plus en détail. L'ouvrage que le lecteur a sous les yeux, n'est qu'une longue protestation contre elle. Chacune de nos pages est un nouveau coup de hacke porté à sa bases. Diese letzteren schneidigen Satze wenden wir direct gegen ibn Autoren selbst, indem wir nachstehend zu zeigen hoffen, dass die Auffassung der Infusorien-Organisation von CLAPAREDE und LACHMANN eben so falsch und von Grand aus verfehlt ist, wie diejenige von EHMENBERG. «Jede unserer Seiten ist ein new Axthieb gegen ihre Basis».

Zur Morphologie der Infusorien.

der Infusorien-Organisation characteristisch ist, nämlich die Lehre von der vollständigen Uebereinstimmung des »Darmeanals« der Infusorien mit dem »Gastrovascular-System der Gölenteraten« als seine eigene neue Théorie zu begründen versucht. GREEFF sicht »in der Körperhöhle der Vorticellen einen Gastrovascular-Raum im vollen Sinne des Wortes, eine Körperhöhle, in der die Verdauung und Circulation, resp. Ernährung ganz in derselben Weise erfüllt wird, wie bei den Cölenteraten« (l. c. p. 192). An die Haut und die darunter liegenden Muskeln schmiegt sich nach innen eine Protoplasma-Zone an, die eigentliche Rindenschicht des Infusorien-Körpers, die den ganzen Innenraum oder Leibeshöhle umschliesst und auskleidet. In dieser Rindenschicht und durch sie in ihrer Lage festgehalten liegen auch die Hauptorgane des Körpers, nämlich der Nucleus, der contractile Behälter und der Hauptabschnitt des Verdauungscanales«⁴) (l. c. p. 383).

Zur weiteren Verständigung ist es zunächst nothwendig. die Grenzen und den Umfang der Infusorienclasse so zu bestimmen, wie er in Uebereinstimmung mit vielen neueren Autoren hier von uns angenommen wird. Fast allgemein sind jetzt mit vollem Rechte aus dieser Classe ausgeschlossen die Rotatorien Würmer), die Bacillarien (Diatomeen), die Closterinen (Algen) und viele andere heterogene Organismen niederen Ranges. Dennach beschränken die meisten neueren Autoren nach dem Vorgange von SIEBOLD (1845) die Infusorienclasse auf.die Ciliata (= Stomatoda) und die Flagellata (= Astoma), welche beide zusammen nur den kleineren Theil von Eurenberg's Infusorien ausmachen. Stein, welcher nächst Eurenberg die längste

4) RICHARD GREEFF, Untersuchungen über den Bau und die Naturgeschichte der Vorticellen. Archiv für Naturgesch. 1870, l. p. 353-384, Taf. IV-VIII; Ibid. 1871, I. p. 185-221. GREEFF schliesst seine Darstellung mit den Worten : »Das scheint indessen ausser Zweifel, dass sowohl die Organisation, wie die Lebensgeschichte nicht blos der Vorticellen, sondern der Infusorien überhaupt eine verhältnissmässig reiche und hoch entwickelte ist, von der indessen bis jetzt nur Weniges mit Sicherheit entziffert ist, und duss Ehrenberg, wenn er auch im Einzelnen, namentlich in den Deutungen der von ihm, wie wohl zu berücksichtigen, zuerst gesehenen, d. h entdeckten Organe und Gebilde, vielfach geirrt haben mag, doch im Ganzen auf seine ausgedehnten und unermüdlichen Forschungen und reichen Brfahrungen gestützt mit richtigem Tacto und Scharfsinn den hohen Organisationswerth der lufusorien erkannt hat« (l. c. p. 217 . Dieser Lobspruch auf Ehrenberg erscheint in GREEFF'S Aufsatze deshalb völlig unmotivirt, weil GREEFF's ganze Auffassung nicht diejenige von Ehbenberg, sondern diejenige von CLAPAREDE und LACHMANN repro-Diese beiden Auffassungen (die polygastrische Theorie des ersteren und ducirt. die coelenterische der letzteren, sind aber eben so wenig mit einander vereinbar, als mit der »Einzelligkeits-Theorie« von Sissoup, deren alleinige Richtigkeit wir uachstehend zu beweisen hoffen.

5**2**1

Zeit und den grössten Fleiss auf die Erforschung der Infusorien verwedet hat, beschränkt im ersten Bande seines grossen Werkes »der Omnismus der Infusionsthiere« (4859) die Classe auf 5 Ordnungen, w denen eine durch die Flagellata, vier durch die Ciliata gehikkt werden (Ilolotricha, Heterotricha, Hypotricha, Peritricha) Die Acineten oder Suctorien hielt STRIX früher nur für Entwicklungsmstände der Ciliaten, bemerkte jedoch : »Sollten sich die Acinetinen der noch als selbständige Infusorien herausstellen, so würden sie eine sechste, zwischen den geisseltragenden und holotrichen Infusorien eizureihende Ordnung bilden«. In den kurz zuvor erschienenen »Étude sur les Infusoires et les Rhizopodes« (1858) theilen CLAPAREDE und LACI-MAXX die Infusorien-Classe in 4 Ordnungen: 1) Ciliata, 2) Suctoria, 3) Cilioflagellata, und 4) Flagellata. In demselben Worke werden die Rhizopoden chenfalls in 4 Ordnungen eingetheilt : 1) Proteina (Amorbina et Actinophryna): 2) Echinocystida (Radiolaria); 3) Gromida; 4) Foraminifera. In der neuesten Auflage von TROSCHEL'S Handbuck der Zoologie (1874) werden 5 Ordnungen unter den Infusorien unterschieden, nämlich : 1) Ciliata ; 2) Suctoria (Acinetina) ; 3) Cilioflagellata (Peridinea); 4) Flagellata; 5) Atricha (Infusoria rhizopoda). Dieselbe Eintheilung kehrt in vielen anderen Büchern wieder. CLAUS in seinen »Grundzügen der Zoologie« (II. Aufl. 1874) unterscheidet dieselben 5 Gruppen wie STRIN, schliesst ihnen jedoch anhangsweise noch die Noctiluken an. HARTING in seinem »Leerboek van de Grondbeginselen der Dierkunde« (1870, III, 7) beschränkt die Classe auf die beiden Ordnungen der Giliaten und Flagellaten.

In der gegenwärtig allgemein herrschenden Begrenzung des Begriffes enthält demnach die Infusorien-Classe nur einen kleinen Theil von der bunt genischten Gesellschaft, welche sie bei EHRENBERG und seinen Vorgängern ausmachte. Als echte Infusorien im engsten Sinne gelten jetzt eigentlich nur noch die Giliaten, an welche die meisten Systematiker als eine zweite nahe verwandte Gruppe die A cineten und Viele ausserdem die Flagellaten (die die meisten Botaniker für Pflanzen halten) anschliessen. Selbst bei denjenigen Zoologen der Gegenwart, welche die Classe im weitesten Sinne fassen, sind die Rotatorien, Diatomeen, Closterien etc. allgemein ausgeschieden, und werden höchstens folgende sieben Ordnungen angenommen : 4) Amoebina; 2) Gregarina; 3) Flagellata; 4) Cilioflagellata; 5) Noctilucae; 6) Acinetae; 7) Ciliata.

Von diesen sieben Ordnungen ist es eigentlich nur eine einzige, deren Formwerth noch heute zweifelhaft ist und alle die zahlreichen Widersprüche der verschiedenen Beobachter hervorgerufen hat, diejenige der Ciliaten; aber gerade diese Ordnung ist auch diejenige, auf welche gegenwärtig der Begriff der Infusorien im engsten Sinne immer allgemeiner angewendet wird. Von den übrigen sechs Ordnungen ist es theils sekon seit längerer Zeit festgestellt, theils in der jüngsten Zeit immer mehr offenbar geworden, dass ihr Organismus den Werth einer einfachen Zelle besitzt. Ueber diese genügen daher wenige Bemerkungen.

Die Amoebinen (Protoplasten oder Lobosen) werden jetzt fast allgemein und mit Recht als einfache Zellen aufgefasst, besonders seitdem man »amocboide Zellen«, die von einfachen Amoeben nicht zu unterscheiden sind, weit verbreitet als integrirende Bestandtheile höherer Organismen nachgewiesen hat; namentlich die nackten Eizellen der Spongien, welche eine Zeit lang geradezu als parasitische, in den Schwämmen lebende Amoeben angeschen wurden, sind in dieser Beziebung von Interesse 1). Zwar hat GREEFF in neuester Zeit den Versuch gemacht, auch bei den Amoeben eine complicirtere Organisation nachzuweisen; indessen ist ihm dieser Versuch hier eben so wenig als bei den Infusorien goglückt. Sowohl die nackten Amoebinen (Amoeba, Petalopus, Podostoma) als die mit einer Schale oder Hülle versehenen Amoebinen (Arcella, Echinopyxis, Difflugia) sind einfache Zellen mit einem echten Zellenkern. Die Gregarinen sind allgemein als einfache Zellen (Monocystidea) oder als Complexe von 2-3 verbundenen einfachen Zellen (Polycystidea) nachgewiesen². Ebenso allgemein sind die Flagellaten als einzellige Organismen anerkannt, oder als Colonien von solchen, als Zellgemeinden. Auch die Einzelligkeit der Cilio-Flagellaten oder Peridineen ist sicher gestellt. Für die Noctiluken oder Myxocvstodon hat in neuester Zeit CIENKOWSKI³) den Nachweis geführt, dass ihr ganzer Körper nur eine einfache Zelle ist und dass sie zu den Flagellaten in nächster Verwandtschaft stehen. Von den Acineten oder Suctorien endlich ist die Einzelligkeit zwar weniger allgemein anerkannt; indessen liegt eigentlich kein einziger Grund vor, dieselbe zu bezweifeln. Der Nucleus erscheint durchaus gleichwerthig einem ge-

⁴⁾ Vergl. die Abbildung und Beschreibung der amöboiden Eizellen der Spongien in meiner Monographie der Kalkschwämme: Vol. I. p. 155; Vol. III. Taf. I. Fig. 10-12; Taf. 25, Fig. 3; Taf. 41, Fig. 4,9.

²⁾ Alle Gregarinen. welche nur einen einzigen Nucleus besitzen, sind eo ipso einzellig (Monocystidea); hingegen sind diejenigen Gregarinen, welche zwej oder mehrere Kerne besitzen, ehen deshalb als vielzellig anzuseben (Polycystidea).

Clenkowski, über Noctiluca miliaris Arch. für mikr. Anat. 4878, 17, p. 47.

wöhnlichen Zellenkern: das Protoplasma, das denselben ungeb, i durchaus nicht differenzirt, und die von demselben ausgehenden stam Pseudopodien, welche gewöhnlich als »Saugröhren« bezeichnet werde, haben keinen höheren morphologischen Werth, als ähnliche Fortsäu anderer Zellen. Auch in den Fortpflanzungserscheinungen der Acines liegt gar kein Grund gegen die Annahme, dass ihr Körper nur den Fortwerth einer einfachen Zelle besitzt.

Demnach sind es nur die Ciliaten, deren morphologische Datung so divergente Ansichten hervorgerufen hat und auf die sich der is heute fortgesetzte Streit über die »Einzelligkeit« gegenwärtig allei noch beziehen kann. Ohne Zweifel zeigt die grosse Mehrzahl der sognannten Ciliaten im Wesentlichen dieselbe innere Organisation ; und de verschiedenen Gruppen sind so nahe unter sich verwandt, dass sie als Angehörige einer natürlichen Legion, oder was dasselbe ist, als Desceidenten einer einzigen gemeinsamen Stammform angesehen werden körnen. Nur einige wenige Formen (wie z. B. die Opalinen) dürften hiervor ausgenommen werden. Im Uebrigen erscheinen alle Ciliaten so nabe unter sich verwandt, dass selbst die allgemein angenommene Eintbelung von STEIN (in die vier Ordnungen der Holotricha, Heterotricha, Hypotricha und Peritricha, sich auf die verschiedene Vertheilung und Differenzirung der äussern Wimperhaare, also auf Charactere stützen musste, welche im Grunde genommen von sehr äusserlicher und oberflächlicher Natur sind. Ebenso sind auch die Charactere. durch welche CLAPAREDE und LACHMANN ihre zehn Familien der Ciliaten unterschieden haben, von so untergeordnetem Werthe, dass daraus nur die wesentliche Uebereinstimmung derselben in allen wichtigen Eigenthümlichkeiten der inneren und äusseren Organisation hervorgeht. Wir dürfen daher in der nachstehenden Betrachtung die Gruppe der Ciliaten als ein natürliches Ganzes zusammenfassen und brauchen nicht auf die einzelnen Abtheilungen derselben einzugehen.

Die morphologische Grundfragenun, welche für diese Ciliatengruppe vorliegt, und von deren Erledigung jeder weitere Fortschritt in der Erkenntniss ihrer Organisation abhängt, lautet: 1) Hat der Körper der Ciliaten den Formwerth einer einzigen Zelle? — oder 2) ist derselbe aus mehreren Zellen zusammengesetzt? — oder endlich 3) ist Keines von Beiden der Fall? Dieser letztere, dritte Fall ist bisher noch nicht gehörig in Erwägung gezogen, indem man fast immer nur zwischen den beiden ersteren wählen zu müssen glaubte. Dennoch ist auch dieser Fall in Betracht zu zichen. Wenn man nämlich den Ciliatenkörper nicht für eine einfache Zelle und seinen Nucleus nicht als wahren Zellenkern gelten Iassen will, to könnte man mit verschiedenen Gründen die bisher noch nicht erörterte Ansicht stützen, dass der Ciliatenkörper noch nicht die Organisationshöhe einer wahren Zelle erreicht hat, sondern vielmehr einer sterk differenzirten Cytode, oder auch vielleicht einem Complex von mehreren Cytoden entspricht.

4 Die Unterscheidung der Zellen und Cytoden, welche ich ۰: zuerst 1866 in meiner generellen Morphologie gegeben und dann ausführlicher in meinen Monographien der Moneren und der Kalkschwämme : begründet habe, setze ich hier als bekannt voraus¹). Ich lege auf diese Unterscheidung fortdauernd das grösste Gewicht, trotzdem sich die Hi-! stologie der Schule bisher fast noch gar nicht um dieselbe gekümmert hat. Dieser letztere Umstand erklärt sich allerdings ganz einfach aus der Thatsache, dass es der heutigen llistologie nicht sowohl um klare Begriffe vom Zellenorganismus und um Erkenntniss seines Entwicklungslebens, als vielmehr um massenhafte Anhäufung unverbundener Thatsachen zu thun ist; letztere erscheinen um so willkommener, je mehr sie den Character eines unverständlichen Curiosums tragen und je weniger sie geeignet sind, sich in Bekanntes einzufügen und das Ganze harmonisch zu erläutern. Wer aber mit der Morphologie der niedersten Organismen sich beschäftigt und wer in der Entwicklungsgeschichte die Quelle des Verständnisses für die complicirten anatomischen Verhältnisse der Organjsmen erblickt, der wird früher oder später genöthigt sein, die Begriffe der Cytode und der Zelle zu trennen und getrennt zu verwerthen. Zellen und Cytoden sind die beiden wichtigsten Grundformen oder Hauptarten, unter denen überhaupt der Elementarorganismus (Brücke) oder die Plastide, das »Individuum erster Ordnung« auftritt. Die Cytoden, als die kernlosen individuellen Plastiden, stellen die ältere, einfachere und niedere Hauptform der Plastide dar, aus der sich erst secundär durch Differenzirung von centralem Nucleus und peripherischem Protoplasma die echte, d. h. kernhaltige Zelle entwickelt hat. Erst in zweiter Linie entsteht die Frage, ob die Plastiden nackt oder von einer Hülle umgeben sind. Hiernach lassen sich dann weiter vier untergeordnete Plastidenformen unterscheiden, nämlich 4) Urcytoden (Gymnocytodae): Plastiden ohne Kern, ohne Membran oder Schale; 2) Hüllcytoden (Lepocytodae): Plastiden ohne Kern, mit Membran oder Schale; 3) Urzellen (Gymnocyta): Plastiden mit Kern, ohne Membran oder Schale:

**Morphologische In *ren (Diese Zeitschrift,
 **, Vol. 1. pag. 404 etc.

⁴⁾ E. HARCKEL, Generelle Morphologie, Ver dividualität der Organismen^a. Monographie Band. V. 1879, pag. 498). Monographie der A

\$ Hullzellen (Lepocyta) : Plastiden mit Kern, mit Membranda Schale.

Bei scharfer Unterscheidung dieser wesentlich verschiedenen beden Hauptformen der Plastiden lautet demnach die Frage jetzt eigenlich. Hat der Ciliatenkörper den Formwerth einer Cytode oder einer Zelle oder besteht derselbe aus einem Complexe von mehreren Cytoden der von mehreren Zellen ?

Von entscheidender Bedeutung für diese Hauptfragen ist in erste Linie die Entwicklungsgeschichte und erst in zweiter Linie die Anatomie des entwickelten Giliatenkörpers. Von entscheidender Bedeutung dafür ist ferner vor Allem die Natur des Nucleus, und dessen Verhalten sowohl während der Ontogenese, wie im entwickelten Körper. Die Vertheidiger sowohl wie die Gegner der Einzelligkeit haben bisher sich immer vorzugsweise auf die Structurverhältnisse des entwickelten Infusorienkörpers gestützt; und die Ontogenese entweder ga nicht oder nur nebenher, in zweiter Linie berücksichtigt. Und doch ist die Entwicklungsgeschichte hier, wie überall, oder wahre Lichtträger für Untersuchungen über organische Körper«. Wir werden daher hier umgekehrt verfahren und unserem stets festgehaltenen Princip gemäss vor Allem in der Ontogenese der Giliaten den festen Boden zu gewinnen trachten, von welchem aus wir die Morphologie des entwickelten Körpers zu beurtheilen haben.

Hier ist nun vor Allem als feststehende fundamentale Thatsache zu constatiren, dass bei der grossen Mehrzahl der Ciliaten jund wahrscheinlich bei allen!) aus Theilstücken des Nucleus mehrere Keimzellen hervorgehen, von denen jede einzelne sich direct in einen Embryo oder in den Körper eines jungen Giliaten umbildet. Diese Keimzellen nennt STEIN »Keimkugeln«, BALBIANI hingegen »Eier«. Den letzteren Namen würden sie verdienen, wenn sie zu ihrer weiteren Entwicklung der Befruchtung bedürften. Indessen ist bekanntlich in neuester Zeit die ganze Lehre von der sexuellen Fortpflanzung der Ciliaten und von der Befruchtung ihrer » Eier « durch » Samenfaden «, welche einige Jahre hindurch als ausgemacht galt, wieder sehr zweifelhaft geworden. Bei der grossen Mehrzahl der Ciliaten sind überhaupt noch keine Samenfäden, und chenso wenig der » Nucleolus « oder Hoden, aus dem letztere angeblich hervorgehen sollen, beobachtet worden. Bei anderen werden jetzt die angeblichen Samenfäden als parasitische Vibrionen oder sonstige eingedrungene fremde Körper erklärt. Jedenfalls erscheint es beim jetzigen Zustande unserer Kenntnisse vorsichtiger, den zuverlässigen und unzweideutigen Beweis für die angebliche sexuelle Fortpflanzung af warten, und demgemäss die »Keimkugeln« Steins und der and

Autoren nicht als Eizellen, sondern als geschlechtslose Keimzellen oder Sporen zu bezeichnen. Uebrigens ist die Entscheidung dieser Frage für das zunächst hier zu entscheidende Problem ganz gleichgültig. Die Hauptsache ist, dass die Spore (die »Keinkugel« der Autoren, das »Ei« von BALBIANI) den Formwerth einer einfachen echten Zelle besitzt. Für diese Zellennatur der Keimzelle ist es ganz einerlei, ob dieselbe zu ihrer weiteren Entwicklung durch »Samenfäden« befruchtet wird oder nicht. Wer die zahlreichen naturgetreuen Abbildungen betrachtet, die Stein, CLAPAREDE und LACHMANN in ihren umfangreichen Infusorienwerken von den »Keimkugeln« gegeben haben, der wird schon durch die Vergleichung dieser übereinstimmenden Abbildungen zu der sicheren Ueberzeugung gelangen, dass diese Keimkugeln immer cinfache echte Zellen sind. Meine eigenen Untersuchungen bestätigen diese Ansicht durchaus. Bei Ciliaten der verschiedensten Gruppen habe ich die Sporen mit Hülfe der stärksten Vergrösserungen und chemischer Reagentien sorgfältig untersucht und bin stets zu demselben Resultate gekommen, dass dieselben den Formwerth einer ganz einfachen Zelle besitzen, und zwar einer Urzelle, deren nackter Körper blos aus zwei verschiedenen Bestandtheilen besteht, aus einer einfachen nackten homogenen Protoplasmakugel und einem "meist ebenfalls kugeligen) davon umschlossenen Nucleus. /Taf. XXVII, Fig. 3 ; Taf. XXVIII, Fig. 14.) Der innere Nucleus, dessen Durchmesser meistens etwa ein Drittel von dem der structurlosen Protoplasmakugel beträgt, ist stärker lichtbrechend als letztere, und färbt sich nach vorsichtigem Zusatz von Karmin oder lod intensiver als diese. Meistens ist der Nucleus fein granulirt und enthält bisweilen (aber nicht immer) ein dunkleres, stark lichtbrechendes Korn, dessen Deutung als wirklicher Nucleolus Nichts im Wege steht. Häufig scheint dieser Nucleolus zu fehlen; statt dessen finden sich ein oder ein paar ähnliche Körner neben dem Nucleus im Protoplasma. Bisweilen lässt sich eine dünne structurlose Zellmembran als Hülle der Keimzelle unterscheiden 1).

Die zweite fundamentale Thatsache von entscheidender Bedeutung ist, dass sich aus dieser Spore direct durch einfaches Wachsthum und Differenzirung der Theile der Embryo ent-

Mit derselben Bestimmtheit erkennt auch STEIN die Sporen oder Keimkugeln als wahre Zellen an, indem er in der zweiten Abtheilung seines grossen Werkes, 1807, psg. 21) sagt: «Wie sehr auch augenblicklich die Ansichten über die geschlechthebe Fortpflanzung der Infusionsthiere auseinander gehen mögen, darin sind doch Forscher einig, dass die erste Anlage zu einem neuen Individuum von einem Tek des Nucleus gebildet wird, welches entweder sogleich in Form einer einer Nucleus hervorgeht, oder doch bald nachher diese Form annimmt,

wickelt. Dieser Embryo entsteht aus der Spore einfach dadurch, das Cilien aus seiner Oberfläche hervorwachsen. Bisweilen bedecken die Cilien gleichmässig als ganz kurze feine Flimmerhärchen den ganzen Enbryokörper, der meistens eine länglich runde oder eiförmige Gestalt animmt, so bei unserer Godonella campanella, Taf. XXVII, Fig. II, 43, so auch bei der von Sreix beschriebenen Bursaria truncatelle (STEIN, II. Abtheilung, p. 306, Taf. XIII, Fig. 5). Anderemale entwicket sich die Fortsätze der Körperoberfläche nur an einem Ende zu feim locomotiven Wimperhärchen, am anderen Ende zu dickeren, retractilen, am Ende meist geknöpften Tentakelfortsätzen, so z. B. bei Stentor (STEIN I. c. Taf. VIII, Fig. 3, 4, 9). Auch jetzt noch ist der Embrye. der in dieser Gestalt meistens bald durch den Geburtsact frei wird eine einfache Zelle, und zwar eine Flimmerzelle. Der Protoplasmkörper enthält auch jetzt weiter Nichts als den Nucleus, und auch etwa später, wenn neben diesem letzteren die »contractile Blase« auftrit wird dadurch die Zellennatur desselben nicht im Mindesten geänder. Nirgends tritt aber während der Embryonal-Entwicklung eine Vermeirung der Kerne auf, oder auch nur eine Andeutung der Zellenvermelrung, welche bei der Entwicklung aller höheren Thiere den Anfangder Ontogenesis einleitet und als Furchung bezeichnet wird. Dieses böchst wichtige Resultat betont auch STEIN ausdrücklich, indem er (l. c. p. 2) sagt : » Mit der grössten Klarheit lässt sich verfolgen, wie die Zelle, welch zum Embryo wird, sich in diesen umgestaltet. Sie bleibt fort und for eine einheitliche Masse, vergrössert sich mehr oder weniger, und nimm allmälig eine gestrecktere ovale Form an : in ihrem Protoplasma trete ein oder mehrere contractile Behälter als erste Zeichen des erwachende thierischen Lebens auf, und an ihrer äusseren Oberfläche entwickel sich ein totales oder partielles Wimperkleid. Hiermit ist im Wesentlichen die Ausbildung des Embryo vollendet, er regt seine Wimpers. fängt an sich zu drehen und herumzuwälzen, und sucht nach einen Ausweg aus dem mütterlichen Leibe. Derselbe Körper, der noch w Kurzem eine einfache ruhende Zelle war, ist jetzt, ohne dass irgend eine sichtbare Differenzirung in seiner Substanz eingetreten wäre, in Stande, sich auszurecken und zu verkürzen und verschiedentlich # krümmen und zu winden. Die Keimkugel oder Embryonalzeile der in-

indem es sich zu einer lichten, von einer structurlosen Membran begrenzten Pretoplasma-Kugel gesteltet, welche einen opskeren centralen Kern einschliest. Diese von mir als «Keimkugel« bezeichnete Zelle entwickelt sich nun entweder unmittelbar zu einem Embryo, oder sie wird die Mutter neuer Generationen von Zellen, von denen eine jede für sich später einen Embryo liefert«.

fusorien verhält sich durchaus nicht wie die Eizelle höherer Thiere, welche durch den Furchungsprocess in ein Haufwerk kleinerer, den Embryonalkörper constituirender Zellen zerfällt, sondern sie verwandelt sich, wie sie ist, in den Embryonalkörper: ihre Membran wird zur Cuticula, ihr Protoplasma zur Körpersarcode, ihr Kern zum Nucleus des jungen Infusionsthieres. Der Embryo der Infusionstbiere ist also offenbar im strengsten Sinne des Wortes ein einzelliger Organismus«.

Auch im weiteren Verlaufe der Ontogenese der Ciliaten tritt niemals eine wahre Gewebebildung ein; niemals entstehen durch Theilung des Nucleus und der umgebenden Protoplasmamasse neue Zellen, welche sich zu verschiedenen Geweben: Epidermiszellen, Nerven, Muskeln, Darmepithelialzellen etc. differenzirten. Niemals ist überhaupt in irgend einem Stadium der Entwicklung durch irgend eine Untersuchungsmethode die Existenz von differenzirten Zellen im Ciliatenkörper nachzuweisen, wie besonders STRIN ausführlich bewiesen hat (l. c. p. 22 u. a. a. O.). Indem ich mich seinen bezüglichen Angaben nach meinen eigenen Beobachtungen völlig anschliesse, will ich ausdrücklich nochmals den vollständigen Mangel der Furchung als höchst wichtigen negativen Character hervorheben, den die Ciliaten mit allen übrigen Infusorien und mit allen Protozoen überhaupt theilen. Hierin und in dem dadurch bedingten vollständigen Mangel der Keimblattbildung liegt der fundamentale Unterschied, welcher die Protozoen (und Protisten, von allen sechs höheren Thierstämmen trennt. Ich balte diesen Unterschied für so bedeutungsvoll, dass ich die sechs höheren Phylen des Thierreichs als Metazoa oder Keimblattthiere zusammenfasse und der keimblattlosen Protozoa gegenüber stelle; ich werde hierauf gleich bei der Anwendung meiner Gastraea-Theorie zurückkommen.

Demnach behält auch im ganzen weiteren Laufe der individuellen Entwicklung der Ciliatenkörper den Formwerth einer einzigen Zelle. Nur bei denjenigen, wenig zahlreichen Ciliaten wird derselbe später mehrzellig, wo durch Theilung des ursprünglichen Nucleus zwei oder mehrere Nuclei entstehen. Zwei Nuclei neben oder hinter einander finden sich bei mehreren Oxytrichinen und Amphileptus-Arten; vier Nuclei soll nach STRIN Onychodromus grandis besitzen, eine grössere Anzahl Loxodes rostrum und Enchelys gigas. Natürlich besteht in allen diesen Fällen der Körper aus so vielen Zellen, als Nuclei vorhanden sind; denn nur der Nucleus bestimmt die Individualität der Zelle, und der vielgebrauchte Ausdruck : »vielkernige Zellex ist eine »Contradictio in adjecto« (Vergl. hierüber die Monographie

i

Ernst Haeckel,

der Kalkschwämme, Vol. I. p. 105). Indessen ist noch sehr die Frage, ob hier nicht die Mehrzahl der Kerne bereits mit der Sporenbildung in Zusammenhang steht. Sollte dies aber auch nicht der Fall sein und sollten diese »vielzelligen Giliaten« wirklich im ausgebildeten Zustande constant mehrere Nuclei besitzen, so würde dieser Umstand deshalb für unsere morphologische Betrachtung ohne wesentliche Bedeutung sein, weil die Mehrzahl der Nuclei bei allen diesen vielzelligen Individuen ohne jeden Einfluss auf ihre sonstige Organisation ist, diese letztere vielmehr ganz mit derjenigen der einzelligen Giliaten, also der grossen Mehrzahl übereinstimmt. Wir brauchen daher auf alle diese vielzelligen Giliaten zunächst weiter keine Rücksicht zu nehmen, und werden erst später auf sie zurückkommen.

Nachdem festgestellt ist, dass ebenso wohl die Spore (oder »Keimkugel«, als auch der daraus hervorgegangene »Embrvo« und das geborene und weiter entwickelte jugendliche Ciliat den Formwerth einer echten einfachen Zelle besitzt, ist nun weiter zu entscheiden, ob auch der vollkommen entwickelte, reife und fortpflanzungsfähige Ciliatenorganismus immer noch denselben einfachen Fornswerth behält. Hier scheidet sich unser Weg von demjenigen der grossen Mehrzahl der Infusorienbeobachter. Nach reiflicher Erwägung aller bezüglichen Verhältnisse und auf Grund vielfältiger eigener Untersuchungen muss ich auf den Satz von Siebold und Kölliker zurückkommen, dass auch der vollkommen ausgebildete Körper des reifen Ciliaten (sofern derselbe nur einen Nucleus besitzt!) immer nur den morphologischen Werth einer Zelle behält. Hier trennt sich unser Weg der Betrachtung auch von demjenigen Strass, welcher sagt (l. e. p. 22): »die Infusorien sind in Bezug auf ihren Ursprung entschieden einzellige Thiere, und wenn man diese Bezeichnung nur in diesem Sinne gebrauchte, so würde ich dieselbe durchaus gerechtfertigt finden; ja sie würde sich sogar ungemein empfehlen, weil sie den fundamentalsten Unterschied der Infusionsthiere von den ausserhalb des Protozoenkreises stehenden Thieren, die ihrer ersten Anlage nach mehrzellige Organismen sind, sehr prägnant ausdrückt. Die ausgebildeten Infusionsthiere aber wird man immer Anstand nehmen müssen als einzellige Organismen zu bezeichnen; denn sie sind nicht blos einfach fortgewachsene Zellen, sondern der ursprüngliche Zellenbau hat einer wesentlich anderen Organisation Platz gemacht, die der Zelle als solcher durchaus fremd ist «.

Diesen letzteren Satz hoffe ich durch die nachstehende Betrachtung zu widerlegen und zu zeigen, dass auch bei den höchst entwickelten und am stärksten differenzirten Giliaten Nichts im Wege steht, ihren ganzen Körper als eine einzige Zelle aufzufassen. Selbstverständlich

530

darf man, um zu dieser Ueberzeugung zu gelangen, nicht die Ciliaten mit so einfachen und indifferenten Zellen vergleichen, wie z. B. die Eizellen. die Furchungszellen, die meisten Drüsenzellen, Epithelialzollen etc. darstellen: sondern man muss die am meisten differenzirten Zellenformen in Betracht ziehen, wie z. B. die Nervenzellen, Muskelzellen, Nesselzellen, viele Parenchymzellen von Pflanzen etc. sind. Nun denke man nur einmal an den verwickelten Elementarorganismus, welchen nach den neueren histologischen Entdeckungen viele, bisher für sehr einfach gehaltene Zellen im Thier- und im Pflanzenkörper darstellen; man denke nur an die Nervenzellen der höheren Thiere mit ihrem Fibrillensystem ; an die Nesselzellen der Siphonophoren mit ihren höchst differenzirten Nesselkapseln, Nesselschläuchen, Nosselfäden etc., die sich neben dem Kerne im Protoplasma der Nesselzelle entwickeln; man denke weiter an die einzelligen Drüsen vieler niederen Thiere, mit ihrem »Ausführgang«, ihrer constanten Mündung (»Mundöffnung«), ihren verschiedenartig geformten Einschlüssen und Excrementen ; man denke an den höchst complicirten Bau der quergestreiften Muskelzellen; man denke endlich an den verwickelten Organismus, den viele Pflanzenzellen mit ihren mannigfaltig differenzirten Umhüllungen, ihren Porencanälen, ihren pulsirenden Vacuolen (» contractilen Blasen «), ihrem inneren Protoplasmageflecht und dessen mannigfachen Einschlüssen (Amylumkörnern, Chlorophylikörnern etc.) darstellen - und man wird bei unbefangener Vergleichung zugeben nutssen, dass jeder dieser »einzelligen « Elenientarorganismen binsichtlich seiner mannigfaltigen Zusammensetzung aus differenten Formbestandtheilen und somit hinsichtlich seiner »vollkommenen Organisation « dem Ciliatenorganismus im Ganzen Nichts nachgiebt. Der Unterschied ist nur der, dass die hohe Differenzirung bei den angeführten, im socialen Zellenverbande des vielzelligen Organismus lebenden Zellen eine einseitige, durch die specielle physiologische Function der betreffenden Gewebe bedingte, ein Product der Arbeitstheilung ist; die hohe Differenzirung des Ciliatenorganismus hingegen, der als isolirte Einsiedlerzelle für alle Bedürfnisse des Lebens zu sorgen hat, ist eine all seitige, auf alle Lebensfunctionen ausgedehnte: die Ciliatenzelle vereinigt in sich viele verschiedene Differenzirungs-Processe, die wir bei anderen Zellen getrennt wahrnehmen.

Wenn wir von diesem Gesichtspuncte aus die Organisation der Ciliatenzelle prüfen, so müssen wir zunächst blos diejenigen Körpertheile und Organe ins Auge fassen, welche allen echten Ciliaten gemeinsam sind, welche bei der Ontogenese der Spore sich zuerst differenziren, welche demnach auch bezüglich ihrer Phylogenese als die ältesten, sowie für die morphologische Beurtheilung des Ciliatenkörpers und seiner Stellung im System als die wichtigsten anzusehen sind. Diese Organe sind die Rindenschicht, das Markparenchym und der an der Grenz beider gelegene Nucleus. Indem wir von »Organen« des Ciliatenkörpers sprechen, gebrauchen wir diesen Begriff selbstverständlich nur in physiologischen Sinne, als Biorgan. Hingegen müssen wir Organe im morphologischen Sinne, wirkliche Idorgane, den Infusoria absprechen, da diese als Formindividuen zweiter Ordnung selbstverständlich immer aus einer Mehrzahl von Plastiden oder Formindividuen erster Ordnung zusammengesetzt sein müssen (vergl. die Monographe der Kalkschwämme, Bd. 1. p. 103, 109).

Der erste Differenzirungsprocess, welchem wir bei den Embryonn oder bei den unmittelbar aus den einzelligen nackten Sporen entwickelten bewimperten Jugendzuständen der Ciliaten allgemein begegnen, ist die Differenzirung ihres Protoplasmakörpers in eine hellere festere Rindensubstanz und eine trübkörnige weichere Marksubstanz Diese Differenzirung entspricht durchaus derjenigen, welche sich auch bei den Amoeben, sowie bei sehr vielen Parenchymzellen höherer Thier vollzieht. Bei den Geisselzellen des Entoderms der Kalkschwämme habe ich sie jüngst ausführlich besprochen und die beiderlei Differenzirungsproducte als Exoplasma und Endoplasma bezeichnet (l. c. Vol. l. p. 138). Die dort gegebene allgemeine Darstellung passt vollständig auch auf den jungen Ciliatenkörper, weshalb ich sie hier wörtlich wiederholen will: »Die äussere Rindensubstanz (Exoplasma) ist völlig hyalin, etwas fester, wasserärmer, stärker lichtbrechend und enthält gar keine Körnchen. Die innere Marksubstanz (Endoplasma) ist körnig, etwas wasserreicher, schwächer lichtbrechend und enthält die Granula. So deutlich sich die beiderlei Substanzen auch of von einander scheiden, so sind sie dennoch niemals scharf getrennt, gehen vielmehr ohne bleibende Grenzschicht in einander über, ähnlich wie die hyaline Rindensubstanz und die körnige Marksubstanz des Infusorienkörpers«. (Vergl. die Abbildung der Geisselzellen eines Ascon. I. c. Taf. 1, Fig. 8; eines Leucon, Taf. 25, Fig. 5, 6; eines Sycon, Taf. 41, Fig. 7.)

Die Rindensubstanz oder das Exoplasma der Ciliaten, das »Tegument« von CLAPARÈDE und LACHMANN, das»Rindenparenchym« von STEIN, die Hautschicht oder Haut der Autoren, ist ursprünglich eine vollkommen homogene und structurlose, farblose, hyaline Schicht von festerem Protoplasma, welches sich von dem trüben, körnigen, weicheren Protoplasma der inneren Körpermasse durch einen geringeren Grad von Wassergehalt, durch Mangel an körnigen Einschlüssen und durch hohe selbständige Contractilität auszeichnet. Sämmtliche bewegliche Anhänge des Ciliatenkörpers, die Wimpern in ihrer mannigfachen Gestalt, die Borsten, Haare, Stacheln, Haken, Griffel etc. sind weiter Nichts als structurlose Fortsätze dieses Exoplasma, welche dessen Contractilität oder »Automatie« theilen. Sie verhalten sich in dieser Beziehung gerade so, wie die Wimpern und Geisseln der Flimmerzellen, welche das Flimmerepithelium mehrzelliger Thiere constituiren.

Bei vielen, aber nicht bei allen !!) Ciliaten erfolgt secundär eine weitere Differenzirung dieser Rindenschicht in verschiedene Lagen, und da gerade die Beschaffenheit dieser secundär differenzirten Hautschichten neuerdings vorzüglich als Argument für die Vielzelligkeit verwerthet worden ist, müssen wir dieselben einzeln betrachten. Bei den am höchsten differenzirten Infusorien lassen sich folgende vier Schichten als Differenzirungsproducte des Exoplasma unterscheiden: 1) die Cuticularschicht; 2) die Wimperschicht; 3) die Myophanschicht; 4) die Trichocystenschicht.

Die Cuticula des Ciliatenkörpers wird von verschiedenen Autoren in wesentlich verschiedenem Sinne betrachtet. Die Mehrzahl der Autoren fasst unter dieser Bezeichnung die wirklichen Cuticularbildungen und die wesentlich davon verschiedene Wimperschicht mit ihren mannigfaltigen Anhängen zusammen. Diese Zusammenfassung ist vollständig unzulässig. Denn der Begriff der Cuticula ist sowohl in der Histologie der Pflanzen als der Thiere längst fest bestimmt, und bezeichnet le diglich Ausscheidungen, erhärtete Ausschwitzungen der ausseren Oberfläche des Körpers. Die sämintlichen Cuticularbildungen sind demnach stets todte Plasmaproducte, niemals lebendige und bewegliche Theile oder differenzirte Schichten des Protoplasma. Nun kommen allerdings solche äussere Ausscheidungen der Rindenschicht bei den Giliaten vor, jedoch in viel geringerer Ausdehnung als dies allgemein angenommen wird. Die grosse Mehrzahl der Ciliaten dürfte keine wahre Cuticula besitzen. Zu den echten Cuticularbildungen rechne ich: 4) die dünne, homogene, hyaline Haut, welche bei manchen Infusorien, z. B. Paramaecium, Trichodina unmittelbar über der nächstfolgenden Wimperschicht liegt, eine chitinartige Beschaffenheit besitzt und von den Wimpern durchbohrt wird; 2) die structurlose äussere elastische Schicht des Stiels der Vorticellinen etc.; 3) die gallertartigen Hülsen und Gehäuse, wie sie manche Ciliaten, z. B. Stentor, vorübergehend ausschwitzen, andere z. B. Cothurnia, Vaginicola, zeitlebens besitzen; 4) einen Theil der mannigfach differenzirten »Panzer« und Gehäuse, sowie die »Schalen « vieler Ciliaten.

Ernst Haeckel,

Ein Theil dieser Schalen besteht blos aus einem festeren, erhärtete Theil der Wimperschicht. Ein anderer Theil hingegen ist wirklich in erhärtetes Secret der letzteren und hat mit dieser keinen organischet Zusammenhang mehr. Dahin gehören namentlich die glockenförmigen, chitinartigen Gehäuse der Tintinnodeen und der nahe verwandten Codonelliden, sowie die zierlichen gitterförmig durchbrochenen Kieselschalen der Dictyocystiden, welche in dem nachfolgenden Aufsatze ȟber einige neue pelagische Infusorien« näher beschrieben sind (Taf. XXVII, XXVIII). Diese Schalen oder Gehäuse vieler wepanzerter« Infusorien sind hinsichtlich ihrer Genese und morphologischen Bedeutung den ausgeschiedenen Membranen vieler Zellen gleichzusetzen; und wenn man bedenkt, welchen verwickelten und vielgestaltigen Bau diese Zellmembranen jals Ȋussere Protoplasmaproducte!«) bei vielen Pflanzenzellen (Pollen!), bei den Eizellen vieler Thiere erreichen, welche mannigfaltigen Fortsätze, Anhänge etc. hier von denselben gebildet werden, so wird man nicht die mindeste Schwierigkeit finden, auch die vielfach differenzirten Gehäuse der Ciliaten unter den Begriff der »Zellmembran« oder wenn man lieber will, des »Zellgehäuses« unterzubringen.

Die Wimperschicht, welche allen Ciliaten ohne Ausnahme zukömmt, liegt bei den mit einer wahren Cuticula versehenen Arten unter dieser letzteren, während sie bei den einer Cuticula entbehrenden die oberflächlichste Körperschicht darstellt. Dieselbe besteht aus einer dünnen homogenen, ziemlich festen, elastischen und contractilen Haut, als deren unmittelbare Fortsätze sämmtliche Wimpern (und die daraus differenzirten Haare, Borsten, Stacheln, Griffel, Haken etc. anzusehen sind. Die meisten Autoren betrachten die letzteren als directe Fortsätze der Cuticula. Indessen ist diese Anschauungsweise nach dem, was wir vorher über den festen histologischen Begriff der Cuticula bemerkt haben; vollkommen unzulässig. Die contractilen und beweglichen Gilien und ebenso alle durch deren Differenzirung entstandenen Fortsätze können nur Fortsätze einer lebendigen contractilen Parenchvmschicht, nicht aber einer todten, von dieser ausgeschiedenen Cuticula sein. Wo daher eine wirkliche, auf der Wimperschicht liegende Cuticula vorhanden ist, da müssen nothwendig die Cilien letztere durchbohren; bei den mit einem umfänglichen Schalengehäuse versehenen müssen sie aus einer Oeffnung des letzteren hervortreten. Bei der Mehrzahl der Ciliaten aber, bei denen weder eine Cuticula noch ein Gehäuse den nackten Körper umschliesst, da wird die ganze Oberfläche des Körpers von der dünnen Wimperschicht gebildet, von der direct die Cilien entspringen.

534

Die Myophanschicht, welche ich hier als dritte besondere Schicht der Rindensubstanz unterscheide, ist identisch mit derjenigen, welche die meisten neueren Autoren als » Muskelschicht« oder »Muskelhaut« aufführen. Sie hat sich keineswegs bei allen, doch wohl bei der Mehrzahl der Giliaten deutlich nachweisen lassen, und erscheint als ein System von regelmässigen, parallelen, feinen Streifen, welche meistens in longitudinaler, anderemale in transversaler (circularer), bisweilen auch in spiraler Richtung (Spirostomum) dicht gedrängt neben einander verlaufen und abwechselnd heller und dunkler erscheinen. Zuerst hat O. SCHMIDT die dunkleren (stärker lichtbrechenden) Streifen, welche oft aus einer Reihe hinter einander liegender Körnchen zusammengesetzt oder selbst deutlich quergestreift erscheinen, für Muskelfasern erklärt und die ganze Faserschicht dem Hautmuskelschlauche der Würmer verglichen. Auch STEIN und Andere haben sich dieser Deutung angeschlossen. GREEFF hat neuerdings umgekehrt die schmaleren hellen Streifen für Muskelfasern erklärt; er scheint dieselben für hohl zu halten; wenigstens spricht er von »Lumina der Muskelfasern« (l. c. p. 384). Aus den Beobachtungen von O. Schnibt, Stein und Anderen scheint mit ziemlicher Sicherheit hervorzugehen, dass die dunkleren, oft körnigen, bisweilen wirklich »quergestreiften« Fasern, zu denen auch der characteristische »Stielmuskel« der Vorticellen gehört, wirklich contractile Fasern sind, welche durch ihre Contraction analog Muskeln wirken und Formveränderungen des Körpers bewirken. Vom physiologischen Standpuncte aus erscheint diese Vergleichung gerechtfertigt und wird namentlich durch die bekannten Untersuchungen von Künne bis zu einem gewissen Grade gesichert. Vom morphologischen Standpuncte aus können wir dieselbe aber nicht gelten lassen, sondern können diesen contractilen Streifen nur den Werth von differenzirten Sarcodezügen oder Protoplasmasträngen zugestehen. Für den morphologischen Begriff des Muskels ist seine Zellennatur unerlässlich. Muskeln in morphologischem Sinne können wir nur solche Zellen oder Zellencomplexe nennen, welche ausschliesslich die Fähigkeit der Contraction, d. h. der selbständigen . Verkürzung mit gleichzeitiger Dickenzunahme besitzen. Jede Muskelfaser ist entweder eine einzige Zelle (mit einem Kern), so z. B. die glatten Muskelelemente der Wirbelthiere: einzellige Muskeln; oder sie ist ein Aggregat von mehreren innig verbundenen Zellen (ein Syncytium) 1), in welchem Falle die Zahl der eingeschlossenen Korne die

Ξ.

⁴⁾ Ueber den Begriff des Syncytiums vergl. meine Monographie der Kalkschwämme, Vol. I, p. 161.

Bd. VII. 4.

Ernst Haeckel,

Zahl der Zellen anzeigt, aus denen die »vielzellige Muskelfaser« zusanmengesetzt ist. Die wahre Muskelfaser muss demnach stets entweder einen oder mehrere Kerne enthalten, oder wenigstens während ihre Entwicklung enthalten haben. Bei den angeblichen »Muskelfasern der Infusorien ist dies nirgends der Fall; niemals zeigen dieselben eine Spur von einem Kerne oder von einer Zusammensetzung aus Zellen; vielmehr lassen sie sich nur als Theile einer Zelle auffassen, und zwa nur als Theile einer dünnen Wandschicht, die allerdings einer Arbeitstheilung der Plastidule¹), d. h. einer Differenzirung der Sarcodemolekule im Protoplasma der Zelle ihren Ursprung verdanken. Theile einer Zelle können aber niemals als Muskeln bezeichnet werden. Richtiger ist die Vergleichung Kölliker's, der die guergestreiften Faserzüge der Ciliaten mit »Muskelfibrillen« zusammenstellt. Doch bleibt dabei zu berücksichtigen, dass es noch Niemandem gelungen ist, diese contractilen Sarcodestränge wirklich als einzelne Fasern zu isoliren. Aber auch noch aus einem zweiten Grunde dürfen wir die fraglichen Faserzüge nicht als Muskeln gelten lassen. Wahre Muskeln können wir nur bei solchen Thieren annehmen, welche auch unzweifelbaße Nerven besitzen. Wo die Differenzirung in Muskel und Nerv überhaupt noch nicht eingetreten ist, da kann man in strengerem Sinne ebenso wenig von Muskeln als von Nerven sprechen, sondern muss Zellen, welche die Functionen dieser beiden Gewebe noch vereint vollziehen. »Neuromuskelzellen« nennen. Den scharfsinnigen Nachweis hierfür hat N. KLEINENBERG in seiner vortrefflichen Monographie der Hydra geliefert²). Nun ist es aber bekanntlich noch keinem einzigen Beobachter gelungen, auch nur die Spur eines Nervensystems in den Ciliaten nachzuweisen; vielmehr haben alle dahin zielenden Erfolge rein negative Resultate gehabt. Wir würden also, selbst wenn die angeblichen Muskeln der Infusorien wirkliche Zellen oder Zellenaggregate wären, sie höchstens als »Neuromuskelzellen« bezeichnen dürfen. Das ist nun aber keineswegs der Fall. Vielmehr sind sie den Neuromuskeln nur physiologisch, aber nicht morphologisch zu vergleichen; mithin können wir ihnen nur den Werth von differenzirten contractilen Sarcodezugen

4) Den von Dr. ELSBERG in New-York vorgeschlagenen Ausdruck » Plastid ulstatt des vielsylbigen Wortes » Protoplasma - Molekul« halte ich für eine kurze und passende Bezeichnung für die hypothetischen Sarcode-Theilchen, welche als die eigentlichen elementaren Factoren des Plastiden-Lebens innerhalb der einzelnen Cytode oder Zelle auftreten.

2; NICOLAUS KLEINENBERG, Hydra. Eine anatomisch-entwicklungsgeschichtliche Untersuchung. Leipzig. 1873.

n.

des Exoplasma zugestehen, die man, wenn man will, Scheinmuskeln oder Myophane nennen kann.

Eine vierte und letzte Rindenschicht scheint bei vielen Giliaten (aber keineswegs bei allen) durch eine unterhalb der Myophanschicht liegende dünne Exoplasmaschicht gebildet zu werden, welche unmittelbar an das Endoplasma grenzt und welche bei einzelnen Arten (aber nicht bei vielen!) die als Trichocysten oder Hautstäbchen bezeichneten Gebilde umschliessen soll. Wir wollen sie daher einfach die Trichocystenschicht nennen. Bekanntlich werden diese Stäbchen oder Trichocysten, welche nach Zusatz von Essigsäure etc. oft einen Faden hervortreten lassen, bald mit Tastkörperchen, bald mit den Nesselorganen der Acalephen verglichen. GREEFF sagt sogar : »Sollte es sich bestätigen, dass diese Gebilde in der That zum Vorticellenkörper gehörige Nesselorgane seien, so würde das für die Kenntniss vom Aufbau des Infusorienkörpers von der grössten Wichtigkeit sein, da diese Nesselkapseln in Rücksicht auf ihre vollständige Uebereinstimmung mit denen der Cölenteraten sich ohne Zweifel auch ganz wie diese aus Zellen entwickeln würden« (l. c. p. 384). Wir brauchen nun hier die streitige physiologische Function dieser Hautstäbchen oder Nesselkapseln oder Trichocysten gar nicht weiter zu erörtern, sondern haben blos vom morphologischen Standpunct aus die Frage zu erörtern, ob in ihrer Structur und Entwicklung irgend ein Beweis gegen die Einzelligkeit und für die Vielzelligkeit des Ciliatenkörpers liegt. Die meisten Autoren nehmen dies ohne Weiteres an und behaupten, dass der Besitz zahlreicher »Nesselkapseln« mit der Einzelligkeit völlig unverträglich sei. Mit welchem Grunde sie dies jedoch behaupten, ist mir völlig unbegreiflich. Es ist eine längst festgestellte Thatsache, die ich schon in meiner Monographie der Geryoniden ausführlich erörtert habe, dass sich die Nesselkapseln der Acalephen nicht (wie man früher glaubte) aus dem Nucleus der Nesselzellen, sondern ganz unabhängig von diesem in deren Protoplasma entwickeln; und zwar bilden sich bei vielen Acalephen in jeder Nesselzelle gleichzeitig viele Nesselkapseln, während bei anderen sich in jeder nur eine einzige entwickelte Kapsel vorfindet. Man vergleiche nur die sehr sorgfältige Darstellung der Nesselzellen, welche neuerdings FRANZ EILHARD SCHULZE und N. KLEINENBERG in ihren ausgezeichneten Monographien der Cordylophora und der Hydra gegeben haben. Da mithin die einzelne Nesselzelle der Acalephen zahlreiche Nesselkapseln in ihrem Protoplasma, ganz unabhängig vom Nucleus bildet, so ist durchaus nicht einzusehen, warum nicht auch der einzellige Ciliatenorganismus dasselbe Rechtbesitzen soll. Vielmehr beweisen

die zahlreichen Nesselkapseln, welche bei einigen (wenigen!) Ciliate im Exoplasma sich finden und auch hier ganz unabhängig von dem einfachen Nucleus sich bilden, nicht das Mindeste gegen deren Einzeligkeit. Wenn daher GREEFF (l. c.) in den Nesselkapseln der Vorticelline nicht allein einen Beweis für ihre Vielzelligkeit, sondern auch für ihre Verwandtschaft mit den Gölenteraten erblickt, so sind diese beiden Gründe völlig werthlos und bedürfen keiner weiteren Widerlegung¹.

Fassen wir jetzt unsere Resultate der Untersuchung des Exoplasma oder der Rindensubstanz des Giliatenkörpers zusammen, soergiebt sich, dass in ihrer Structur, selbst bei den am höchsten differenzirten Infusorien, nicht der mindeste Grund gegen ihre Auffassung als einfache Zelle zu finden ist. Weder die Cuticularbildungen, noch die Wimperschicht mit ihren beweglichen Wimpern, noch die Myophanschicht mit ihren Pseudomuskelfibrillen, noch endlich die Trichocystenschicht mit ihren zahlreichen Nesselkapseln liefert irgend ein haltbares Argument gegen die Auffassung des ganzen Körpers als einfacher Zelle. Dasselbe gilt nun aber auch von dem Endoplasma oder der Marksubstanz, zu dessen Betrachtung wir uns jetzt wenden.

Das Endoplasma oder die Marksubstanz des Ciliatenkörpers hat in noch viel höherem Masse als das Exoplasma oder die Rindensubstanz die allerverschiedenartigste Auffassung erfahren und ist vorzüglich Ursache der noch heute sich schroff gegenüberstehenden Ansichten über hohe oder niedere Organisation der Infusorien geworden. Nirgends so wie hier hat die hohe Autorität EHRENBERG's durch die Einführung einer völlig unberechtigten und irrthümlichen Deutung einfacher Verhältnisse gründliche Verwirrung angerichtet und wirkt noch heute als Fehlerquelle fort. Bekanntlich besteht der Hauptirrthum EHRENBERG's darin, dass er den Ciliaten einen vollständigen Darmcanal mit Mund und After zuschreibt. An diesem Darmcanale sollen zahlreiche Magensäcke frei in die Leibeshöhle hinab hängen, welche in seinem grossen Infusorienwerke mit einer Bestimmtheit und Deutlichkeit abgebildet sind, die Nichts zu wünschen übrig lässt²). EHRENBERG hat deshalb die Ciliaten als »Polygastrica enterodela« bezeichnet. Schon im Jahre 1845 führte

538

⁴⁾ Besonders zu bemerken ist noch, dass die eigenthümlichen, ovalen, paarweise unter der Myophanschicht liegenden »Nesselkapseln«, auf welche GREEFF seine Ansicht stützt, bis jetzt blos bei einem einzigen Ciliaten, bei Epistylis flavicans, aufgefunden sind. Sie sind hier (was GREEFF nicht zu wissen scheint) schon längst von CLAPARède und LACHMANN (l. c. p. 142), später auch von ERGEL-MANN beschrieben worden (Zeitschr. für wissensch. Zool. Bd. XI, p. 372).

²⁾ Der polygastrische Darmeanal von Eurenberg ist besonders schün in seinem grossen Infusorien-Werke ausgenielt auf Taf. XXXI, Fig. 4 von Euchelys pupa.

SIBBOLD (in dem ersten Hefte seines »Lehrbuchs der vergleichenden Anatomie«, p. 14---19) den klaren und bündigen Beweis, dass diese ganze polygastrische Hypothese auf Täuschung beruhe. »Die von Ehrenberg als Magensäcke betrachteten, im Parenchym der Infusorien unregelmässig zerstreuten, blasenförmigen hohlen Räume besitzen niemals einen hohlen Stiel, durch welchen sie mit einem Darmcanale bei den Enterodelen (= Ciliaten) in Verbindung stehen sollen. Einen Darmcanal wird man überhaupt nicht bei den Infusorien entdecken können. Jene blasenförmigen Aushöhlungen des Parenchyms enthalten eine klare Feuchtigkeit. welche die Infusorien aus dem flüssigen Medium, in welchem sie sich aufhalten, durch die Hautoberfläche aufsaugen oder durch den Mund verschlucken und in das nachgiebige leicht aus einander weichende Parenchym ihres Körpers hineindrängen. Wendet man die Fütterungsmethode an, so werden die in dem Wasser schwebenden Farbstoffpartikelchen durch den Strudel, welchen die bewimperten Mundöffnungen vieler Infusorien im Wasser erregen, herbeigeholt und mit dem Wasser verschluckt. Das Wasser sammt den Farbstoffpartikelchen häuft sich allmälig am unteren Ende des Oesophagus an und drängt hier das nachgiebige Parenchym blasenförmig von einander. So lange dieses Wasser wie ein Tropfen noch mit dem unteren Ende der Speiseröhre zusammenhängt, hat das Ganze das Ansehen einer gestielten Blase; hat sich aber ein solcher Wassertropfen von der Speiseröhre losgelöst, indem er durch die Contraction der letzteren in das lockere Parenchym hineingedrängt worden ist, so erscheint derselbe als eine ungestielte Blase, in welcher die verschluckten Körper vollständig abgeschlossen liegen. Werden dergleichen mit festem Futter gefüllte Tropfen im Parenchym der Infusorien zu dicht an einander gedrängt, so geschieht os zuweilen, dass sie zu einem einzigen grösseren Tropfen in einander

auf Taf. XXXII, Fig. 4 von Leucophryspatula. Hier.»sieht man das Fortrücken der Speise in dem schlangenförmigen Darme, woran die Magen wie Beeren sitzen, deren Stiele nur dann sichtbar werden, wenn sie den Inhalt der Magen ein- oder auslassen«. Wenn man die Bestimmtheit erwägt, mit der EHBENBEBG diese völlig falschen Angaben macht und noch jetzt, nach 35 Jahren, allen Gegenbeweisen gegenüber aufrecht erhält, so dürfte man auf ihn den Vorwurf anwenden, welchen er selbst unverdienter Weise SIEBOLD macht, dass nämlich »der fleissige Autor doch vorsichtiger die Wissenschaft vor neuen Meinungen über die Organisation der mikroskopischen Organismen hätte schirmen sollen, die leicht hinein, aber schwer herausgebracht werden; denn bekanntlich erörtern die meisten Schriftsteller nicht das Wahre, sondern das Falsche in langen Worten und unnöthigen Schriften«. (Monatsberichte der Berlin. Akad. 1848, p. 335). Dieses wahre Dictum findet auf Niemand mehr Anwendung als auf EHERNERG selbst.

Ernst Haeckel,

fliessen, was beweist, dass diese Tropfen nicht von besonderen Magenhäuten umgeben sind. Die verschluckten festen Futterstoffe, welche häufig aus niederen Algen, namentlich aus Diatomeen, Oscillatorien etc., aber auch aus Infusorien bestehen, steeken nicht selten, ohne von einer Feuchtigkeit blasenförmig umgeben zu sein, unmittelbar in Parenchym. Die festen Nahrungsstoffe, mögen sie unmittelbar im Parenchym der Infusorien stecken oder von Flüssigkeit blasenförmig ungeben sein, werden durch die Bewegungen der Thiere, wahrend sie sich ausdehnen oder contrahiren, mit dem gallertigen Parenchym des Leibes durch einander und über einander geschoben; bei einigen circulirt das lose Parenchym, sammt den in ihm steckenden Nahrungsstoffen, regelmässig und kreisförmig, nach Art des Saftes in den Gliederröhren der Chara-Arten auf und nieder. Ganz besonders auffallend und vom höchsten physiologischen Interesse erscheint diese Girculation des Leibesinhalts bei Loxodes bursaria« 4. c. p. 18). Ich habe diese Stellen aus der Darstellung Siebolds hier wörtlich angeführt, weil diese ausgezeichnete, schon vor 28 Jahren gegebene Darstellung höchst naturgetreu ist und in allem Wesentlichen den Nagel auf den Kopf trifft. Ware dieselbe von den nachfolgenden Beobachtern der Infusorien mehr beachtet und geprüft worden, so wären der Infusorienkunde viele Irrthümer erspart geblieben, die jetzt einen grossen Theil ihrer Literatur füllen. Meine vielfältigen eigenen Beobachtungen, die sich über alle Hauptgruppen der Ciliaten erstrecken, haben mich zu ganz denselben Anschauungen geführt, welche Sieboun schon im Jahre 1845 publicirte, und über welche im Einzelnen sein Lehrbuch der vergleichenden Anatomie (p. 44-19) und sein 4 Jahre später publicirter vortrefflicher Aufsatz ȟber einzellige Pflanzen und Thiere« nachzusehen ist (Zeitschr. für wissensch. Zoologie, Bd. I, 1819, p. 270-291).

Die Auffassung SIEBOLD's fand die nächsten eifrigen Gegner in CLA-PAREDE und LACHMANN, welche in ihrem grossen Infusorien-Werk zwar nicht die Theorie des polygastrischen Darmeanals von EHRENBERG adoptirten, dafür aber eine monogastrische Theorie vertraten, welche zuerst von LACHMANN in Folge seiner Untersuchungen über die Vorticellen aufgestellt war, und wonach die Ciliaten »eine grosse, mit Chymus erfüllte Verdauungs- oder Magenhöhle mit Mund und After« besitzen. Diese »cavité digestive distincte« wird bald als »cavité générale du corps«, bald als »véritable intestin, canal alimentaire« etc. bezeichnet (Études etc. p. 28-42). Das Wesentlichste dieser Anschauung liegt darin, dass das ganze weiche oder »festflüssige«Innen-Parenchym (die Marksubstanz des Ciliaten-Korpers) als Speischrei oder Chymus gedeutet wird, mithin nicht als wirklicher Körpertheil, sondern als Darminhalt. Der Mund

540

^fuhrt durch eine kurze Speiseröhre in eine grosse geräumige »Verdauungshöhle oder Magenhöhle«, deren Wand, die »Rindenschicht«, demnach gleichzeitig Magenwand und Körperwand ist. Die unverdauten Bestandtheile des Chymus werden aus dieser Magenhöhle durch einen (nicht immer vorhandenen!) After nach aussen abgeführt. Daraus ergiebt sich im Wesentlichen die nächste Verwandtschaft der Ciliaten zu den Cölenteraten, bei denen dieselbe characteristische Einrichtung des Ernährungs-Apparates überall wiederkehrt. CLAPAREDE und LACHMANN versäumen denn auch nicht, diese Verwandtschaft ausdrücklich zu betonen. »La cavité générale sert de cavité digestive, ou si parfois il existe une cavité digestive spéciale, elle est en communication ouverte avec la cavité générale. C'est cette disposition du système digestif qui justifie le nom de Cölentérés. Or, cette définition des Cölentéres s'applique parfaitement aux Infusoires, et si l'on ne spécifie pas le type de la classe, il faut considérer les Infusoires comme formant une simple subdivision des Cölentérés« (l. c. p. 59).

Diese Auffassung der Ciliaten von CLAPAREDE und LACHMANN stimmt zwar darin mit Ehnenbeg's Anschauung überein, dass die Infusorien hochorganisirte Thiere mit einem vollständigen Darmcanal sind; allein sie entfernt sich anderseits weit von der polygastrischen Theorie, indem sie diese Darmhöhle zugleich als Leibeshöhle betrachtet und die Ciliaten auf Grund dieses Verhältnisses mit den Gölenteraten vereinigt. Das ganzlich Verfehlte dieser Auffassung, welche im Wesentlichen auch von LIEBBRKÜHN und anderen Beobachtern getheilt wurde, ist neuerdings besonders von STEIN in der zweiten Abtheilung seines grossen Infusorien-Werkes (4867, p. 6 ff.) nachgewiesen. Trotzdem hat in neuester Zeit die CLAPARBDE-LACHMANN'sche Theorie einen entschiedenen Vertheidiger und Restaurateur in GREEFF gefunden, welcher in seinen »Untersuchungen uber den Bau und die Naturgeschichte der Vorticellen« zu folgendem Resultate gelangt : »Die unter der Cuticula liegende Rindenschicht umschliesst nach innen in fester Grenze einen Raum, die Körperhöhle. Der Inhalt der Körperhöhle besteht aus einem dünnflüssigen Brei von aufgenommener oder bereits mehr oder minder aufgelöster Nahrung, d. h. aus Chymus, der durch stete Zufuhr neuer Nahrung und Wasser von aussen durch die Mundöffnung und durch Abgabe der verbrauchten Stoffe durch den After in einem fortwährenden Wechsel be-Im Inneren der Körperhöhle kreist dieser Nahrungsbrei begriffen ist. ständig umher, wodurch einerseits die Zerkleinerung und Chymificirung, mit einem Worte die Verdauung und anderseits die Vertheilung der ernährenden Substanzen durch den ganzen Körper hefördert wird. Wir schen somit in der Körperhöhle der Vorticellen einen Gastrovascular-Raum im vollen Sinne des Wortes, eine Körperhöhle, in der die Verdauung und Circulation resp. Ernährung ganz in derselben Weise erfüllt wird, wie bei den Cölenteratem (l. o. p. 191, 192].

Obgleich nun GREEFF wie man sieht, lediglich die Ansicht von Cu-PAREDE und LACHMANN reproducirt, beginnt er doch seine Darstellung derselben mit den Worten: »Enrenberg verdanken wir die erste richtige Anschauung von dem Ernährungs-Apparat der Vorticellen« (l. c. 1870, p. 185). Wie man aber die polygastrische Theorie von EHRENBERG für richtig erklären und gleichzeitig die völig verschiedene Gastrovascular-Theorie von CLAPAREDE und LACHMANN 200 seinigen machen kann, ist mir völlig unverständlich. Ebenso unverständlich ist mir, durch welche Ursachen sich GREEFF die »leicht zitternde Strömung« oder die »vibrirende Bewegung« des Inhalts der »verdauenden Körperhöhle« hervorgebracht denkt? Ebenso unverständlich ist mir, wie diese »Rotation« des Nahrungsbreies »die Vertheilung der ernöhrendan Substanzen durch den ganzen Körper befördern« soll, da ja nach GREEFF's Anschauung der »ganze Körper« eigentlich nur aus der festen, nicht rotirenden »Rindenschicht« und den mit dieser zusammenhängenden Organen (Cuticula, Wimpern, Nucleus etc.) besteht, die ganze innere »scharf abgegrenzte« Höhle aber nur eine einfache, mit dem rotirenden Chymus selbst vollständig angefüllte Cavität ist? Ebenso unverständlich ist mir endlich (neben vielem Anderen) auch folgender Satz: »Die Formbestandtheile, die nach Entfernung der grösseren Nahruungsballen zurückbleiben, sind bei einigen Arten ausserdem von ganz constanter Gestalt und Grösse, wie sie z. B. bei Epistylis flavicans in glänzenden, leicht gelb gefärbten, oft zu mehreren, meist zu drei oder vier zusammengeballten verhältnissmässig grossen Kügelchen bestehen, so dass man versucht ist, das ganze von den gröberen noch ungelösten oder unlöslichen Nahrungsstoffen befreite Fluidum als die mit Wasser vermischte Blutflüssigkeit oder Chylus anzuschen« (l. c. p. 194). Hiernach scheint GREEFF anzunchmen, dass der »Chymus«, welcher die »Leibeshöhle oder verdauende Körperhöhle« erfüllt, sich unmittelbar durch »Entfernung der grösseren Nahrungsballen« in die »mit Wasser vermischte Blutflüssigkeit oder Chylus« verwandelt. Indessen dürfte dieser Theorie doch der übliche Sprachgebrauch der Anatomie und Physiologie entgegenstehen, wonach »Chymus, Chylus und Blutflüssigkeit« wesentlich verschiedene Begriffe sind.

Um die von GREEFF restaurirte Gastrovascular-Theorie von CLAPA-REDE und LACHMANN definitiv zu widerlegen, bedarf es weiter Nichts, als

.

einer scharfen Begriffsbestimmung des innern Hohlraums der Zoophyten oder Gölenteraten, welcher bald als »Leibeshöhle« oder »allgemeine Körperhöhles, bald als »Magenhöhle, Darmhöhles etc. bezeichnet wird. Ich habe diese Begriffsbestimmung in meiner Monographie der Kalkschwämme (Vol. I, p. 467) zu geben gesucht, indem ich auf Grund der nachher noch zu besprechenden Gastrula-Entwicklung den anatomischen und genetischen Nachweis führte, dass Leibeshöhle und Darmhöhleder Thiere völlig verschiedene Hohlräume sind, die niemals mit einander in Zusammenhang stehen und auf ganz verschiedene Weise entstchen. Die Darmhöhle oder verdauende Gavität (gaster, cavitas enterica), und elenso alle davon ausgehenden Ausbuchtungen (Gastrovascular-Räume, Gastrocanäle, Darmdrüsen, Blinddärme etc.) sind stets ursprünglich vom Entoderm oder Gastralblatte, dem inneren Keimblatte oder Darmdrüsenblatte ausge-Der Inhalt der Darmhöhle ist aufgenommene Nahrung und kleidet. Wasser, Speisebrei oder Chymus. Die Leibeshöhle oder Eingeweidehöble hingegen (cöloma, cavitas pleuroperitonealis) befindet sich stets zwischen dem äusseren und inneren ursprünglichen Keimblatte, zwischenExodern) und Entodern), und entsteht durch Ansammlung von Flüssigkeit zwischen Beiden, oder in einer Lücke des mittleren Keimblattes, in der Spalte zwischen den beiden Spaltungslamellen des letzteren, zwischen Hautmuskelblatt (oder Hautfaserplatte) und Darmmuskelblatt (oder Darmfaserplatte). Diese Flüssigkeit, welche das Gölom erfüllt, ist niemals Speisebrei oder Chymus, sondern stets ein durch die Darmwand transsudirter Saft, den man entweder Chylus oder Blut im weiteren Sinne) nennen kann. Allerdings stehe ich mit dieser Auffassung der Darmhöhle und Leibeshöhle in Gegensatz zu der Mehrzahl der Autoren, welche nach dem Vorgange von LBUCKART den Zoophyten oder Cölenteraten (den Spongien, Hydromedusen, Ctenophoren, Corallen) eine Leibeshöhle zuschreiben und eine Darmhöhle absprechen. Allein ich stütze mich auf die Entwicklungsgeschichte, welche klar das Gegentheil lehrt. Bei allen Cölenteraten oder Zoophyten ist der zusammenhängende Leibeshohlraum (der in der einfachsten Gestalt bei der Gastrula-Larve auftritt) von Anfang an mit einer Zellenschicht des Entoderms oder des inneren Keimblattes (Darmdrüsenblattes) ausgekleidet, und muss daher, wie bei allen höheren Thieren, als Darmhöhle bezeichnet werden. Eine wahre Leibeshöhle, ein Cölom oder eine »Pleuroperitoneal-Höhle«, geht hingegen den sämmtlichen Zoophyten (ebenso wie den Plathelminthen) völlig ab und kömmt erst bei den höheren Würmern (Cölomaten) und den davon abzuleitenden vier höheren Thierstämmen zur Entwicklung.

Ernst Haeckel,

Wenn nun wirklich, wie GREEFF nach dem Vorgange von CLAPAREN und LACHMANN behauptet, »die verdauende Körperhöhle der Infusorie ein Gastrovascular-Raum im vollen Sinne des Wortes« wäre, wie bei den Gölenteraten, so müsste dieselbe selbstverständlich vom Entodern, vom Gastralblatte oder inneren Keimblatte ausgekleidet sein. Nun ist aber bekanntlich noch von Niemandem bei den Infusorien eine Spur von Keimblättern überhaupt nachgewiesen worden, und alle Bemühungen. an der Innenfläche der angeblichen »verdauenden Körperhöhle« der Ciliaten eine Spur von einem Epithelium oder überhaupt von einer aus Zellen zusammengesetzten Masse wahrzunehmen, sind völlig vergeblich Es liegt mithin nicht der geringste anatomische Grund vor. gewesen. jenen angeblichen »Gastrovascular-Raum« der Giliaten mit dem wahren Gastrovascular-Raum oder der Darmhöhle der wirklichen Zoophyten oder Gölenteraten zu vergleichen. Ebenso spricht auch die Entwicklungsgeschichte definitiv dagegen. Vielmehr zeigt die sorgfaltigste anatomische und ontogenetische Untersuchung unwiderleglich, dass der ganze sogenannte Chymus der Ciliaten, der weiche, festflüssige »Inhalt« der angeblichen Gastrovascular-Höhle, durchaus weiter Nichts ist, als die weichere und wasserreichere Marksubstanz des Protoplasma oder der Sarcode des einzelligen Das Verhalten dieses Endoplasma oder der verdauenden Körners. Marksubstanz, welches schon SIEBOLD so vortrefflich geschildert hat (l. c.), ist durchaus dasselbe wie bei den Amoeben und bei anderen einzelligen Organismen, welche geformte feste Nahrungsstoffe von aussen Da auch STRIN diese Auffassung theilt und sehr ausführaufnehmen. lich begründet hat, bin ich hier einer weiteren Beweisführung enthoben.

Durch diese Auffassung erklären sich auch ganz einfach die Bewegungserscheinungen innerhalb des Endoplasma, welche bald mehr bald weniger deutlich auftreten, am auffallendsten bekanntlich bei Paramaccium bursaria und einigen verwandten Arten, wo eine förmliche Rotation der verdauenden Marksubstanz und der von ihr umschlossenen Nahrungsbissen stattfindet! Schon Sizzon hat dieselbe vollkommen zutreffend mit den Saftströmungen innerhalb der Pflanzenzellen (bei Chara, l. c. p. 18) verglichen. In der That sind alle diese Bewegungsphänomene Nichts anderes als innere Protoplasmabewegungsphänomene Nichts anderes als innere Protoplasmabewegungsphänomene Strömungen«. Werdie vielfach wechselnde und sowohl bezüglich der Geschwindigkeit als der Qualität mannichfach verschiedene Form dieser Strömungen bei den Moneren, den Amoebinen, den Rhizopoden [Acyttarien, Radiolarien] und innerhalb der Parenchymzellen der Pflanzen, sowie einzelner thierischer Gewebe (Knorpel!, sorgfältig studirt und verglichen hat, der wird nicht Anstand

544

nehmen, auch die sämmtlichen Bewegungen und »Strömungen« innerhalb der Marksubstanz des Ciliatenkörpers in dieselbe Kategorie zu stellen. Sogar die verschiedenen Formen derselben bei den letzteren haben ihre durchaus entsprechenden Formen innerhalb der Pflanzenzellen. Allerdings bestreitet GRERFF die Richtigkeit dieser Vergleichung entschieden und bemerkt: »Nicht einmal die Grundsubstanz des circulirenden Breies ist Sarcode oder Protoplasma im Sinne der Autoren. Denn die Rotationsbewegung ist nicht die einer zähen contractilen Substanz, sie äussert sich nicht nach Art der sonstigen bekannten amoeboiden langsam kricchenden Protoplasmaströme, sondern sie schreitet überall leicht und lebhaft beweglich, zuweilen in leicht zitternder Strömung durch den Innenraum« (l. c. p. 192). Aus dieser Bemerkung geht einfach hervor, dass GREEFF die bedeutenden Verschiedenheiten in der Geschwindigkeit und Form der Protoplasmaströmungen, wie sie z. B. innerhalb der Pflanzenzellen leicht wahrzunchmen sind, gar nicht kennt; er scheint zu glauben, dass alles Protoplasma zähe und alle Bewegungen desselben langsam sind. Dies ist aber bekanntermassen durchaus nicht der Fall. Man denke nur an die höchst verschiedene Geschwindigkeit der Sarcodeströmungen bei den verschiedenen Rhizopoden und bei den verschiedenen Myxomyceten! Auffallender Weise macht GREEFF gar keinen Versuch, die von ihm weitläufig beschriebene "Rotationsströmung«, welche er »eine der auffallendsten Erscheinungen« nennt (I. c. p. 188), irgendwie zu erklären und nach ihren Ursachen zu fragen. Offenbarläge es am nächsten für ihn, ein inneres Flimmerepithelium an der Innenwand des angeblichen Gastrovascularraums als Ursache derselben anzunehmen, wie bei den übrigen Cölenteraten. Da indesson von einem solchen niemals eine Spur nachgewiesen werden kann, zicht er dasselbe überhaupt mit Recht nicht in Betracht. Dass die Körpercontractionen nicht die Ursache jener Bewegungen sein können, ist längst erwiesen; denn gerade jene Infusorien, bei denen diese innere »Rotation« besonders lebhaft und schnell ist (Paramaecium bursaria etc.), zeigen dieselbe am deutlichsten, wenn sie vollig unbeweglich daliegen und ihre Körperform gar nicht verändern. Auch wäre dadurch gerade die rotirende Form der Bewegung absolut nicht zu erklären. GREEFF ist demnach genöthigt, die Ursache der Chymusbewegung in diesem »Speisebrei« selbst zu suchen, gleichviel ob derselbe als »Chymus oder Chylus« aufgefasst wird.

Einen besonders schlagenden Beweis für die Richtigkeit uuserer Auffassung finden wir in einem eigenthümlichen Ciliaten, das gerade umgekehrt von unseren Gegnern gewöhnlich als Gegenbeweis gegen uns benutzt wird, nämlich in Trachelius ovum. Ehrenberg sagt von ihm (l. c. p. 323): »Bei keinem polygastrischen Thierehen ist der Dam an sich so direct zu schen, wie an diesem. Es ist ein verzweigter haumartiger Ganal, dessen Aeste blind enden und an den Enden sich kugelartig zu Magenblasen von beliebiger Grösse ausdehnen. Auch die feinsten Zweige sind der unerwartetsten Erweiterung fähig«. Nun ist aber in Wahrheit dieser »baumartig vorzweigte Darm can al« von Trachelius ovum beständigen Veränderungen unterworfen, indem sich seine Substanztheilchen fliessend hin und her bewegen, indem bestehende Aeste eingezogen werden oder zusammenfliessen, neue Aeste sich bilden und abermals verästeln etc. Kurz das veränderliche Bild ist vollkommen dasselbe, wie das bekannte Bild in grossen Pflanzenzellen, in welchen sich veränderliche Protoplasmanetze innerhalb einer wässrigen Zellflüssigkeit bewegen (z. B. in den Staubfadenhaaren der Tradescantia etc. $\frac{1}{2}$. Auch die einzellige Noctiluca bietet ganz dasselbe Bild.

Der Vergleich des Trachelius ovum mit der Noctiluca und mit den nächstverwandten Flagellaten ist von besonderer Bedeutung auch bei Betrachtung der Mundöffnung der Giliaten, in deren Esistenz man einen so gewichtigen Gegenbeweis für ihre Einzelligkeit bat finden wollen. Bekanntlich scheinen die meisten (wenn auch nicht alle) Giliaten wirklich eine physiologische Mundöffnung zu besitzen,

¹⁾ OSCAR SCHMIDT, der die Infusorien zu den Würmern stellt (und dem ich selbs früher darin gefolgt bin), sagt über Trachelius in seinem Handbuche der verst Anat. (VI. Aufl. 4872, p. 85): »Die vollständigste Homologie mit der verdauendes Sarcode der Protozoen bietet Trachelius ovum, in dessen Leibeshöhle ein veränderliches fliessendes Sarcode-Netz die Nahrung durch den Mund und Schlund empfängt. Dieses Netz, zwischen dessen Maschen eine wässrige Flüssigkeit, geht in der ganzen Peripherie über in eine Schicht ungeformter Sarcode, auf welche nach aussen die contractile Streifenschicht folgt«. Erstere Schicht entspricht im Wesentlichen dem »Primordialschlauch« der Pflanzenzellen. Vollkommen zutreffend vergleicht ferner Gegenbaun in seinen Grundzügen der vergl. Anat. (II. Aufl., 4879, p. 403) dieses innere veranderliche Protoplasma-Netz von Trachelius mit dem bekannten gleichwerthigen Sarcode-Netzwerk in dem blasenförmigen Körper der Noctiluca. »Die Vertheilung des Protoplasma in Balken oder stromartig sich bewegende Fäden ist der Ausdruck eines Zustandes, der durch einen dem Protoplasma gebotenen freien Spielraum bedingt wird und hat sein Analogon in anderen niederen Organismen, bei Diatomeen etc., wie in den Zellen der Pflanzen. Zu solchen Zellen verhalten sich Trachelius und die Noctiluken, wie die übrigen Infusorien zu Zellen, deren Protoplasma unmittelbar von einer Membran umschlossen wird und den von letzterer begrenzten Raum vollständig erfullt«. Dieser Vergleich des Trachelius mit der Noctiluca ist um so zutreffender, seitdem kürzlich Cursxowski (l. c.) die so lange zweifelhafte Natur der Noctiluca endlich definitiv durch Ermittelung ihrer Ontogenese festgestellt und nachgewiesen hat, dass auch sie eine einfache Zelle ist, und zwar eine Flagellaten-Zelle.

d. h. eine constante Oeffnung in der festeren Rindensubstanz, durch welche die Nahrung aufgenommen und in die weichere Marksubstanz bineingedrückt wird. Viele Ciliaten (aber nicht alle!) besitzen daneben noch eine constante physiologische Afteröffnung, durch welche die Excremente entleert werden. Allein weder diese After- noch jene Mundölfnung können in morphologischer Beziehung den gleichnamigen beiden Oeffnungen im Körper aller höheren Thiere verglichen werden. Denn die Wände dieser beiden Oeffnungen sind bekanntlich mit einem vielzelligen Epithelium ausgekleidet (welches mindestens bei den Wirbelthieren aus dem äusseren Keimblatt seinen Ursprung nimmt). Bei den Infusorien ist keine Spur davon vorhanden. Vielmehr sind die sogenannten Mund- und Afteröffnungen einfache Löcher in dem festeren Exoplasma, durch welche Nahrungsmittel aufgenommen und in das weichere Endoplasma hineingedrückt werden. Sie haben keinen höheren morphologischen Werth als die »Porencanäle« in den Wänden vieler thierischen und pflanzlichen Zellen, als die »Micropylen« in der Schale vieler Eizellen etc. Mit Recht hat sie auch schon Kölliker der constanten Oeffnung (dem »Ausführgang«; der einzelligen Drüsen verglichen 1). Noch lehrreicher ist der Vergleich mit den Flagellaten und den ihnen morphologisch äquivalenten Geisselzellen des Entoderms der Spongien, welche ebenfalls »essen und trinken« können, worüber ich mich in der Monographie der Kalkschwämme ausführlich ausgesprochen habe (l. c. Vol. I. p. 139-142, 372-374 etc.). Wenn man dieses Alles vergleichend erwägt, bedarf es keines Beweises mehr, dass die sogenannte »Mundöffnung« und ebenso auch die »Afteröffnung« der Infusorien, speciell der Ciliaten, keineswegs den gleichnamigen Oeffnungen der Zoophyten, der Würmer und aller höheren Thiere zu vergleichen sind. Zwischen beiden existiren auch in dieser Beziehung garkeine Homologien. Ich schlage daher vor, die betreffenden Oeffnungen bei den Infusorien fortan als Zellenmund Cytostoma) und Zellenafter (Cytopyge) zu bezeichnen.

Ebenso wenig als die sogenannte Mundöffnung und Afteröffnung bieten die sogenannten »contractilen Blasen« und die davon nicht wesentlich verschiedenen Vacuolen der Giliaten irgend ein Hinderniss für die Auffassung ihres Körpers als einfacher Zelle. Ueber die physiologische Bedeutung dieser Biorgane herrschen bekanntlich noch heute sehr verschiedene Ansichten. Nach der einen Ansicht sind dieselben Samenblasen (EHRENBERG); eine zweite Gruppe von Forschern hält sie für Herzen, für Centra eines Blutgefässsystems (LIEBER-KÜHN, CLAPAREDE und LACHMANN); nach einer dritten Ansicht sind sie

¹⁾ KÖLLIKER, Icones histiolog. 1864. I. Heft. p. 23.

Ernst Haeckel,

respiratorische Wassergefässe, also Athmungsorgane (SPALLASZIM, DUJARDIN'; eine vierte Gruppe von Beobachtern hält sie für excretorische Organe, analog den Nieren der höheren Thiere, besondes den Excretionscanälen der Würmer (Turbellarien, Räderthiere), so Snu und Oscar Schnipt; nach meiner eigenen (fünften) Ansicht endlich mögen diese Biorgane verschiedene Functionen der Ernäbrung vereinigt ausüben, namentlich Respiration und Excretion. Ohne hier näher auf diese verschiedenen physiologischen Deutungen einzugehen, wollen wir blos den morphologischen Werth derselben untersuchen, der uns allein hier interessirt. Da ist denn vor Allem zu constatiren, dass nach dem übereinstimmenden Zeugniss aller zuverlässigen Beobachter die contractilen Blasen aller Infusorien besondere Wandungen entbehren und Nichts, als einfache, mit Flüssigkeit gefüllte Lücken im Parenchym sind. Ich habe daher schon früher (in meinem Aufsatze über die Catallacten) die Vermuthung geäussert, dass die beständigen wontractilen Blasender Infusorien phylogenetisch aus unbeständigen Vacuolen entstanden und weiter Nichts als differenzirte oder constant gewordene Vacuolen sind«). Durch meine weiteren Beobachtungen über diese vieldentigen Gebilde bin ich is dieser Ansicht nur befestigt worden. »Der Unterschied zwischen den wandungslosen Vacuolen und den contractilen Blasen ließ eigentlich nur darin, dass die letzteren constanter sind und sich regelmässiger zusammenziehen als die ersteren«. Beide sind wandungskæ Hohlräume im Protoplasma, in denen sich Flüssigkeit ansammelt, und aus denen dieselbe durch Contraction des Protoplasma wieder ausgepresst wird. Wenn dieses Protoplasma wasserreicher, weicher und dünnflüssiger ist, wie in dem Endoplasma oder der Marksubstanz der Ciliaten, dann werden die Vacuolen leichter entstehen und vergehen, oft wechseln und an Grösse sehr ungleich sein. Wenn dagegen das Protoplasma wasserärmer, fester und zähflüssiger ist, wie in dem Exoplasma oder der Rindensubstanz der Ciliaten, dann werden die Vacuolen sich mehr zu constanten Gebilden gestalten, welche ihre Lage und ihr Volum nicht mehr wechseln und durch Vererbung ihrer localen Eigenthümlichkeiten sich zu bleibenden Biorganen der Species entwickeln. Hierdurch erkläre ich mir ganz einfach die Erscheinung. dass die in der Rindensubstanz liegenden »contractilen Blason« der Ciliaten meistens constante Biorgane darstellen, die in der Marksubstanz auftretenden »contractilen Vacuolen« hingegen einem beständigen

548

⁴⁾ Jenaische Zeitschr. f. M. u. N. 4874, Bd. VI. p. 44.

Wechsel unterworfen sind. Am stärksten tritt die Differenzirung zwischen den beiderlei contractilen Hohlräumen bei Trachelius ovum hervor, wo in dem festen Exoplasma zahlreiche constante scheibenförmige »contractile Blasen« gesondert auftreten, während in dem weichen Endoplasma zahlreiche grosse mit heller Flüssigkeit erfüllte »contractile Vacuolen « mit einander zu einem unregelmässigen Hohlraum zusammenfliessen, der von dem variablen Netzgerüst der »Sarcodestränge« durchzogen ist. Demnach betrachte ich die beiderlei contractilen Hohlräume als ursprünglich identisch, um so mehr, als wir auch in vielen Parenchymzellen von vielzelligen Pflanzen und Thieren die gleiche Differenzirung wahrnehmen können. Auch hier ist keine scharfe Grenze zwischen den ganz unregelmässigen und vergänglichen »Vacuolen im Protoplasma« und den regelmässigeren und constanteren »contractilen Blasen« zu ziehen; letztere finden sich oft ausgezeichnet vor in den Schwärmsporen mancher Algen, ebenso wie in Flagellaten, und sind dann von denen vieler Ciliaten in keiner Weise zu unterscheiden. Auch der Umstand, dass bei einzelnen (wenigen!) Giliaten sich die contractile Blase noch weiter in »verästelte Gefässe« fortsetzt, ist durchaus kein Hinderniss für unsere Auffassung. Denn auch diese »Gefässe« haben keine besonderen Wandungen und sind einfache Lücken im Protoplasma. Ebenso wenig ist für uns der Umstand von Bedeutung, ob die contractilen Blasen nach aussen münden oder nicht; wenn solche äussere Oeffnungen vorhanden sind, so gilt von ihnen dasselbe, was vorher von der Mundöffnung gesagt wurde. Auf keinen Fall lässt sich in Allem, was wir von den contractilen Blasen wissen, itgend Etwas auffinden, das mit der Deutung des Giliatenkörpers als einfacher Zelle unvereinbar wäre.

Was endlich das letzte und wichtigste Biorgan des Ciliatenorganisnus betrifft, den sogenannten Kern oder Nucleus, so können wir uns glücklicher Weise hier sehr kurz fassen. Wir gehen von der feststehenden Thatsache aus, dass sich dieser Nucleus in den Sporen (Keimkugeln) und in den daraus unmittelbar entstandenen jungen Ciliaten durchaus wie ein gewöhnlicher echter Zellenkern verhält, und auch bei der später eintretenden Differenzirung keinerlei Veränderungen erfährt, welche der Auffassung des ganzen Organismus als einfacher Zelle widersprechen. Diese secundären Schicksale des Nucleus werden nun aber von den verschiedenen Beobachtern so ausserordentlich verschieden geschildert, und bei einer Vergleichung der verschiedenen Angaben treten so zahlreiche, völlig un vereinbare Widersprüche zu Tage, dass man nicht von uns verlangen wird, hier auf die ganze dunkle Naturgeschichte Ernst Haeckel,

des Nucleus einzugehen, uns vielmehr gestatten wird, vor Allem diejenigen Momente hervorzuheben, welche für unsere Auffassungsweise des Nucleus als wahren Zellenkernes sprechen.

In morphologischer Beziehung ist bereits genügend festgestellt, dass ursprünglich der Nucleus des Körpers bei allen Ciliaten ein einziges einfaches Gebilde ist, welches in jeder Beziehung einen gewöhnlichen Zellenkerne gleicht. Seine Ontogenie stellt dieses wichtige Verhältniss unzweifelhaft fest, und auch in seiner Anatomie ist bei jugendlichen Giliaten Nichts zu finden, was dieser Auffassung widerspräche. Bei der allmälig eintretenden Differenzirung des reifenden Giliatenkörpers treten auch im Nueleus ebenso wie im Protoplasma eigenthümliche Veränderungen auf; allein auch diese sind nicht durchaus isolirte Erscheinungen, sondern lassen sich wohl mit den complicirten Differenzirungsprocessen vergleichen, welche auch von anderen unzweifelhaften Zellenkernen bekannt sind, z. B. den »Keimbläschen vieler Thiere, den Kernen vieler einzelliger Pflanzen, den Kernen mancher Parenchymzellen höherer Pflanzen, den Kernen mancher Nervenzellen etc. Insbesondere findet sich die Zusammensetzung des reifen, oft bläschenförmigen, differenzirten Kerns aus einer zarten Hüllmembran und einem feinkörnigen oder aus kleinen Körnern zusammengesetzten Inhalte ebenso bei den differenzirten Kernen vieler anderer Zellen wieder. Bei vielen Giliaten (wenn auch nicht bei allen) ist ausserdem im nerhalb desjugendlichen Kernes ein dunkles, stärker lichtbrechendes Körperchen zu unterscheiden, das sich ganz wie ein gewöhnlicher echter Nucleolus verhält(Taf. XXVII, Fig. 3, 5; Taf. XXVIII, Fig. 43). Einzelne Ciliaten besitzen mehrere derselben. Diese wahren Nucleoli sind nicht zu verwechselt mit dem sogenannten Nucleolus vieler Ciliaten, welcher ausserhalb des Nucleus, an seiner Oberfläche, oder selbst entfernt von ihm im Protoplasma liegt, der gewöhnlich jetzt als »Hoden« betrachtet wird, und auf den wir nachher zurückkommen. Vielmehr ist der wahre Nucleolus (in strengem morphologischem Sinne!) dasjenige innerhalb des Nucleus liegende Körperchen, welches Kölliken als »Kern der weiblichen Geschlechtszelles bezeichnet. Mit diesem letzteren Namen bezeichnet Kölliker sonderbarer Weise den Nucleus, obwohl er den ganzen Ciliatenkörper als eine einzige Zelle auffasst. Wenn man aber an dieser auch von uns hier vertretenen Auffassung streng festhält, so kann man den Nucleus nur als wirklichen Zellenkern, nicht als eine besonder »Geschlechtszelle« deuten.

In physiologischer Beziehung ist vor Allem zu constatiren, dass nach den einstimmigen Angaben aller Beobachter der Nucleus bei allen Ciliaten ein Biorgan der Fortpflanzung ist, wenngleich

550

tiber die specielle Rolle, welche derselbe dabei spielt, die Ansichten ausserordentlich weit auseinander gehen. Nun ist aber bekanntlich auch in den gewöhnlichen Parenchym-Zellen der Thiere und Pflanzen, und nicht minder bei allen wirklich einzelligen Organismen des Thierreichs, des Protistenreichs und des Pflanzenreichs, der Nucleus ebenso allgemein das Organ der Fortpflanzung und Vererbung (vergl. hierüber den I. Band meiner generellen Morphologie, p. 288). Immer geht ja bei der gewöhnlichen Zellentheilung die Theilung des Nucleus derjenigen des Protoplasma voraus; letztere erscheint erst als die secundäre Folge der ersteren, die das eigentlich Bedingende des wichtigen Vorganges ist. Durch diese fundamentale Uebereinstimmung ist auch von physiologischer Seite her die Auffassung des Ciliaten-Nucleus als einfachen Zellenkerns völlig gerechtfertigt, wenn auch der Kern der Ciliaten bei der Fortpflanzung eine mannigfaltigere Rolle spielt, als es bei den gewöhnlichen Zellenkernen in der Regel der Fall ist.

Von der grössten Bedeutung für die Begründung unserer Ansicht sind natürlich die hier in erster Linie zu nennenden Fälle, in welchen sich der Ciliaten-Körper auf ungeschlechtlichem Wege einfach durch Theilung fortpflanzt. Diese Fälle von einfacher Selbsttheilung sind in den verschiedensten Gruppen so zahlreich und sicher beobachtet, dass über ihre allgemeine Verbreitung bei den Ciliaten kein Zweifel existirt, wenn auch viele früher für Längstheilung gehaltene Erscheinungen sich nachher umgekehrt als Conjugations-Vorgänge herausge-Nun verhält sich aber nach den genauesten und sorgstellt haben. fältigsten Beobachtungen zahlreicher Forscher bei dieser einfachen Selbsttheilung der Ciliaten ihr Nucleus ganz genau ebenso wie bei der gewöhnlichen Zellentheilung der Zellenkern. Zunächst zerfällt der Nucleus durch spontane Halbirung in zwei Stücke und dann erst folgt ihm das umgebende Protoplasma nach, indem es ebenfalls in zwei Hälften zerfällt. Gerade hier verhält sich der ganze Ciliaten-Körper durchaus wie jede gewöhnliche einfache Zelle.

Eine zweite Reihe von Fortpflanzungs-Erscheinungen der Ciliaten müchte ich als Sporenbildung bezeichnen. Ich fasse unter diesem Begriffe alle diejenigen Fälle zusammen, in denen /ohne vorhergegangene »Befruchtung«) der Nucleus ganz oder theilweise in zahlreiche Stücke zerfällt und jedes dieser Stücke (wahrscheinlich durch Umhüllung mit einem entsprechenden Stücke des Protoplasma des Mutterthieres) sich zu einer selbständigen Zelle, einer sogenannten »Keimkugel« gestaltet. Diese letztere ist eine wahre Spore, so gut wie die Spore, welche ganz auf dieselbe Weise im Körper einzelliger Pflanzen entsteht. Auch der Process ihrer Bildung ist ganz derselbe, und muss daher auch Bd. VII. 4.

bei den Giliaten als »Sporenbildung« oder Sporogonic bezeichnet werde. Gegen die "Einzelligkeit« liegt in diesem Vorgang natürlich bei den Gliaten eben so wenig ein Widerspruch, als bei den nächstverwanden Acineten und als bei den angeführten einzelligen Pflanzen. Vielmehris der ganze Vorgang als ein Modus der »en dogenen Zellvermehrung aufzufassen.

Grössere Bedenken gegen die Einzelligkeit des Ciliaten-Organismus scheint die von den meisten neueren Autoren angenommene -seschlechtliche Fortpflanzung« der Ciliaten hervorzurufen. Und diese wollen wir nur zunächst thatsächlich bemerken, dass sieb der grossen Mehrzahl der Ciliaten bis jetzt noch nicht nachgewiese Diejenigen Arten, bei denen man dieselbe beobachtet zu habe ist. glaubt, bilden entschieden die überwiegende Minderzabl. Aber selbst bei diesen sind so wesentliche Widersprüche zwischen den verschiedenen Autoren bezüglich der Art und Weise des geschlechtliche Fortpflanzungs-Processes nachzuweisen, dass es wohl erlaubt ist, aller diesen Angaben gegenwärtig kein zu grosses Gewicht beizulegen. De Mehrzahl der Autoren deutet jetzt bekanntlich den Nucleus als Ovarium, seine Theilproducte als Eier, und den ausserhalb des Nuckus liegenden sogenannten »Nucleolus« als Hoden, in welchem sid Zoospermien bilden sollen. Die letzteren sollen die ersteren befruchten, und aus diesen befruchteten Eiern sollen die Embryonen entstehen. Nu ist aber bisher thatsächlich dieser sogenannte »Nucleolus« erst bei einer verhältnissmässig geringen Minderzahl von Ciliaten nachgewiesen wor-Bei der grossen Mehrzahl hat er sich trotz der angestrengtesten den. auf seine Entdeckung gerichteten Untersuchungen durchaus nicht auftinden lassen. Ferner ist die Zoospermien-Natur der «haarfeinen Fäder oder Stäbchen«, welche sich in demselben bilden sollen, durchaus nicht sicher bewiesen. Haben doch sogar BALBIAMI und Andere die angeblichen Zoospermien für eingedrungene parasitische Vibrioniden erklärt ! Jedenfalls hat noch Niemand bisher den Nachweis führen können, dass diese angeblichen Zoospermien wirkliche Zellen sind oder sich aus Zellen Die wahren Zoospermien der Thiere sind aber entwickeln. immer echte Zellen, und zwar ist das gewöhnliche »stecknadelförmige Zoospermium« eine einfache Geisselzelle, wie ich in der Monographie der Kalkschwämme gezeigt habe (Vol. I, p. 447-453).

Wir wollen nun aber einmal annehmen, der sogenannte Nucleolus der Giliaten sei wirklich ein Hoden oder eine »Samenkapsel«; die dariv gebildeten Fäden oder Stäbchen seien wahre Sperazmellen, und befruchteten die Eier, die kleinen Zellen, welche aus Theilstücken des Nucleus hervorgingen. Würde in dieser sexuellen Differenzirung ein wesentlicher Einwand gegen die Einzelligkeit des Infusorien-Körpers liegen? Wir können mit voller Bestimmtheit antworten: »Nein!« Denn ganz dieselbe sexuelle Differenzirung und Fortpflanzung findet sich auch bei einzelligen Pflanzen vor, wie schon Köllikken ganz richtig bemerkt hat, und doch wird deren »Einzelligkeit« deshalb von Niemand bestritten! Natürlich wäre der reife Ciliaten-Körper in diesem Zustande streng genommen eigentlich mehrzellig; allein ebenso ist auch jede einfache Parenchym-Zelle (z. B. eine Knorpelzelle) während des endogenen Fortpflanzungs-Processes natürlich vorübergehend mehrzellig!

Fassen wir jetzt das Resultat unserer vergleichend-anatomischen Untersuchung des Ciliatenkörpers zusammen, so ergiebt sich daraus, ebenso wie aus der Ontogenie desselben, lediglich eine Bestätigung der zuerst von Sißbold aufgestellten Theorie, dass der Ciliaten-Organismus den morphologischen Werth einer echten Z e i l e b e s i t z t. Weder aus der anatomischen Beschaffenheit des festeren Exoplasma und des weicheren Endoplasma, noch aus derjenigen des Nucleus, der an der Grenze beider Protoplasmaschichten liegt, ergiebt sich irgend ein haltbarer Grund, welcher der Auffassung des ganzen Organismus als einer einzigen Zelle widerspräche. Allerdings ist dieser einzellige Organismus meistens hoch differenzirt, ohne aber dadurch seinen ursprünglichen Zellencharacter zu verlieren. Wir haben den Nachweis geführt, dass dieselben Differenzirungsprocesse, durch welche die einzelnen Theile des einzelligen Ciliatenkörpers eine mehr oder minder zusammengesetzte (im physiologischen Sinne »vollkommene«) Beschaffenheit erlangen, ganz ebenso in dem Körper anderer einzelliger Organismen, sowie in vielen Parenchymzellen von höheren Thieren und Pflanzen wiederkehren. Der Unterschied ist nur der, dass der Differenzirungsprocess in letzteren Fällen ein mehr oder minder einseitiger, durch die Arbeitstheilung der Gewebe bedingter ist, während der Differenzirungsprocess des einzelligen Ciliatenkörpers ein allseitiger ist und sich nach allen verschiedenen Richtungen des Zellenlebens hin offenbart. Dieser innere morphologische Differenzirungsprocess beruht hier auf einer physiologischen Arbeitstheilung der Plastidule (oder Protoplasmamoleküle), und führt zur Bildung eines im physiologischen Sinne sehr vollkommenen Thieres, welches dennoch in morphologischer Beziehung die Grenze einer einfachen Zelle, eines »Individuums erster Ordnung« nicht überschreitet. Die Bildung von beweglichen Wimpern aus der oberflächlichsten Schicht des Exoplasma, wie sie bei den gewöhnlichen Wimperzellen des Flimmerepithels sich findet - die Ausscheidung einer »Cuticula« oder Schale, welche der »Membran« der gewöhnlichen, mit Membran

36 *

umgebenen Pflanzenzellen gleichwerthig ist, — die Differenzirung 🗰 oberflächlichen Exoplasmaschicht in contractile Fibrillen, wie sie inder Rindenschicht einzelliger Muskelfasern wiederkehrt, — die Bilder zahlreicher »Nesselkapseln« im Exoplasma, wie sie bei den Acalepha oft in einer einzigen Exodermzelle zahlreich neben einander entstehn, - die Bildung von constanten »contractilen Blasen« und von incostanten »Vacuolen«, wie sie im Protoplasma vieler Pflanzenzellen ad einzelner Parenchymzellen höherer Thiere wiederkehrt, --- die Differenzirung des weichen halbflüssigen Endoplasma, dessen Rotationsbewegung der bekannten »Saftströmung« im Inneren der Pflanzenzelle vollkommen gleicht, und ebenso auch in Knorpelzellen, Eizellen und anderen Thierzellen sich findet - endlich die eigenthümliche Differenzirung des Nucleus, welche derjenigen im Organismus einzelliger Pflanzen und anderer Zellen völlig entspricht - alle diese verschiedenen Differenzirungsprocesse der Zelle, welche sonst in vielzelligen Organismen auf verschiedene Zellen vertheilt sich finden, kommen in dem einzelligen Ciliatenorganismus vereinigt vor. Dieser letztere verhält sich zu dem vielzelligen höheren Thierorganismus, wie ein Einsiedler, der Alles sich selbst besorgen muss, zu einem geordneten staatlichen Gemeinwesen, mit entwickelter Arbeitstheilung der constituirenden Individuen, der Zellen. Die Vollkommenheit des vielzelligen Thierkörpers beruht auf der Arbeitstheilung der Zellen und Organe ; die Vollkommenheit des einzelligen Infusorienkörpers beruht hingegen auf der Arbeitstheilung der Protoplasmamoleküle oder Sarcodetheilchen, die wir kurz Plastidule nennen. Der einzellige Ciliatenorganismus ist als der »vollkommenste« einzellige Thierkörper zu betrachten, und zeigt, bis zu welchem Grade der physiologischen Vollkommenheit es die einzelne Zelle in ihrer fortschreitenden Entwicklung zu animaler Organisation bringen kann.

Wir haben bis jetzt ausschliesslich diejenigen Infusorien berücksichtigt, welche nur einen einzigen Nucleus besitzen und demnach unzweifelhaft einzellig sind; sie bilden die grosse Mehrzahl. Wir haben nun noch einige wenige Worte über diejenigen, wenig zahlreichen Ciliaten hinzuzufügen, welche im entwickelten Zustande zweioder mehrere Nuclei besitzen. Diese sind demgemäss unzweifelhaft mehrzellig, da einzig und allein der Nucleus die Individualität der Zelle bestimmt, wie oben schon angeführt wurde (p. 529). Allein diese wenigen Ausnahmen sind deshalb für die principielle Auffassung des Giliatenorganismus von gar keiner Bedeutung, weil 2

die Vermehrung der Nuclei von gar keinem Einfluss auf die sonstige Organisation ist. Sie steht nicht in Zusammenhang mit irgend einer inneren Differenzirung des Giliatenkörpers und ist lediglich als eine Vervielfachung des Fortpflanzungsorgans aufzufassen. Diese wenigen »mehrzelligen Giliaten«, die übrigens nur einen sehr kleinen Bruchtheil – der ganzen Abtheilung bilden, verhalten sich daher zu der grossen Mehrzahl der »einzelligen Ciliaten« ganz ebenso, wie die mehrzelligen Gregarinen zu den einzelligen, wie die mehrzelligen, wie die mehrzelligen Gregarinen zu den einzelligen Flagellaten zu den einzelligen. So wenig irgend Jemand bei den Acineten, Gregarinen, Flagellaten aus der Existenz einzelner coloniebildender, also mehrzelliger Formen Veranlassung nimmt, die principielle Auffassung ihres einzelligen Organismus als einfacher Zelle anzugreifen, ebenso wenig kann dies bei den Giliaten geschehen.

Für die systematische Stellung der Ciliaten ergiebt sich aus unseren Untersuchungen das sichere Resultat, dass dieselben echte Protozoen sind und weder zu den Zoophyten oder Gölenteraten noch zu den Würmern irgend welche nähere Verwandtschaftsbeziehungen besitzen. Auch für diese Frage giebt in erster Linie die Entwicklungsgeschichte den entscheidenden Ausschlag. Bei allen sechs höheren Thierstämmen entwickelt sich der vielzellige Organismus aus der einfachen Eizelle durch den characteristischen Process der Furchung (d. h. Vermehrung der Eizelle durch Theilung oder durch Knospenbildung); und die so entstandenen Zellenmassen differenziren sich in zwei epitheliale Schichten, die beiden primären Keimblätter; aus dem inneren oder vegetativen Keimblatt (Gastralblatt oder Entoderm) entwickelt sich das Epithelium des Darmcanals und aller seiner Anhänge, Drüsen etc.; aus dem äusseren oder animalen Keimblatt (Dermalblatt oder Exoderm) entwickelt sich die äussere Hautdecke des Körpers mit allen ihren Anhängen, das Centralnerveusystem etc. In meiner Monographie der Kalkschwämme habe ich die Homologie dieser beiden primären Keimblätter bei allen sechs höheren Thierstämmen angenommen, und zugleich auf diese fundamentale Homologie die Theorie einer gemeinsamen Abstammung derselben von einer einzigen einfachen gemeinsamen Stammform, der längst ausgestorbenen Gastraca begründet. Diese Theorie, welche ich der Kurze halber die Gastraca-Theorie nennen will, stützt sich darauf, dass bei allen sechs höheren Thierstämmen, von den Spongien bis zum nicdersten Wirbelthiere, dem Amphioxus hinauf, in der Ontogenese ein und derselbe, höchst merkwürdige Entwicklungszustand auftritt, welchen ich Gastrula nenne und für die wichtigste und bedeutsamste Embryonalform des Thierreichs halte. Die Structur diese Gastrula oder Darmlarve ist bereits in der Ontogenie der Calcispongia ausführlich erörtert. Sie bildet stets einen ganz einfachen meises eiförmigen, ein ach sig en Körper, der eine einfache Höhle umschlicst die primitive Magenhöhle oder den Urdarm (Progaster); letzer öffnet sich an einem Pole der Achse nach aussen durch eine einfache Ocfnung, die primitive Mundöffnung oder den Urmund (Prostoma, Br dünne Wand der Darmhöhle (die zugleich Körperwand ist) besteht ab zwei über einander liegenden einfachen Zellenschichten; die inner Zellenschicht, das innere Keimblatt oder Entoderm) ist aus grösseren, dunkleren, weicheren Zellen zusammengesetzt; die äusser Zellenschicht das äussere Keimblatt oder Exoderm) besteht aus kleineren, helleren, festeren Zellen vergl. die Abbildungen der Gastrula in dem »Atlas der Kalkschwämme«, Tal. 13, Fig. 5, 6 vor einem Ascon; Taf. 30, Fig. 8, 9 von einem Leucon; Taf. 11, Fig. 14, 15 von einem Sycon). Ganz dieselbe Larvenform tritt auch in der Ontogenese anderer Spongien und vieler Acalephen (Hydromedusen sowohl als Corallen auf; ganz dieselbe Gastrula-Larve hat Kowalevse in der Ontogenese vieler Würmer aus ganz verschiedenen Classen nachgewiesen bei Phoronis, Sagitta, Euaxes, Ascidia etc.); ganz dieselbe Larvenform kommt bei den Echinodermen aller Classen vor ; ganz dieselbe Gastrula hat neuerdings RAY-LANNESTER bei vielen verschiedenen Mollusken nachgewiesen : auf ganz dieselbe Gastrula lä<mark>sst sich die Em-</mark> bryonalanlage der Arthropoden (besonders des Nauplius) reduciren; ganz dieselbe Larvenform ist endlich auch bei dem niedersten Wirbelthiere, beim Amphioxus, durch die höchst denkwürdige Entdeckung von Kowalevsky nachgewiesen. »Aus dieser Identität der Gastrulabei Repräsentanten der verschiedensten Thierstämme, von den Spongien bis zu den Vertebraten, schliesse ich nach dem biogenetischen Grundgesetze auf eine gemeinsame Descendenz der animalen Phylen von einer einzigen unbekannten Stammform, welche im Wesentlichen der Gastrula gleichgebildet war: Gastraeas (l. c. Vol. I. p. 467). Ausgeschlossen ist von dieser gemeinsamen Descendenz allein der Thierstamm der Protozoen, welcher überhaupt noch nicht zur Bildung von Keimblättern und zur Bildung eines wahren Darmcanals gelangt.

Wie verhalten sich nun dieser Gastraea-Theorie gegenüber die Infusorien, und insbesondere die Ciliaten? Die Antwort auf diese Frage ist nicht einen Augenblick zweifelhaft. Die Infusorien, sowohl die Ciliaten als die Acineten und alle anderen Protozoen, die man etwa noch zur Infusorienclasse ziehen will — kurz alle Infusorien — zeigen niemals Furchung, bilden niemals Keimblätter, ent-

wickeln sich niemals zu einer Embryonalform, die der - Gastrula vergleichbar wäre, und besitzen demnach auch niemals die Anlage zu einem wahren Darm. Vielmehr vorhalten sie sich in allen diesen Beziehungen genau gleich allen anderen Protozoen, und abweichend von allen sechs höheren Thierstämmen. Die Infusorien sind demnach sämmtlich unzweifelhaft echte Protozoen.

:

Ich halte die angeführten Unterschiede in der Entwicklungsweise der Protozoen und der übrigen Thiere für so wichtig und bedeutungsvoll, dass ich darauf hin eine fundamentale Trennung des ganzen Thierreichs in zwei grosse Hauptabtheilungen vorschlage, einerseits die Protozoen und anderseits die Metazoen. Zu den Metazoen (die man auch wegen der Keimblätter Blastozoa, oder wegen ihres wahren Darms Gastrozoa nennen könnte) gehören alle sechs höheren Phylen oder Typen des Thierreichs, welche sämmtlich eine wahre Furchung der Eizelle besitzen, sämmtlich zwei primäre Keimblätter entwickeln (Entoderm oder Gastralblatt und Exoderm oder Dermalblatt), sämmtlich einen wahren Darm⁴) (aus dem Entoderm) und eine wahre Oberhaut (aus dem Exoderm) bilden, sämmtlich in ihrer Ontogenese die Gastrula-Form (oder eine unmittelbar darauf zu reducirende Embryonal-Form) durchlaufen und demnach sämmtlich (nach dem biogenetischen Grundgesetze) von der Gastraca abstammen müssen²/.

Die Hauptabtheilung der Metazoen spaltet sich in zwei divergente Hauptgruppen, einerseits den Stamm der Zoophyten (oder Cölenteraten), anderseits die fünf höheren Thierstämme, unter denen die Würmer die gemeinsame Stammgruppe für die vier übrigen Phylen (Mollusken, Echinodermen, Arthropoden, Vertebraten) darstellen. Unter den Zoophyten behalten die Spongien die beiden ursprünglichen primären Keimblätter bei, während sich bei den Acalephen (Hydromedusen, Ctenophoren, Corallen; zwischen beiden ein drittes, mittleres

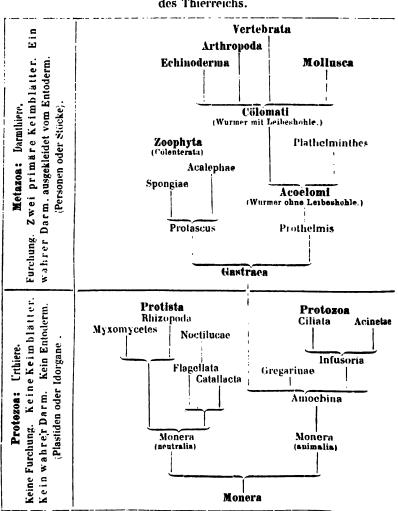
⁴⁾ Die einzigen Metazoen, welche keinen Darm besitzen. Cestoden und Acanthocephalen, machen deshalb nur eine scheinbare Ausnahme, weil sie nachweisbar ihren Darm erst durch Parasitismus secundär verloren haben und offenbar von darmführenden (»enterodelen«) Würmern abstammen.

²⁾ Ob man für die Gastraca und die zunächst daraus abzuleitenden Formen der Metazoen eine monophyletische Abstammung von einer einzigen ursprünglichen Gastraea-Form oder eine polyphytetische Descendenz von mehreren verschiedenen, aber doch wesentlich gleichen Stammformen annehmen will, bleibt für das wesentliche Princip der Gastraca-Theorie gleichgültig. Für die höheren Thierstämme wird man doch immer wieder auf eine monophyletische Descendenz-Hypothese zurückkommen müssen.

معملهم المتكر فمعمو مناميا والمتكري

Keimblatt (Mesoderm oder Muskelblatt) entwickelt. Dieses findet sid auch bei den fünf höheren Thierstämmen vor, wo jedoch dasselbe im Ausnahme von niederen Würmern) allgemein in zwei verschiedene Mukelblätter zerfällt: ein Hautmuskelblatt (Hautplatte von REMAR, Haufaserplatte) und ein Darmmuskelblatt (Darmfaserplatte von REMAR). De höheren Würmer und die aus diesen entsprungenen vier höheren Thiestämme Mollusken, Echinodermen, Arthropoden, Vertebraten, habn denmach sämmtlich vier seeundäre Keimblätter, während einig niederen Würmer (Plathelminthen) deren nur drei besitzen, gleich der Acalephen. Diese letzteren Plathelminthen stimmen mit den sämmlichen Zoophyten (Spongien und Acalephen) auch darin überein, das ihnen das Blutgefässsystem noch vollständig fehlt und ebenso die wahre Leibeshöhle (das Coelom oder die Pleuroperitoneal-llöhle). Ich habe darauf hin die niederen Würmer oder die Plathelminthen als Acoelomi den höheren Würmern (Goelomati) entgegengesetzt, welche den Besitz eines Cocloms mit den vier höheren Phylen theilen 1/2. Natürlichkann demgemäss das Coelom (als secundare Bildung) nicht aus der primären Furchungshöhle oder Segmentations-Hohle entstanden sein, wie Kowalevsky angenommen hat.

Von allen characteristischen Organisationsverhältnissen der Metazoen findet sich bei den Protozoen keine Spurvor, und ebenso wenig bei den Protisten, die man gewöhnlich mit den Protozoen vereinigt oder auch theilweise in das Pflanzenreich stellt. Ich will hier nicht auf die schwierige Frage eingehen, wie die neutralen Protisten einerseits


t) Die weitere Ausführung dieser Auffassung habe ich in meiner Monographie der Kalkschwämme gegeben (Vol. I. p. 464 : »Die Keimblätter-Theorie und der Stammhaum des Thierreiches«). Meine neuesten Untersuchungen über diesen Gegenstand haben die dort aufgestellte Homologie der Keimblätter und des primaren Darmes in den sechs höheren Thierstämmen, ihren vollständigen Mangel bei den Protozoen lediglich bestätigt. Insbesondere bin ich immer mehr in der dort ausgesprochenen Vermuthung bestärkt worden, »dass ursprünglich (phyletisch) die Darmfaser-Platte (oder das Darmmuskelblatt) aus dem Entoderm, die Hautplatte hingegen (oder das Hautmuskelblatt) aus dem Exoderm entstanden ist. Die Zusammenfassung der beiden, ursprünglich getrennten Muskelblätter im Mesodorm, wie sie in der Ontogenie der Wirhelthiere gewöhnlich aufzutreten scheim. würde dann als ein secundärer Entwickelungsact aufzufassen sein«(I. c. p. 478, Anm.). Offenbar hängt dieser letztere, der als sedundäre Concrescenz der beiden primärgetrennten und selbständigen Muskelblätter in der Längsachse anzusehen ist, mit der Bildung des Achsen-Skelets der Wirbelthiere (Chorda Bei den höheren Würmern (den Colomaten) ist höchstdorsalis) zusammen. wahrscheinlich das Darmfaserblatt ursprünglich aus dem Entoderm entstanden. ebenso anderseits das Hautfaserblatt aus dem Exoderm. Von den Colomaten hat sich dieses Verhältniss auf die vier höheren Thierstämme vererbl.

von den Protozoen (den phyletischen Wurzelformen des Thierreichs) anderseits von den Protophyten (den phyletischen Wurzelformen des Pflanzenreichs) abgegrenzt werden könnten, sondern mich einfach mit dem Hinweis darauf begnügen, dass die Annahme eines neutralen Protistenreiches so lange vollkommen gerechtfertigt bleibt, als Niemand auch nur mit annähernder Sicherheit eine Grenze zwischen Thierreich und Pflanzenreich zu ziehen im Stande ist. Als neutrale Protisten betrachte ich nach wie vor die Moneren, Flagellaten, Gatallacten, Labyrinthuleen, Myxomyceten und die grosse Abtheilung der echten Rhizopoden (Acyttarien und Radiolarien'.

Als echte Protozoen hingegen, die von jenen neutralen Protisten zu trennen und dem Thierreiche zuzurechnen sind, möchten die Amoebinen, die Gregarinen, die Acineten und vor Allem die Ciliaten, mithin alle Infusorien (im weiteren oder engeren Sinne) zu betrachten sein¹). Jedenfalls bildet der Mangel der Furchung, der Mangel der Keimblätter, der Mangel eines wahren Darmrohrs und aller sonst aus den Keimblättetern differenzirten vielzelligen Organe, eine scharfe Grenzlinie zwischen den Protozoen, zu denen auch die Infusorien gehören, einerseits, und den sechs übrigen Phylen des Thierreichs, den Metazoen, anderseits. Dieses Verhältniss dürfte in der hier angehängten »Phylogenetischen Tabelle über die Stammverwandtschaft der Phylen des Thierreichs« einen naturgemässen Ausdruck finden.

In einem so eben erschienenen Aufsatz, welcher speciell gegen Eulers und EVERTS gerichtet ist, hat GREEFF seine hier widerlegten Anstchten nochmals energisch vertheidigt, ohne jedoch neue Argumente vorzubringen (Sitzungsberichte der Gesellsch. f. Naturw. in Marburg. No. 3, p. 21. Mai 4873). Er verwechselt beständig die physiologische und die morphologische Bedeutung der Körpertheile, die Analogie und Homologie, auf deren schafe Unterscheidung es gerade bier ganz besonders ankömmt. Man kann allerdings die Differenzirung des Exoplosma und Endoplasma im einzelligen Ciliaten-Körper mit der ähnlichen Differenzirung des Exoderm und Entoderm bei der Gastrula, bei den Zoophyten etc. vergleichen; aber nur in physiologischem, nicht in morphologischem Sinne. Diese Vergleichung ist nur eine Analogie, keine Homologie.

⁴⁾ Die Achnlichkeit der Ciliaten mit den bewimperten Jugendzustanden vieler Metazoen, welche man bisher als «in fusorienartige Embryonen, Larven« u. s. w. bezeichnete, ist demnach rein äusserlich und ohne jede tiefere Bedeutung. Diese Jugendzustande sind theils als echte Gastrula, theils als eine, dem Gastrula-Zustand vorhergehende Planula-Form erkannt worden. Sie sind mehrzellig und demnach nicht mit den einzelligen Ciliaten zu vergleichen.

Phylogenetische Tabelle über die Stammverwandtschaft der Phylen des Thierreichs.

Ueber einige neue pelagische Infusorien.

Von

Ernst Haeckel.

Hierzu Tafel XXVII und XXVIII.

An der Oberfläche des offenen Meeres leben verschiedene Wimper-Infusorien oder Ciliaten, die sich durch den Besitz einer mannigfaltig gebildeten Schale auszeichnen. Da diese pelagischen, in ein Gehäuse eingeschlossenen Ciliaten noch sehr wenig bekannt sind, so will ich hier im Anschluss an die vorstehenden Untersuchungen »zur Morphologie der Infusorien« die kurze Beschreibung und Abbildung von einigen der auffallendsten Formen mittheilen. Ich beobachtete dieselben schon vor 14 Jahren, während meines Aufenthalts in Messina (im Winter 1859/60) und fand sie später auch auf der canarischen Insel Lanzarote wieder (im Winter 1866/67). Zuerst wurde meine Aufmerksamkeit gefesselt durch die zierliche Gestalt der leeren Schalen, welche ich besonders häufig in der extracapsularon Sarcode der Radiolarien auffand. Später gelang es mir, auch der lebenden Bewohner der Schalen habhaft zu Die Untersuchung dieser letzteren ist aber ungewöhnlich werden. Entweder nämlich schwimmen die Thierchen mit weit aus schwierig. der Schale ausgestrecktein Vorderende so lebhaft umher, dass man die Einzelheiten ihrer Organisation unmöglich genau beobachten kann; oder sie liegen ruhig da, sind aber ganz in den Grund der Schale zurückgezogen; und dann verdeckt die Schale selbst den an sich schon ziemlich undurchsichtigen Körper dergestalt, dass man nur sehr wenig von seinem Bau erkennen kann. Diese Schwierigkeiten mögen die Unvollständigkeit und Unsicherheit der nachstehenden Beschreibung entschuldigen, in welcher nur die Darstellung der Schale ganz genau, die Schilderung des darin eingeschlossenen Weichkörpers hingegen leider sehr lückenhaft und vieler Ergänzungen bedürftig ist.

Die genannten pelagischen Giliaten scheinen zwei verschiedenen Gruppen anzugehören, die unter den bekannten Infusorien am nächsten den Tintinnodea von GLAFAREDE und LACUMANN stehen, sich jedoch von dem echten Tintinnus (dem Typus dieser Familie) nicht unwesenlich entfernen. Ich will diese beiden Gruppen, die wahrscheinlich den Rang selbständiger Familien in der Ordnung der Peritricha (?) beanspruchen, als Dictyocystida und Godonellida bezeichnen. Eine vorläufige Mittheilung über dieselben habe ich bereits 1860 auf der Naturforscher-Versammlung in Königsberg gegeben, woselbst ich auch mikroskopische Präparate von den Schalen demonstrirte¹/. Eine kurze Notiz über dieselben gab ich gelegentlich in meiner Monographie der Radiolarien (1862, p. 140, Anmerkung). Neuerdings scheint Niemand wieder diese zierlichen Infusorien beobachtet zu haben.

Die Familie der Dietyocystiden, welche durch eine gitterförmig durchbrochene Kieselschale characterisirt ist, gründe ich auf das Genus Dictyocysta, das Eurenberg 1854 mit folgenden Worten beschrieb: »Dictyocysta. E Polygastricorum classe. Testa campanulata urceolata silicea reticulata, apertura ampla. Animalculum testae fundo inelusum, margine cancellato superstructum«²). Enrenserg lässt darauf die Kurze Characteristik von drei Arten folgen, deren Kieselschalen er aus Tiefgrundproben des atlantischen Oceans erhielt (D. elegans, D. lepida, D. acuminata). Eine von diesen Arten hat derselbe später in seiner Microgeologie abgebildet (D. elegans, Taf. XXXV A, Fig. 24 Diese Art ist wahrscheinlich dieselbe, welche schon früher ge-D). legentlich JOHANNES MULLER im Darminhalte der Alecto europaca gefunden. und in seiner Abhandlung ȟber den Bau des Pentacrinus caput Medusae« abgebildet hatte, als »ein sehr zierliches Körperchen von der Form einer Kanzela³. Ich selbst habe vier verschiedene Arten des Genus Dictvocysta lebend während des Winters 1859/60 beobachtet, als ich in Messina Radiolarien untersuchte. Die ungemein zierlichen und merkwürdig geformten Kieselschalen sind so ähnlich den gegitterten Kieselschalen mancher Radiolarien (Cyrtiden,) dass ich sie anfänglich für solche hielt. Erst nachher, als ich ihre Bewohner kennen lernte, über-

Amtlicher Bericht über die 35. Versammlung deutscher Naturforscher und Aerzte in Konigsberg. 1860, p. 107.

²⁾ Monatsberichte der Berliner Akademie 1854, p. 236.

³⁾ Abhandl. der Berlin. Akad. 1841, p. 232; Taf. XI, Fig. 6.

Ueber einige nene pelagische Infusorien.

zeugte ich mich von diesem Irrthum. Die elegante Kieselschale ist bei allen Arten mehr oder minder glockenförmig oder helmförmig, gegittert. am hinteren (aboralen) Ende, wo das Thier befestigt ist, geschlossen, meist zugespitzt; am vorderen (oralen) Ende mit einer weit offenen Mündung, aus welcher sich das schwimmende Thierchen ziemlich weit hervorstrecken kann. Die Organisation des Thierchens selbst ist schr schwierig zu erkennen, weil dasselbe entweder mit ausgestrecktem Vorderende sehr lebhaft umherschwimmt oder aber gänzlich in den Hintergrund der Schale zurückgezogen liegt und dann sehr undurchsichtig erscheint. Nur bei zwei Arten (D. cassis, Fig. 1, und D. mitra, Fig. 5) konnte die Organisation etwas genauer, obwohl nicht befriedigend, erkannt werden. Der Körper ist kegelförmig, sehr contractil, nackt, vorn mit einem weiten kreisrunden, trichterförmig vertieften Peristom, an dessen Rande zwei concentrische Kränze (Ringe oder Spiralen ?) von grossen Wimpern sichtbar sind : ein hinterer (äusserer) Kranz von einigen zwanzig sehr langen und schr beweglichen peitschenförmigen Wimpern (länger als die Hälfte des Körpers) und ein vorderer (innerer) Kranz von ungefähr eben so vielen kurzen und dicken pfriemenförmigen Borsten. Am inneren Rande dieses Kranzes liegt excentrisch die Mundöffnung. In dem hinteren, konisch zugespitzten Körpertheile, der stielartig verlängert und verkürzt werden kann, ist eine contractile Blase Im mittleren Körpertheile zeigt sich ein länglich runder, sichtbar. wurstförmig gekrümmter Nucleus Fig. 5}. Bei einem Individuum von D. cassis war der Nucleus nicht zu sehen. Hingegen zeigte sich in der Mitte des Körpers ein Haufen von ungefähr zwanzig kugeligen Zellen, die wohl als Sporen oder Eier ?) anzusehen sind (Fig. 4). Die isolirten Sporen zeigten sich als nackte kugelige Zellen, welche einen ebenfalls kugeligen Nucleus (von ein Drittel ihres Durchmessers) einschlossen (Fig. 3). Der Nucleus erschien trübe, fein punctirt oder granulirt und enthielt ein stark lichtbrechendes excentrisches Körperchen (Nucleolus). Die glockenförmige gegitterte Kieselschale ergab bei den vier beobachteten Arten folgende characteristische Unterschiede:

4. Dictyocystacassis, H. (Taf. XXVII, Fig. 4---3). Kieselschale von der Form eines Helmes, schlank glockenförmig oder gewölbt konisch, hinten mit einem gewölbten, konisch zugespitzten Aufsatz, vorn mit einem schmalen, abgesetzten, trichterförmig erweiterten Bande, 0,11 Mm. im longitudinalen, 0,08 Mm. im transversalen Durchmesser (an der Mündung). Gitterwerk der ganzen Kieselschale sehr eng, mit unregelmässig polygonalen Maschen von nahezu gleicher Grösse (von 0,003 Mm. Durchmesser). Fundort: Messina.

2. Dictyocysta mitra, H. (Taf. XXVII, Fig. 4, 5). Kieselschale

von der Form einer Bischofsmütze, hinten eiförmig, vorn enger, v weiten Mündung eingeschnürt, mit glattem, etwas breiterem R Gitterlöcher oder Maschen der Schale von ungleicher Grösse: a Mündung im Umkreis fünf grössere, rundlich viereckige Löcher, mal so gross als die dahinter stehenden Maschen, welche 5-6 t versale Reihen bilden; die kleinsten hinten an der Spitze. Läng Schale 0,066 Mm.; Breite derselben 0,05 Mm. Fundort: Me Lanzarote.

3. Dictyocystatemplum, H. (Taf. XXVII, Fig. 6): Kiesek von der Form eines runden Tempels, 0,06-0,07 Mm. im Durchme eine fast halbkugelig gewölbte, etwas ausgeschweifte Kuppel, w auf sieben schlanken Säulen ruht. Die Säulen stehen schief (unter ander parallel) auf einem kreisrunden Ringe (der die Mündung Schale bildet); ihre Länge ist gleich der Höhe des zugespitzten Kudaches, in dessen Mitte sieben grössere, unregelmässige, rundlich j gonale Maschen hervortreten; diese Maschen sind (im Durchme halb so gross als die viereckigen Zwischenräume der Säulen, dopp gross als 14 Maschen, welche in einer Reihe davor liegen, und 4-4 so gross als die übrigen zahlreichen Maschen. Fundort: Mes Lanzarote.

4. Dictyocysta tiara, II. (Taf. XXVII, Fig. 7): Kieselschalder Form einer Tiara oder eines hohen Kuppeltempels mit Thurn satz, schlank kegelförmig, aus drei Abschnitten zusammenges unten ein Ring von 10 schlanken Säulen, in der Mitte eine runde Kumit 40 grossen Fenstern, oben ein konischer Kuppelaufsatz mit 40 neren Fenstern. Die Länge des ganzen Gehäuses beträgt 0,1 M davon kommen 0,04 Mm. auf den Säulenring, ebenso viel auf die 1 lere runde Kuppel, 0,02 Mm. auf den konischen Kuppelaufsatz. Di schlanken Säulen, welche nach oben convergiren, stehen senkrech einem kreisrunden Ringe, welcher die Mündung der Schale bildet. 40 grossen viereckigen Fenster zwischen den Säulen sind doppe hoch, als die 10 schmaleren Fenster in der Mitte der Kuppel, 4 mehren eine Kuppel, 0,04 konsten Kuppelaufsatz dorteigen fenster in der Mitte der Kuppel, 4

vertieft, am Rande mit einem kragenähnlichen dünnen Aufsatz (einer zarten ringförmigen Exoplasma-Lamelle) verschen, und mit einem doppelten Kranze (einem Ringe oder einer Spirale?) von Wimperanhängen (Taf. XXVIII, Fig. 8, 44). Der hvaline Kragenaufsatz erinnert an den ähnlichen, ebenfalls nur aus einer dünnen Exoplasma-Lamelle gebildeten Kragen (Collare), den ich an den Geisselzellen der Kalkschwämme beschrieben habe¹). Der freie Rand des Kragenaufsatzes ist sägeförmig gezähnt und auf jedem Sägezahn sitzt ein gestieltes Läppchen von länglich runder oder birnförmiger Gestalt. Die Läppchen (gegen 20 an der Zahl) sind ungefähr eben so lang, aber 3-5 mal so dick als ihr haarfeiner Stiel. Vermuthlich spielen sie die Rolle von Tastorganen. In beträchtlicher Entfernung hinter dem Läppchenkranze, an der Basis des Kragenaufsatzes (wo dieser in den eigentlichen Zellkörper übergeht), sitzt der hintere (aborale) Wimperring, bestehend aus 15-20 sehr langen und starken, peitschenförmigen Wimpern, die als sehr kräftige Ruderorgane oder Schwimmhaare fungiren. Sie sind ungefähr halb so lang als der ganze Körper, an der Basis sehr dick, gegen die Spitze bin allmälig geisselartig verdünnt.

Von der übrigen Organisation der Godonellen kann ich leider wenig Sicheres melden. Die Oberfläche des ganzen Körpers (mit Ausnahme des Peristom-Kragens) schien mir bei einer Art (C. campanella, Fig. 14) mit mehreren Längsreihen von äusserst kurzen und feinen Wimpern bedeckt zu sein. Bei den anderen beiden Arten (C. galea, Fig. 8, und C. orthoceras, Fig. 40), konnte ich mich jedoch von deren Existenz nicht sicher überzeugen. Im hinteren Körpertheile, mit dessen zugespitztem konischen Ende die Thierchen im Grunde des Glockenhäuschens befestigt sind, schimmerten mehrere kreisrunde helle Flecken hindurch (contractile Blasen oder Vacuolen? Fig. 8, 44). Im mittleren Körpertheile schien ein länglichrunder, wurstförmig gekrümmter Nucleus zu liegen (Fig. 8, 11). Bei einigen Exemplaren von C. campanella fanden sich im Inneren zwischen 10-20 kugelige kernhaltige Zellen, offenbar Sporen. Der Durchmesser ihres kugeligen, trübkörnigen Nucleus betrug ein Drittel von dem der hellen nackten Protoplasma-Kugel (Fig. 14). Bei einem Exemplare derselben Art waren statt deren im Inneren mehrere bewimperte Embryonen zu bemerken (Fig. 11). Der isolirte Embryo(Fig. 13) erschien als eine eiförmige Zelle von 0,02 Mm. Länge, 0,013 Mm. Dicke, überall auf der Oberfläche mit einem äusserst zarten Wimperkleide bedeckt. Im Inneren

⁴⁾ Ueber den Kragen oder das Collare an den Geisselzellen vergl. meine Monographie der Kalkschwämme, Vol. 1, p. 444; Taf. 4, Fig. 8; Tafel 25, Fig. 5 etc.

Ernst Haeckel.

war ein quergestellter wurstförmiger Nucleus sichtbar, hinter diesen in dem zugespitzten Hinterende eine contractile Vacuole.

Das glockenförmige Gehäuse oder die Schale des Codonella-Körpers bestand bei allen drei von mir beobachteten Arten aus einer structurlosen, schwerlöslichen, dem Chitin ähnlichen, organischen Substanz, in welche mehr oder weniger beträchtliche Mengen von Kieseltheilchen eingeklebt waren. Bei einer Art (C. galea, Fig. 8, 9) zeigte sie eine zellenähnliche Sculptur, indem jedes eingeklebte Kieselstückchen in einem polygonalen Felde lag (wie der Nucleus der Zellen in einem Pflaster-Epithel). Bei den anderen beiden Arten ist die Schale an der erweiterten Mündung quergeringelt (Fig. 40, 42). Diese Ringelung entsteht dadurch, dass die chitinähnliche ausgeschiedene Substanz sich streckenweise verdickt.

Nach der Bildung der Schale zu urtheilen, dürfte auch ein Theil derjenigen Ciliaten, welche CLAPAREDE und LACHMANN¹) als Species von Tintinnus beschrieben haben, zu unserem Genus Codonella gehören. Insbesondere fällt die Aehnlichkeit ihres Tintinnus campanula (l. c. pl. VIII, Fig. 9) mit unserer Codonella campanella (Fig. 14, 12) in die Augen; ebenso die Aehnlichkeit ihres Tintinnus cinctus (l. c. pl. VIII, Fig. 13) mit unserer Codonella orthoceras (Fig. 10). Schon STEIN hat darauf hingewiesen, dass wahrscheinlich die zahlreichen, von CLAPAREDE und LACHMANN als Tintinnus-Arten beschriebenen Giliaten-Gehäuse sehr verschiedenen Infusorien angehören dürften⁽²⁾. Steix selbst beschränkt die Gattung Tintinnus auf solche Tintinnodeen, deren Körperoberfläche nackt ist, und welche nur am Peristom-Rande Wimpern tragen, ähnlich den Vorticellinen. Dahin gehören Tintinnus inquilinus und T. fluviatilis. Diejenigen Tintinnodeen hingegen, welche einen doppelten Peristom-Kranz (einen vorderen von kürzeren, und einen hinteren von längeren Wimpern) tragen und welche ausserdem auf der ganzen Oberfläche Längsreihen von sehr kurzen und feinen Wimpern zeigen, trennt STEIN Dahin gehört seine T. beroidea, ferner als Tintinnopsis ab. wahrscheinlich Tintinnus mucicola, T. urnula etc. von CLAPAREDE Wahrscheinlich steht diese Tintinnopsis unserer und LACHMANN. Codonella sehr nahe; doch würden für letztere immerhin die sonderbaren gestielten Läppchen am Rande des Peristom-Kragens einen sehr auszeichnenden Gattungs-Character bilden. Jedenfalls bedürfen alle diese Giliaten-Genera: Codonella, Tintinnopsis, Tintinnus,

566

⁴⁾ CLAPARÈDE et LACHMANN, Etudes sur les Infusoires et les Rhizopodes. 1858, p. 192, Taf. 8 und 9.

²⁾ STEIN, der Organismus der Infusionsthiere. H. Abthlg. 4867, p. 454.

Dictyocysta etc. einer viel genaueren Analyse, als bisher von Anderen und von mir selbst gegeben werden konnte. Die drei von mir beobachteten Species von Godonella zeigen folgende Unterschiede in der Schalenbildung:

1, Codonella galea, H. (Taf. XXVIII, Fig. 8, 9). Schale helmförmig, von 0,1 Mm. longitudinalem, 0,08 Mm. transversalem Durchmesser, aus zwei durch eine Strictur getrennten Kammern zusammengesetzt. Die hintere (aborale) Kammer fast kugelig, die vordere (orale) Kammer bildet einen Ring von der Form eines abgestutzten Trichters, aus dessen Mündung der goldgelbe Thierkörper weit hervortreten kann. Im zurückgezogenen Zustande füllt er die ganze Schale aus. Die Schale besteht aus structurloser organischer Substanz, in welche zahlreiche Kieseltheilchen sehr regelmässig eingekittet sind, so dass jedes von einem polygonalen Felde umgeben scheint. Fundort: Messina. Lanzarote.

2) Godonella orthoceras, H. (Taf. XXVIII, Fig. 10). Schale schlank trichterförnig, aus drei Kammern zusammengesetzt, 0,2 Mm. lang, 0,08 Mm. dick. Die erste (binterste, aborale) Kammer regulär konisch 0,03 Mm. lang; die zweite mittlere Kammer kugelig von 0,08 Mm. Durchmesser; die dritte (vorderste, orale) Kammer 0,4 Mm. lang, abgestutzt konisch, gerade, nach der Mündung hin erweitert, regelmässig geringelt. Die Ringe sind circulare Verdickungen der homogenen organischen Grundsubstanz; dieselben fehlen in den beiden hinteren Kammern, in welche viele Kieseltheilchen dicht neben einander eingekittet sind. Fundort: Messina.

3) Godonella campanella, H. (Tař. XXVIII, Fig. 11 – 14). Schale glockenförmig, mit aufgesetzter gerader konischer Spitze; 0,15 Mm. lang, in dem hinteren bauchigen Theile von 0,05 Mm., an der vorderen Mündung von 0,08 Mm. Durchmesser. Die vordere (orale) Hälfte ist deutlich und regelmässig geringelt. In die hintere (aborale) Hälfte sind zahlreiche Kieseltheilchen unregelmässig eingekittet; am dichtesten in der aufgesetzten Spitze. Fundort: Lanzarote.

Erklärang der Tafein. Tafel XXVII.

Dictyccystids.

Fig. 1. Dictyocysta cassis, H. Das Thier streckt den vorderen (oralen. Theil des Zellen-Körpers aus der glockenförmigen Kieselschale bervor, in deren Spitze dasselbe befestigt ist. Im hinteren (aboralen) Theile ist eine contractile Blase sichtbar. Der mittlere Körpertheil enthält zahlreiche (gegen 20) Sporen. Ein Nucleus ist nicht sichtbar. An dem breiten Rande des trichterförmig vortieften Peristom-Theils treten zwei concentrische Wimperkränze hervor: ein äusserer (hinterer) Kranz von sehr langen peitschenförmigen Cilien, und ein innerer (vorderer) Kranz von kurzen, starken, pfriemförmigen Borsten. Vergr. 600.

Fig. S. Dictyocy'sta" cassis, H. Die gitterförmig durchbrochene Kieselschale allein. Vergr. 600.

Fig. 3. Dictyocysta cassis, H. Bine einzelne Spore (eine kugelige Zelle mit Nucleus und Nucleolus). Vergr. 1000.

Fig. 4. Dictyocysta mitra, H. Die gitterförmig durchbrochene Kieselschale allein. Vergr. 600.

Fig. 5. Dictyocysta mitra, H. Das einzellige Thier, isolirt, ohne die Kieselschale, mit contractiler Blase und Nucleus. Vorn ist am Peristomrande ein doppeltor Wimperkranz sichtbar. Vergr. 600.

Fig. 6. Dictyocysta templum H. Die gegitterte Kieselschale. Vergr. 4000. Fig. 7. Dictyocysta tiara, H. Die gegitterte Kieselschale. Vergr, 4000.

Tafel XXVIII.

Codonellida.

Fig. 8. Codonella galea, H. Das Thier streckt den vorderen (oralen) Theil des Körpers aus der helmförmigen Schale hervor, in derem Grunde dasselbe befestigt ist. Im hinteren (aboralen) Theile sind mehrere helle kugelige Hohlraume (contractile Blasen oder Vacuolen) sichtbar. In der Mitte schimmert ein länglich runder Nucleus hindurch. Am Rande des trichterförmig vertieften Peristoms sind die beiden characteristischen Wimperkränze sichtbar: der hintere (äussere; Kranz von langen peitschenförmigen Cilien, und der vordere (innere; Kranz von gestielten Läppchen. Vergr. 600.

Fig. 9. Codonella galea, H. Die Schale allein. Vergr. 600.

Fig. 10. Codone'lla orthoceras, H. Die Schale allein. Vergr. 400.

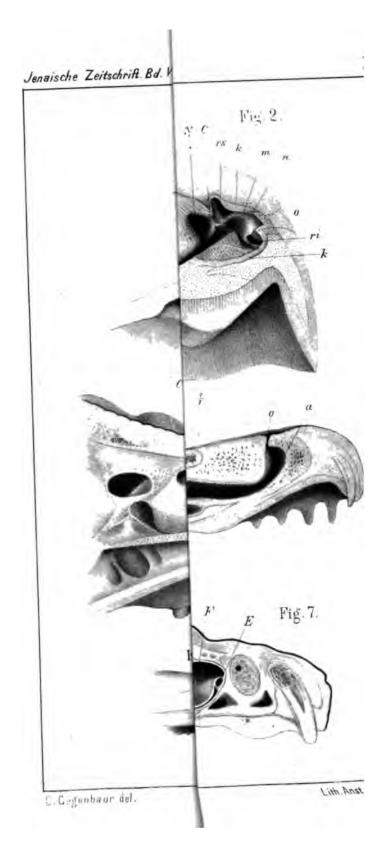
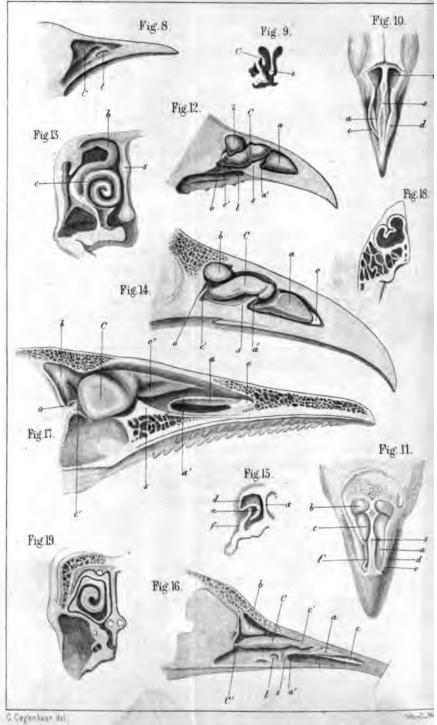
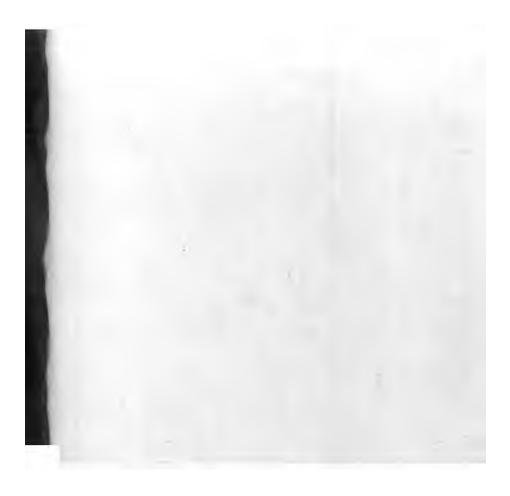

Fig. 14. Codonella campanella, H. Das Thier streckt den vorderen (oralen) Theil des Körpers aus der glockenförmigen Schale hervor. Im hinteren (aboralen) Theile mehrere kugelige Hohlräume (contractile Blasen oder Vacuolen?: Im mittleren Körpertheile eine Anzahl eiförmige Embryonen. Am Rande des trichterförmig vertieften Peristoms die beiden Wimperkränze: der hintere (äussere Kranz von langen Schwimmhaaren, und der vordere (innere) Kranz von gestielten Läppchen (Tastläppchen?). Vergr. 600.

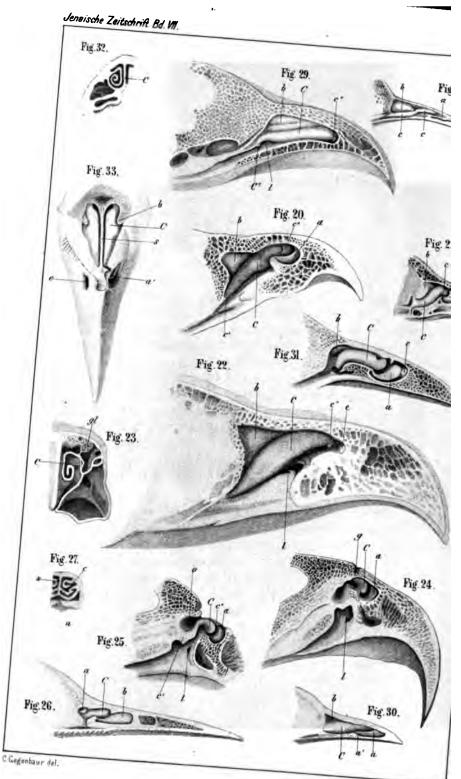
Fig. 12. Codouella campanella, H. Die Schale allein. Vergr. 600.

Fig. 18. Codonella campanella, H. Ein bewimperter Embryo; in der Mitte der gekrümmte Nucleus; am hinteren Ende eine contractile Blase oder Vacuole Vergr. 1000.


Fig. 14. Codonella campanella, H. Eine Spore. Vergr. 1000.

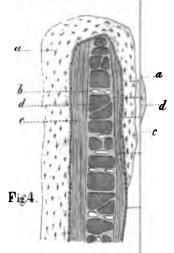
Druck von Breitkopf und Härtel in Leipzig.



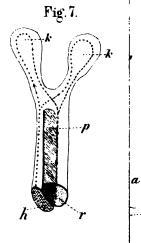


Jenaische Zeitschrift Bd. VII

Taf. 11



.....



Sch

0. Hertwig del.

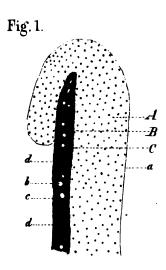


Fig. 9.

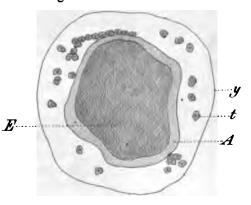
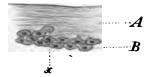



Fig. 11.

lith . C Müller Jura.

• •

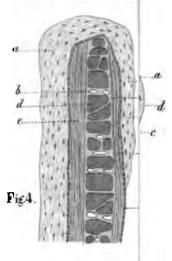
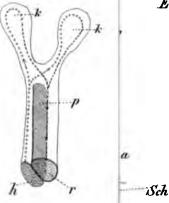



Fig. 6.

Taf. IV.

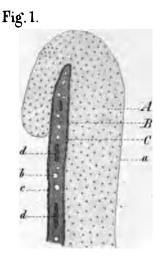


Fig.9.

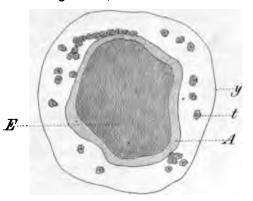
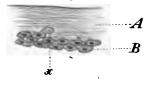
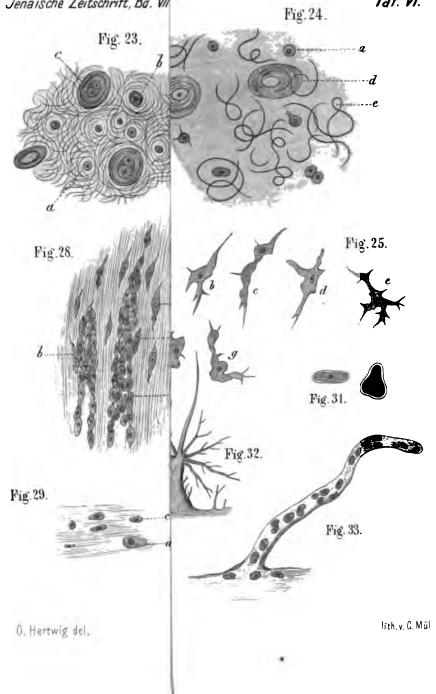
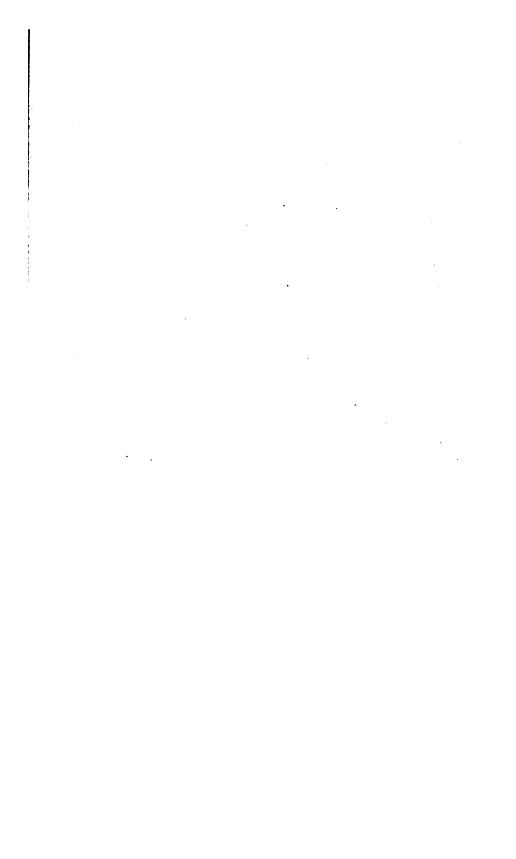
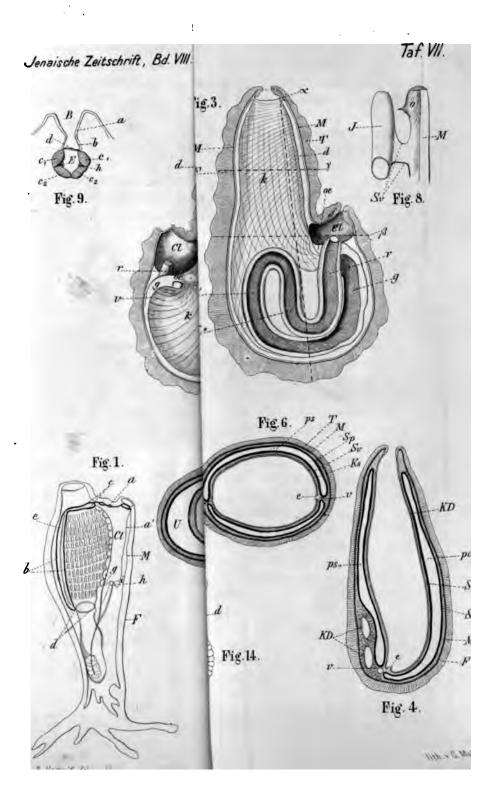
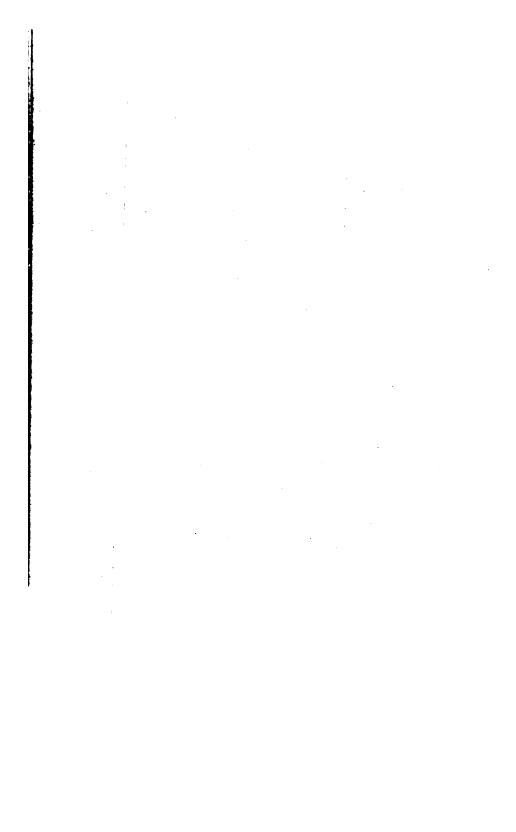



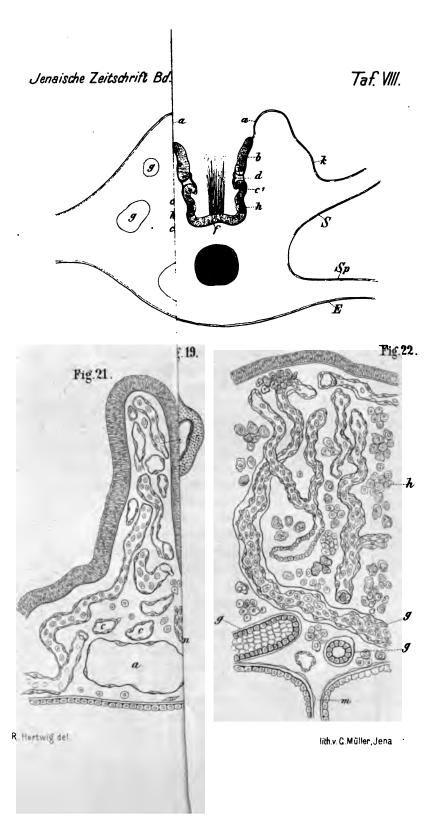
Fig. 11.

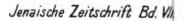

0. Hertwig del.

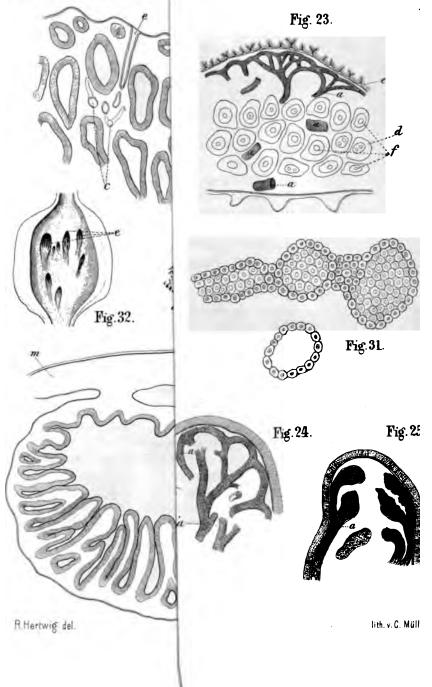

lith v. C. Müller, Juna.


. . • •


Jenaische Zeitschrift, Bd. VII

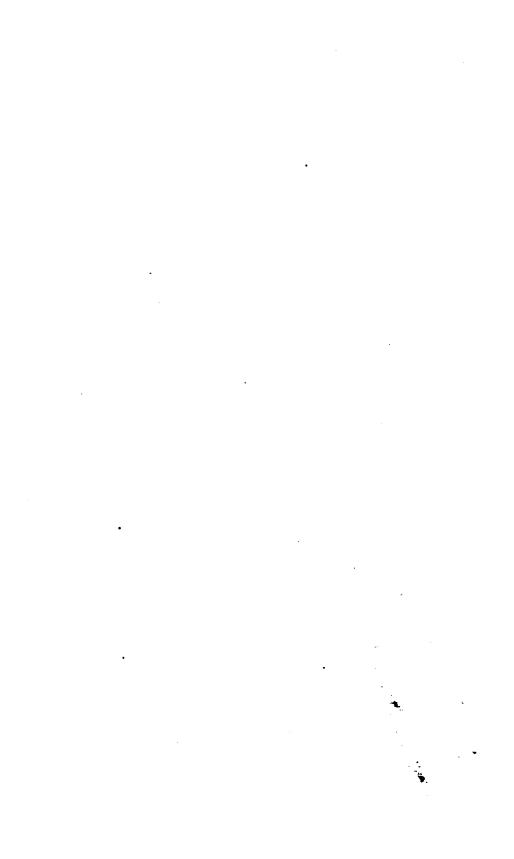

Taf. VI.

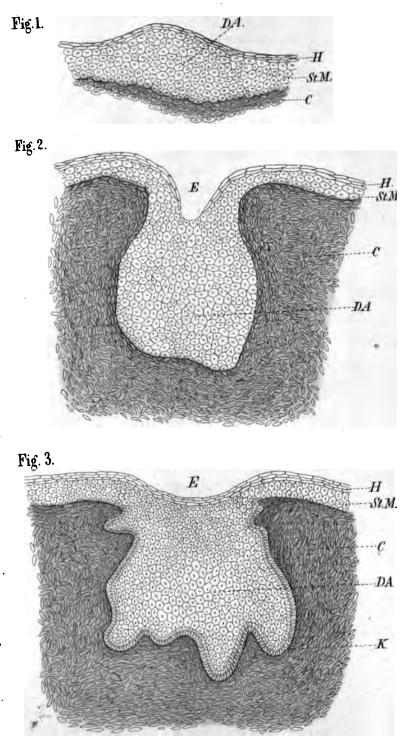




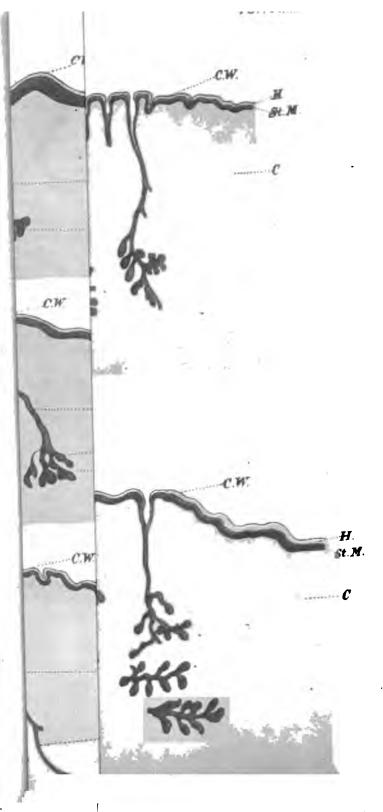
•

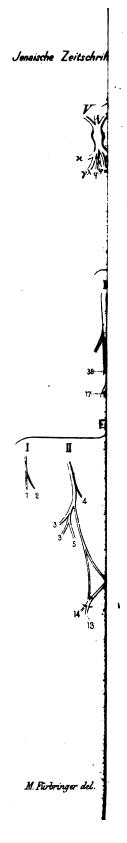
. . .

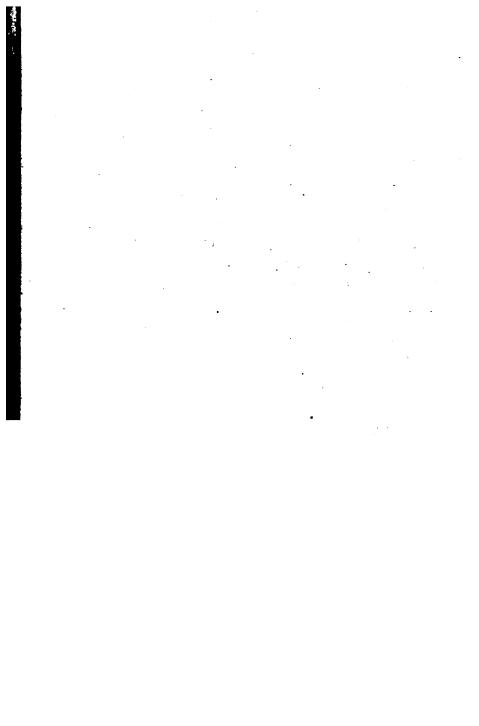


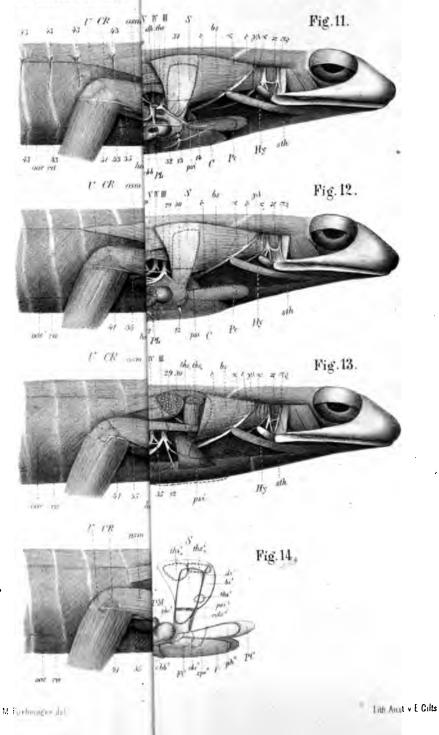

• • , , . • · · · .

· · • • • .

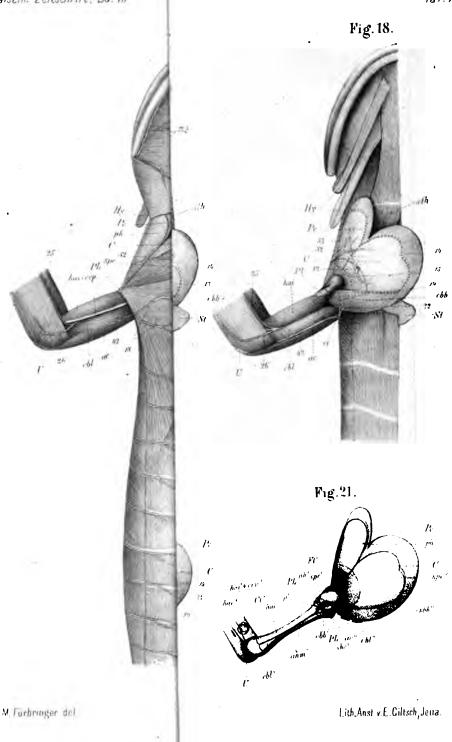


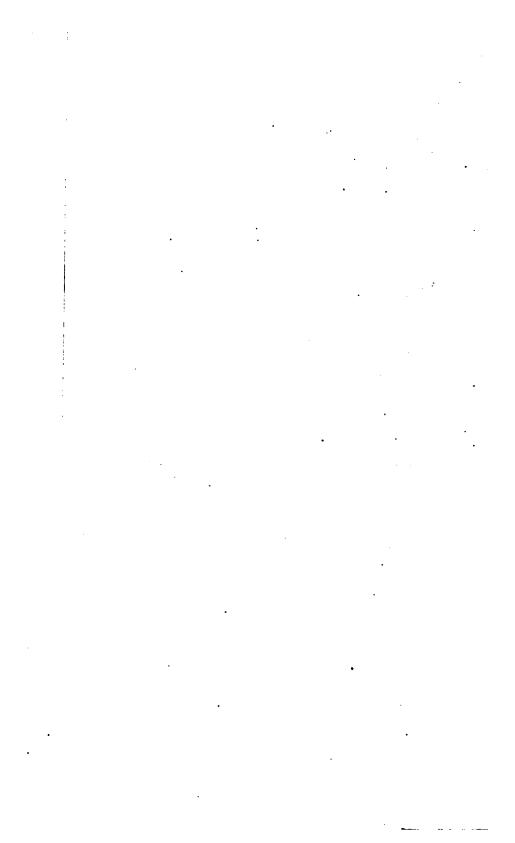


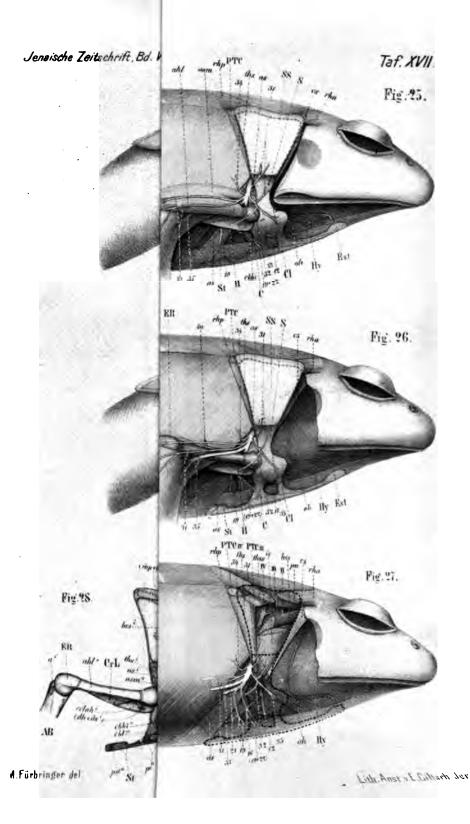

Hith y. C. Mi



Ł -:

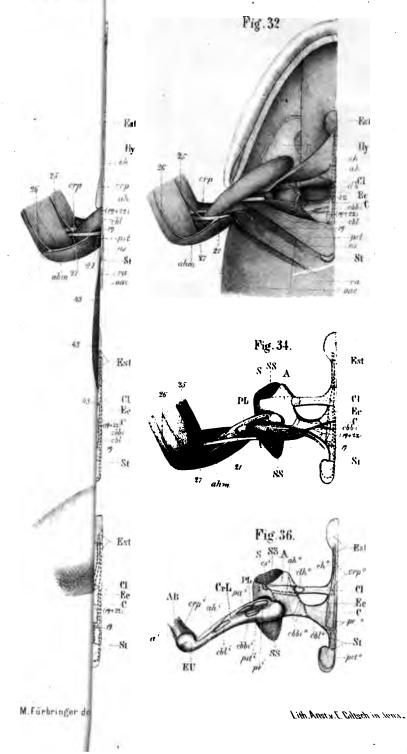


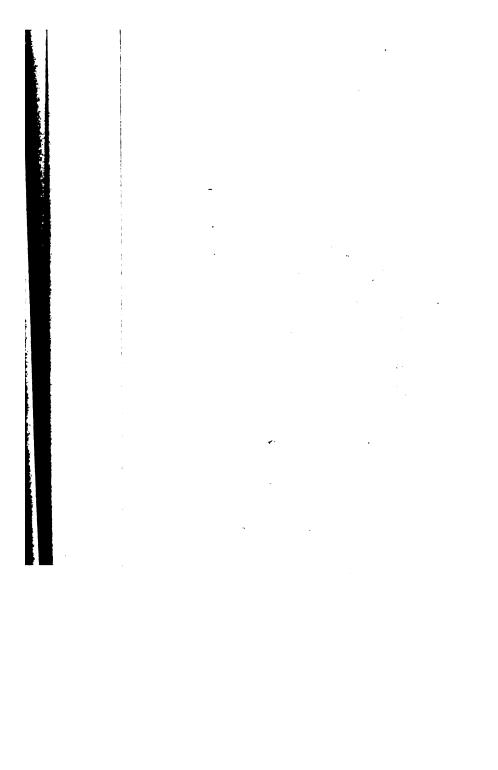

Jenaische Zeitschrift Bd. VII

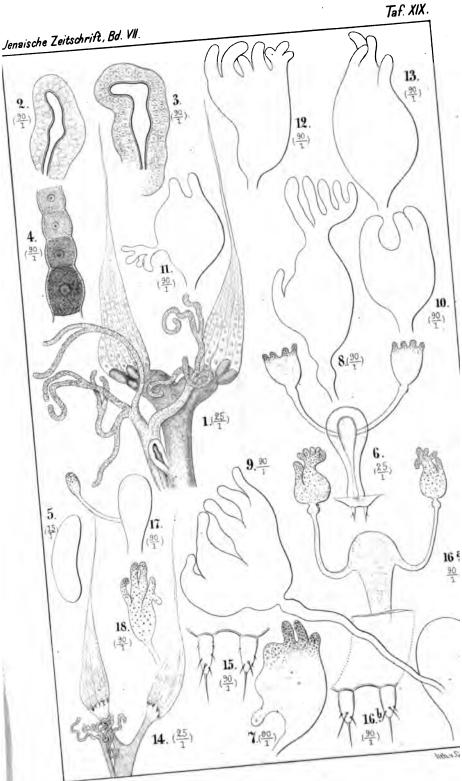


Taf. XI

. • • • ` . • ,

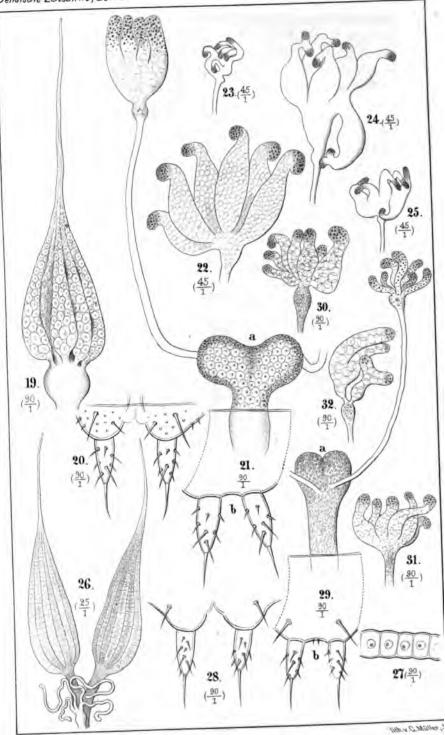

i 1


.


ł . · . 4

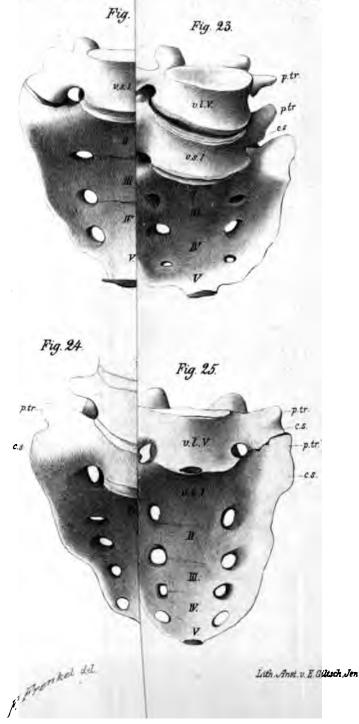
.

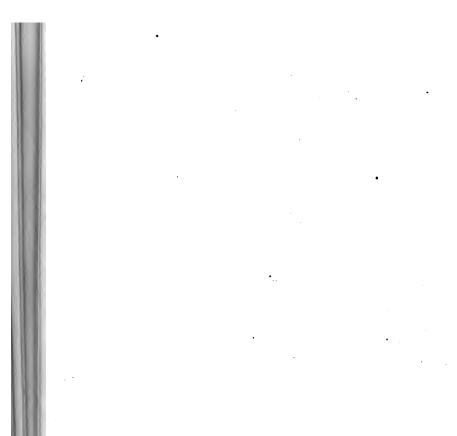
• .



r Mäller del.

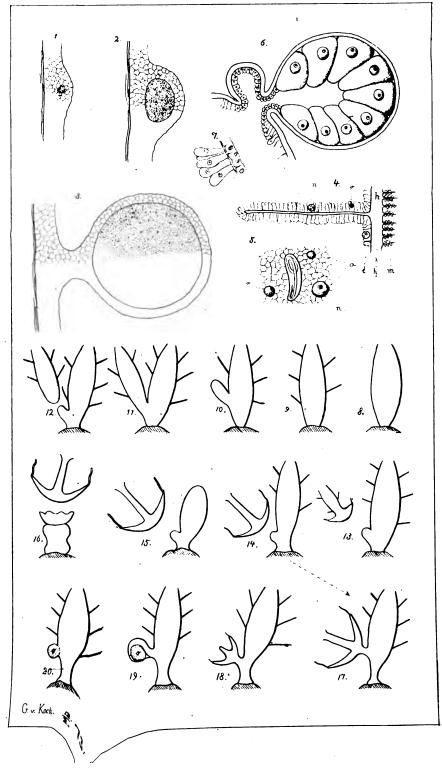
• • · · · · ·

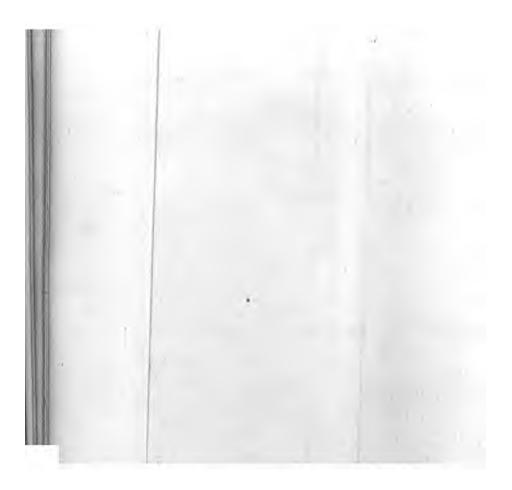

Jenaische Zeitschrift , Bd. VII.



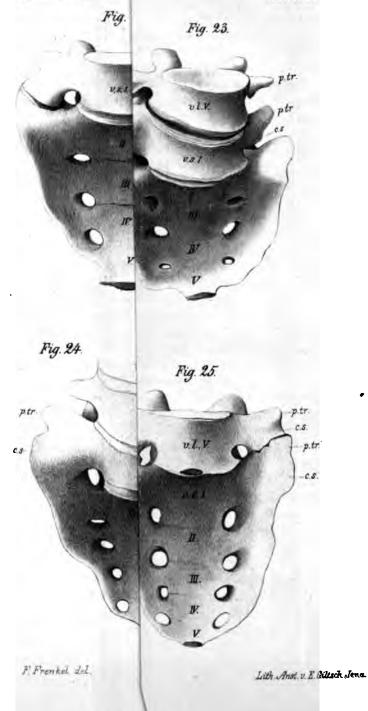
E Müller del.

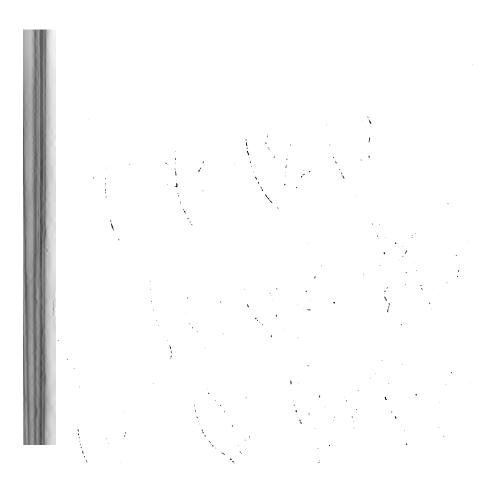
i i • • · · · · ·

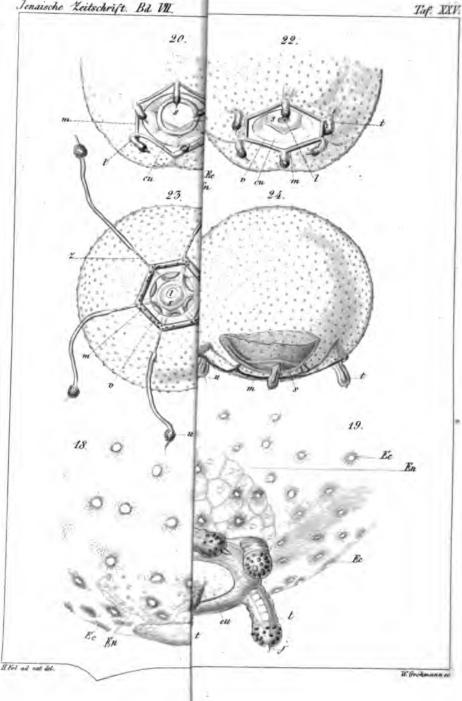

Taf. XXII.

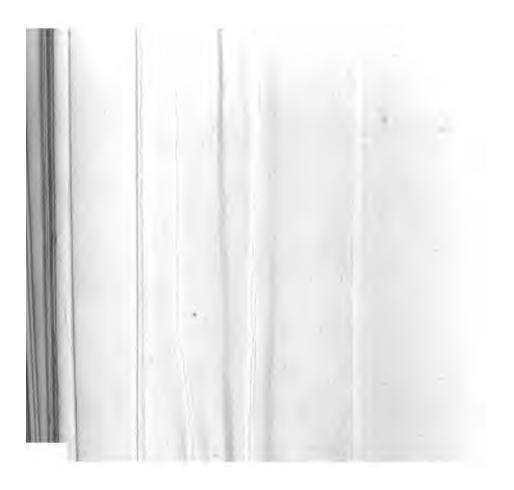


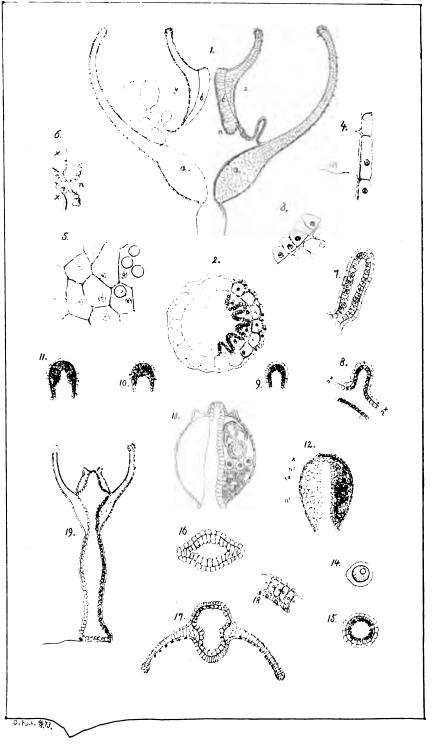
.

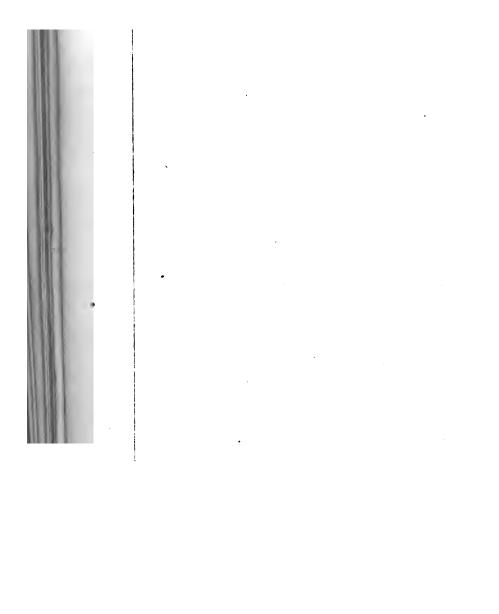


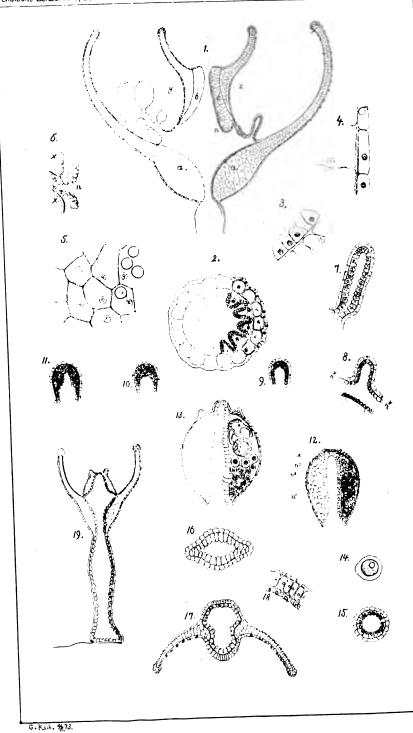


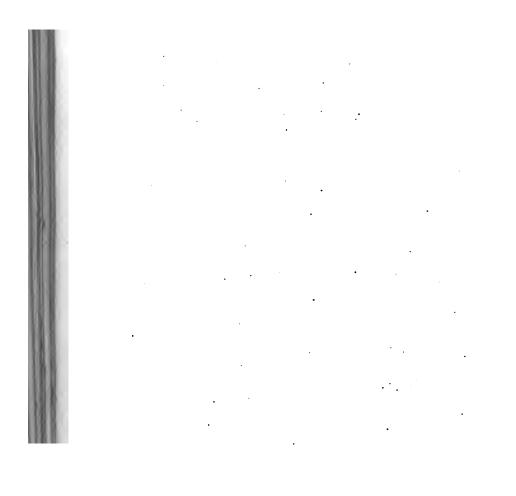


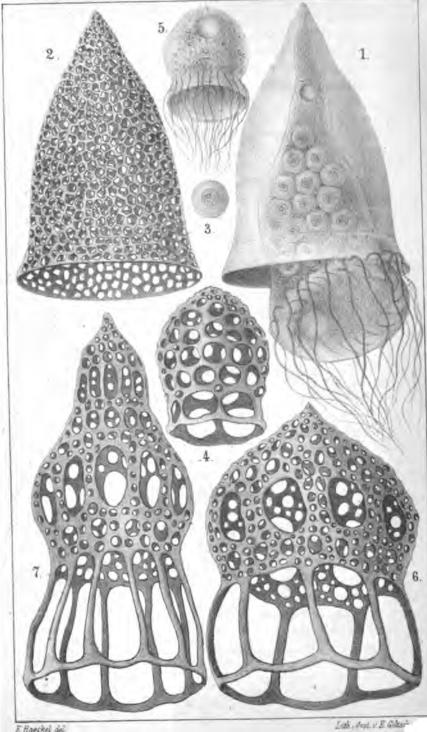

Jenaische Zeitschrift, Bd. VII.


Taf. XXII.








•



Jenaische Zeitschrift. Bd. VII.

E Haetkel del

E Haechel an

Lith Anst v E. Guitsch Jena.

. . . .

